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Abstract Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disorder
characterized by basement membrane disruption, which plays a crucial role in its pathogen-
esis. Matrix metalloproteinases (MMPs), a group of proteolytic enzymes, contribute to the
degradation of the basement membrane. The specific MMPs secreted by keratinocytes in
OLP lesions and relevant regulatory mechanisms are not fully understood. This study aimed
to investigate the involvement of MMPs in OLP pathogenesis, focusing on their expression in
keratinocytes and regulatory mechanisms.
Materials and methods: MMP mRNA expression in OLP epithelium was analyzed using RNA
sequencing data obtained from the Gene Expression Omnibus (GEO) database. Mucosa samples
from 30 OLP patients and 30 healthy controls were collected to observe the expression and
regulation of MMPs in keratinocytes. The involvement of the mitogen-activated protein kinase
(MAPK) pathway in MMP regulation was studied using HaCaT cells.
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Results: RNA sequencing analysis revealed upregulation of MMP1 and MMP9 in OLP epithelium.
MMP9 expression was predominantly observed in basal keratinocytes of OLP lesions. Elevated
levels of phosphorylated c-Jun N-terminal kinase (JNK), a component of the MAPK pathway, were
detected in OLP samples and co-localized with MMP9 in keratinocytes. Activation of the JNK
pathway in HaCaT cells induced MMP9 expression, implicating JNK signaling in MMP9 regulation.
Conclusion: Keratinocytes contribute to OLP pathogenesis by secreting MMP9 through JNK
pathway activation. This understanding may provide insights into targeted therapeutic interven-
tions for this chronic recurrent disease.
ª 2025Association for Dental Sciences of theRepublic ofChina.Publishing services byElsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction

Oral lichen planus (OLP) is a chronic inflammatory disorder
of oral mucosa affecting approximately 1.01% (0.49%e
1.43%) of the global population.1 As the most common
clinical form, reticular OLP presents with a pattern of white
lesions on the oral mucosa. As the disease severity in-
creases, erosive and ulcerative lesions caused by the thin-
ning or complete loss of the epithelium are observed. OLP is
characterized histologically by a dense subepithelial lym-
phocytic infiltration, degeneration of basal keratinocytes
and basement membrane disruption, posing significant
challenges due to its recurrence and potential malignant
transformation.2,3 The integrity of the basement membrane
is important to maintain oral mucosal homeostasis.4,5

Nevertheless, the pathogenic mechanisms underlying the
proteolytic degradation of the basement membrane in OLP
remain incompletely understood, hindering the develop-
ment of targeted therapies.

As a large family of zinc-dependent endopeptidases,
matrix metalloproteinases (MMPs) participate in various
proteolytic events.6,7 They play significant roles in tissue
remodeling, angiogenesis and immune response modula-
tion. In pathological conditions, dysregulated MMP activity
may contribute to chronic inflammation, fibrosis, tissue
breakdown, and invasion and metastasis of cancer.8e10

MMPs are capable of digesting components of basement
membrane, a specialized extracellular matrix structure
that separates epithelium and underlying connective tis-
sue. Basement membrane disruption by MMPs is associated
with heightened tissue permeability and inflammation.7,9

It has been recognized that the MMP levels increase when
mast cells, T cells, and macrophages accumulate and acti-
vate in OLP lesions.2,11 The increased proteolytic activity
then leads to basement membrane destruction and detach-
ment of keratinocytes from the basement membrane in
OLP.2,12 Despite being the most abundant cell type in
mucosal epithelium, keratinocytes were viewed as passive
recipients of immune cell function.13,14 In the past decade,
emerging evidence has shown that keratinocytes could be
the an innate player in the onset and progression of
OLP.2,15,16 Several MMPs have been detected in the epithelial
region of OLP, indicating that pathologically activated ker-
atinocytes in OLP may secret MMPs that disrupt the base-
ment membrane.17e19 Moreover, Jang et al.20 reported that
in human epidermal keratinocytes, the expression of MMP1
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and MMP3 are suppressed via the downregulation of the
mitogen-activated protein kinase (MAPK) pathway. Seomun
et al.21 reported that in TGFb1-induced HaCaT cells
(immortalized human skin keratinocytes), MMPs expression is
regulated via MAPK signaling. The MAPK pathway plays a
crucial role in the extracellular matrix remodeling, and in-
volves extracellular signal-regulated kinase (ERK), p38
MAPK, and c-Jun N-terminal kinase (JNK, also known as
SAPK).22 These observations indicate the potential partici-
pation of MAPKs in regulation of MMPs secretion in oral
mucosal keratinocytes. However, the specific MMPs secreted
by keratinocytes in OLP lesions and relevant regulatory
mechanisms are not fully understood. We hypothesized that
the MAPK pathway regulates the secretion of specific MMPs
by keratinocytes in OLP lesions, contributing to basement
membrane disruption. To test this, we examined which MMPs
were secreted by keratinocytes in OLP lesions and whether
this process was the MAPK pathway-dependent.

Materials and methods

Data acquisition, processing and analysis

RNA sequencing and microarray data were searched
through the Gene Expression Omnibus (GEO) database and
filtered based on the keywords “oral lichen planus” and
“homo sapiens.” Included datasets met the following
criteria: �6 samples available for analysis; samples from
patients diagnosed with “oral lichen planus”; and healthy
samples as controls. Raw data and relevant clinical infor-
mation were extracted and processed in R (RStudio, version
2023.09.1 þ 494). Principal component analysis (PCA) was
performed to identify outlier samples and reduce unwanted
variability. Differentially expressed genes (DEGs) were
identified using the “Deseq2” package or the “limma”
package for the raw count data or the microarray data,
respectively. Gene expression values were normalized and
visualized using a heatmap.

Cell culture

HaCaT cells, a human epidermal keratinocyte cell line, were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) sup-
plemented with 15% fetal bovine serum (FBS) and Pen-Strep
(100 mg/mL penicillin and 100U/mL streptomycin). All
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reagents were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). The cell line was authenticated via
short tandem repeat sequence analysis, and maintained in a
cell culture incubator (Thermo Fisher Scientific) at 37 �C
with 5% CO2. Anisomycin (MedChemExpress, Monmouth
Junction, NJ, USA) was dissolved in DMSO at a concentration
of 20 mM as a stock solution and stored at �20 �C. SP600125
(MedChemExpress) was dissolved in DMSO at a concentration
of 5 mM as a stock solution and stored at �20 �C.

Human mucosa sample collection

This study was performed following the principles of the
Helsinki Declaration and was approved by the ethics com-
mittee of the Ninth People’s Hospital, College of Stomatol-
ogy, Shanghai Jiao Tong University School of Medicine (No.
SH9H-2021-T100-2). All patients were referred to the
Department of Oral Medicine, Shanghai Ninth People’s Hos-
pital, China from September 2023 to March 2024. The OLP
patients (n Z 30) were diagnosed according to the modified
WHO criteria,23 and tissue samples were obtained by punch
biopsies of the lesional buccal mucosa. Healthy controls
comprised age- and sex-matched individuals (n Z 30) un-
dergoing resection of buccal papilloma or fibroma, and tissue
samples were obtained during surgical wound trimming. All
biopsy procedures were conducted by experienced surgeons,
and informed consent was obtained from every patient.

Immunoblotting

Cells and tissue were lysed in RIPA lysis buffer (Beyotime,
Shanghai, China) supplemented with protease and phos-
phatase inhibitors (Beyotime) by low-temperature grinder
(Wonbio, Shanghai, China) at 4 �C. The lysates were incu-
bated on ice for 20min and then cleared by high-speed
centrifugation (12000 rpm, 15min) at 4 �C. After saving 5%
of the supernatants for the BCA assay, the rest underwent
denaturation with SDS-PAGE sample loading buffer and
were then subjected to Western blotting analysis. Sources
and dilutions of primary antibodies were as follows:
phospho-SAPK/JNK (Thr183/Tyr185) (#9251, 1:1000; Cell
Signaling Technology, Danvers, MA, USA), SAPK/JNK (#9252,
1:1000; Cell Signaling Technology), phospho-ERK1/2
(Thr202/Tyr204) (#4370, 1:1000; Cell Signaling Technol-
ogy), ERK1/2 (#4695, 1:1000; Cell Signaling Technology),
phospho-p38 MAPK (Thr180/Tyr182) (#4511, 1:1000; Cell
Signaling Technology), p38 MAPK (#9212, 1:1000; Cell
Signaling Technology), MMP9 (N-terminal) (10375-2-AP,
1:1000; Proteintech, Wuhan, China), b-Actin (AC026,
1:20000; Abclonal, Wuhan, China). Protein bands were
visualized using an e-Blot touch imager (e-Blot, Shanghai,
China). The intensity of each band was quantified and
normalized using b-actin as an internal loading control by
ImageJ (version 1.54f; NIH, Bethesda, MD, USA).

Immunofluorescence microscopy

For tissue samples, 4% paraformaldehyde-fixed tissues were
embedded in paraffin and cut at 3 mmthickness. Following the
instructions of the TSA-based multiplex immunohistochem-
istry/immunofluorescence (mIHC/IF) staining kit (Yuanxi,
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Shanghai, China), the sections underwent deparaffinization,
antigen retrieval, permeabilization, blocking, and incubation
with primary antibodies, secondary antibodies labeled with
HRP and tyramide-conjugated fluorophores. For cell samples,
cells were plated on 24-well glass slides and fixed with 4%
paraformaldehyde. Then the slides underwent permeabiliza-
tion, blocking, and incubation with primary antibodies and
fluorophore-conjugated secondary antibodies. Sources and
dilutions of primary antibodies were as follows: phospho-
SAPK/JNK (Thr183/Tyr185) (#9251, 1:2000; Cell Signaling
Technology), phospho-ERK1/2 (Thr202/Tyr204) (#4370,
1:3000; Cell Signaling Technology), phospho-p38 MAPK
(Thr180/Tyr182) (#4511, 1:5000; Cell Signaling Technology),
MMP1 (CY5330, 1:5000; Abways, Shanghai, China), MMP9 (N-
terminal) (10375-2-AP, 1:10000 for tissue samples/1:1000 for
cell samples; Proteintech), Cytokeratin 4 (ab51599, 1:5000;
Abcam, Cambridge, UK), Cytokeratin 14 (ab7800, 1:20000;
Abcam).Sections andslidesweremounted inantifade reagent
(Beyotime) and imaged by confocal microscopy on a Zeiss LSM
700 instrument (Carl ZEISS, Jena,Germany). Thefluorescence
images were merged and analyzed using Zeiss ZEN (version
3.8; Carl ZEISS).

Statistical analysis

Statistical analyses were conducted using GraphPad Prism
(version 8; GraphPad Software, Boston, MA, USA). Differ-
ences between groups were calculated using the Student’s
t-test or one-way ANOVA. A P-value of <0.05 was consid-
ered significant in all statistical tests.

Results

MMP1 and MMP9 are potentially up regulated in the
OLP epithelium

We obtained two datasets (GSE131567 and GSE52130) that
met inclusion criteria from the GEO database (Fig. 1A). We
conducted PCA analysis for included datasets to remove
outlier samples, and the PCA plots (Fig. 1B and C) depict
the distribution of samples after removal, with each point
representing an individual sample.

We analyzed the gene expression profiles in oral mucosa
samples (GSE131567) and oral mucosal epithelium samples
(GSE52130) and used heatmaps to depict the expression
pattern of MMP families (Fig. 1D and E). We identified the
differentially expressed genes and intersected the results
(Fig. 1F). MMP1, MMP9, MMP10, MMP12 were up regulated
in both datasets. We searched the normalized single cell
RNA levels of the selected genes expressed in the “basal
keratinocytes” and “suprabasal keratinocytes” cell types
from the Human Protein Atlas database. We included MMP1
and MMP9 for further analysis, as the RNA levels of MMP10
and MMP12 were less than 1 nTPM in both single cell types.

MMP9 expression is upregulated in OLP
keratinocytes

To test our hypothesis that keratinocytes serve as a source
of MMP1 and MMP9 in OLP, we examined the expression of



Figure 1 Analysis of gene expressions of matrix metalloproteinase (MMP) family and intersection of differentially expressed
genes (DEGs). (A) Information of the two datasets obtained from Gene Expression Omnibus (GEO) database. (B and C) Principal
component analysis (PCA) after removing outlier samples. (D and E) Heatmaps representing gene expression differences of MMP
family in oral lichen planus (OLP) group and healthy control (HC) group. (F) Venn diagram representing intersection of DEGs from
two datasets based on a |Log2FoldChange| �1.5 and a P-value of <0.05.
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MMP1 and MMP9 under both normal and diseased conditions
(Fig. 2A). Consistent with previous reports, we observed
MMP1 and MMP9 were expressed and localized mainly in the
lymphocytic cell infiltration area of the lamina propria. We
also observed prominent expression and distribution of
MMP9 within the OLP epithelium. To confirm the expression
of MMP9 in keratinocytes, we co-stained MMP9 with Kera-
tin-14 and Keratin-4, markers for basal and suprabasal
keratinocytes of buccal mucosa respectively. The expres-
sion of MMP9 was seen in epithelial keratinocytes, partic-
ularly in the basal layer of rete pegs (Fig. 2B).

JNK is activated by phosphorylation and co-
localizes with MMP9 in OLP keratinocytes

We examined the phosphorylation levels of p38 MAPK, ERK,
and JNK under both normal and diseased conditions, to test
whether MMP9 expression is regulated by the MAPK
pathway in OLP. We observed the levels of phosphorylated
JNK (pJNK) were obviously augmented in OLP samples,
while the levels of phosphorylated p38 MAPK(p-p38) and
phosphorylated ERK (pERK) were not altered (Fig. 3A). We
furthermore performed co-staining for pJNK, p-p38, and
pERK and observed an augmented presence of pJNK within
epithelial keratinocytes (Fig. 3B).

MMP9 expression is mediated through activation of
the JNK pathway

To explore the potential relationship between pJNK and
MMP9, we co-stained the two proteins and observed that in
epithelial keratinocytes, phosphorylated JNK was co-
localized with MMP9 (Fig. 4A). To determine whether the
phosphorylation of JNK regulates the expression of MMP9,
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we assessed the MMP9 expression level in response to the
JNK pathway activation in HaCaT cells. The phosphorylation
of JNK is absent in HaCaT cells, thus we utilized Anisomycin
as a JNK activator (Fig. S1) and utilized SP600123 as a JNK
inhibitor to serve as a negative control. In the presence of
Anisomycin treatment, the expression of MMP9 significantly
increased after 24 h, and exhibited a time-dependent in-
crease at 24 and 48 h (Fig. 4B and C).
Discussion

OLP is a chronic inflammatory disease that affects the oral
mucosa, causing discomfort and potentially leading to
malignant transformations.24,25 Despite extensive research,
the precise mechanisms underlying the pathogenesis of
lesional keratinocytes remain elusive, hindering the
development of effective targeted therapies. In this study,
we investigated the specific MMPs secreted by keratino-
cytes in OLP lesions and focused particularly on MMP9. We
also explored the regulatory role of the MAPK pathway,
specifically JNK activation, in MMP9 expression of
keratinocytes.

The pathogenesis of OLP involves the interplay between
keratinocytes, immune cells, and other skin-resident cells.
In previous studies, the basement membrane disruption has
been considered as an immune cell-driven process, which
contributes to the degeneration of keratinocytes.2,12,26

Increasing attention has been raised to lesional keratino-
cytes which may play a vital part in the onset and pro-
gression of OLP, while few research focused on whether
keratinocytes have an influence on the homeostasis of
basement membrane. The basement membrane disruption
is commonly facilitated by MMP activation.12 As crucial
mediators of tissue remodeling, elevated levels of MMPs,



Figure 2 Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) staining in oral mucosa tissue. (A) Representative
confocal microscopy images stained for MMP9 (red), and MMP1 (green). (B) Representative confocal microscopy images stained for
MMP9 (red), Keratin-14 (K14, green) and K4 (grey). Cell nuclei were counterstained with DAPI (blue). Skyblue dashlines indicates
basement membrane, and white boxes indicate enlarged regions.

Figure 3 Western blot analysis and mIHC/IF staining in oral mucosa tissue. (A) Representative western blot images showing the
phosphorylation status of protein JNK, p38 and ERK (pJNK, p-p38 and pERK) in oral mucosa tissue. Total protein JNK, p38 and ERK
and b-actin as a loading control were also detected. (B) Representative confocal microscopy images stained for pERK (red), pJNK
(green) and p-p38 (grey). Cell nuclei were counterstained with DAPI (blue). Skyblue dashlines indicates basement membrane, and
white boxes indicate enlarged regions.
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including MMP1, 2, 3, 7, and 9, have been detected in OLP
lesions.17e19 Several MMPs have been detected in the
epithelial region of OLP, yet it is still obscure which MMPs
keratinocytes in the OLP lesion secret. Our analysis of RNA
sequencing data from oral mucosal samples revealed a
potential upregulation of MMP1 and MMP9 in OLP epithe-
lium, suggesting their involvement in the pathogenesis of
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the disease. Interestingly, MMP9 showed prominent
expression within the OLP epithelium, indicating a poten-
tial role of keratinocytes in MMP9 secretion.

MMP9, also known as Gelatinase B, is a key gelatinase in
both normal and pathological inflammatory processes.7,9

MMP9 plays a crucial role in regulating the composition of
the extracellular matrix and can cleave various types of



Figure 4 Western blot analysis and mIHC/IF staining in oral mucosa tissue and HaCaT cells. (A) Representative confocal mi-
croscopy images stained for MMP9 (red), pJNK (green). Cell nuclei were counterstained with DAPI (blue). Slyblue dashlines indicates
basement membrane, and white boxes indicate enlarged regions. (B) Representative confocal microscopy images stained for MMP9
(red) in HaCaT cell line after treatment with 1 mM Anisomycin dissolved in DMSO, 1 mM SP600125 dissolved in DMSO or DMSO control
for 24 h. Cell nuclei were counterstained with DAPI (blue). (C) Representative western blot images showing the levels of MMP9 in
HaCaT cell line. Cells were treated with 1 mM Anisomycin dissolved in DMSO or DMSO control for the indicated time points (0, 24 and
48 h). Protein b-actin as a loading control were also detected.
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collagens, including type 4 collagen which is the major
component of the basement membrane.7 The increased
expression and secretion of MMP9 in OLP lesions contribute
to the degradation of basement membrane, resulting in the
epithelial infiltration of lymphocytes and the degeneration
of basal cells.2,19 It is recognized that MMP9 is secreted by
macrophages and detected in neutrophil cytoplasm.27

Studies of OLP pathology have shown MMP9 is also pro-
duced by T cells at lesional sites.2,19 Additionally, Wang
et al.28 reported elevated MMP9 levels induced by IL9 in
OLP Th9 cells. Conflicting opinions have been reported
about the relationship between OLP lesional keratinocytes
and the distribution of MMP9. Zhou et al.29 reported that
MMP9 was associated with OLP lesional T cells but not
epithelial cells, while Paulusová et al.19 found the expres-
sion of MMP9 both in the lamina propria and in the
epithelium in all cases of OLP. Obviously, the distribution of
MMP9 in OLP epithelium and the relevant mechanism still
remain unclear. In our study, the expression of MMP9 was
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co-stained with keratins in OLP samples, and we identified
that OLP lesional keratinocytes expressed and secreted
MMP9. Furthermore, we noticed more significant expression
of MMP9 in the basal layer of rete pegs than in other regions
of epithelium, indicating that MMP9 may play an important
part in aggravating the disease severity as rete pegs are
important for providing structural support and enhancing
adherence of epithelium and lamina propria.

MAPKs are serine-threonine kinases that mediate a va-
riety of cellular activities and play a crucial role in the
extracellular matrix remodeling.22,30 Our investigation
revealed an activation of the JNK pathway and a potential
regulatory relationship between JNK activation and MMP9
expression in OLP keratinocytes. To establish causality, we
activated the JNK pathway in HaCaT cells, and observed a
significant increase in MMP9 expression in response to JNK
activation, supporting the notion that the JNK pathway
regulates MMP9 expression in keratinocytes. Furthermore,
it has reported that the JNK and p38 MAPK signaling
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pathways can be activated by proinflammatory cytokines
such as tumor necrosis factor-a (TNFa) and interleukin-1b
(IL1b),31,32 and keratinocytes from OLP lesions have been
reported to produce increased TNFa and IL1b than from
healthy oral mucosa.2 In addition, the PI3K/Akt/NF-kB
pathway has also been implicated in regulating MMP9
expression,33 although no significant activation was
observed in OLP samples based on our unpublished data
(Fig. S2). Further researches could focus on whether these
proinflammatory cytokines lead to MMP9 expression via the
JNK pathway in lesional keratinocytes, helping elucidate
the molecular mechanisms underlying OLP pathogenesis.

In conclusion, our study provides novel insights into the
involvement of keratinocytes in the pathogenesis of OLP.
We have demonstrated that MMP9 expression is elevated in
lesional keratinocytes driven by activation of the JNK
pathway, which supports our hypothesis and suggests po-
tential therapeutic targets from the perspective of
keratinocyte-mediated mechanisms.
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