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Abstract

Background: In the light of the ongoing debate about lowering the cut-off for acceptable blood
lead level to <5 pg/dL from the currently recommended level of <10 pg/dL, we considered whether
prenatal exposure to varying levels of lead is associated with similar or disparate effects on neonatal
behavior.

Methods: Using Brazelton's Neonatal Behavioral Assessment Scale (NBAS), an epidemiological
approach and robust statistical techniques like multivariate linear regression, logistic regression,
Poisson regression and structural equations modeling analyses we estimated the simultaneous
indirect effects of umbilical cord blood lead (CBL) levels and other neonatal covariates on the
NBAS clusters.

Results: We observed that when analyzed in all study subjects, the CBL levels independently and
strongly influenced autonomic stability and abnormal reflexes clusters. However, when the analysis
was restricted to neonates with CBL <10 pg/dL, CBL levels strongly influenced the range of state,
motor and autonomic stability clusters. Abnormal walking reflex was consistently associated with
an increased CBL level irrespective of the cut-off for CBL, however, only at the lower cut-offs were
the predominantly behavioral effects of CBL discernible.

Conclusion: Our results further endorse the need to be cognizant of the detrimental effects of
blood lead on neonates even at a low-dose prenatal exposure.

Background at low doses of exposure, environmental lead continues to

There is an ongoing debate over the appropriate cut-off of
blood lead concentration to detect lead poisoning [1-6].
Starting from 60 ug/dL the cut-off recommended by the
Centers for Disease Control (CDC) receded to 25 pug/dL
and then to the currently used value of 10 pug/dL[5]. This
was essentially due to a series of studies showing that even

be a biological and social toxicant [4,5,7,8]. Recently,
there is a burgeoning recognition that even at low doses
exposure to lead has serious implications on a child's
behavior pattern. For example, lead exposure in low doses
has been convincingly implicated in juvenile delinquency
[9,10], intelligence quotient (IQ) patterns [4,11-18] and
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crime rates [19,20]. In the light of these findings, Needle-
man and others recommend that the time has arrived to
lower the CDC recommended cut-off for blood lead to 5

ug/dL [5].

Blood lead has also been considered for a long time to be
a behavioral teratogen. Interestingly, however, literature
on the putative association of the prenatal blood lead
exposure with the behavioral prototypes in the newborns
is scant and inconsistent [2]. For example, Ernhart et al
[21], Rothenberg et al [22] and more recently Emory et al
[23] could not demonstrate any striking association
between umbilical cord blood lead level and neonatal
behavior. In contrast, two recent prospective studies have
- using the Mental Development Index (MDI) - shown
association of low-exposure to lead with the neurobehav-
ioral development in early life [24,25]. Additionally, since
neonatal behavior is a multi-dimensional construct with
several hard-to-measure and correlated domains, the ana-
lytical strategy to test the association between blood lead
levels and behavioral indicators is not always straightfor-
ward [2,26].

We therefore undertook this study to address two research
questions: a) Do umbilical cord blood lead (CBL) levels
independently correlate with the early neonatal neurobe-
havioral pattern? b) Do these neurobehavioral associa-
tions, if any, continue to be present in neonates with CBL
levels below 10 ng/dL? We hypothesized that the behavio-
ral archetypes of neonates are influenced by the level of
prenatal exposure to lead even at relatively low doses of
exposure. To test this hypothesis, we conducted a cross-
sectional study assessing the association between umbili-
cal cord blood lead levels and the neonatal neurobehavio-
ral responses using appropriate measurement scales and
statistical models.

Methods

Study subjects

The present cross-sectional study was conducted at the
Government Medical College and Hospital, a tertiary care
hospital in Nagpur, India. The data were collected over a
four-month period starting from January 1998. All con-
secutively born neonates at the study center whose
mother gave an informed consent were included in the
study. Overall, 230 children were included. However,
blood lead measurements were available on 176 (~77%)
of the neonates who comprised our study sample. The
study was approved by the Ethical Committee of the Gov-
ernment Medical College, Nagpur, India.

Study variables

Outcomes

We measured the neonatal behavior using Brazelton's
Neonatal Behavioral Assessment Scale (NBAS) [27]. The
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scale consists of the 28 behavior-related items scored on a
9-point scale, 18 reflexes and 7 supplementary items. Two
trained pediatricians administered the scale. Before the
study began, these two investigators independently and
together evaluated a separate set of 20 neonates to ensure
concordance of observations. The NBAS was administered
within three days of birth. Since the arousal state can
influence a newborn's performance on the individual
items of the NBAS scale [27], we noted the initial state
(the state of the newborn at the beginning of the NBAS
evaluation) and predominant state (the state which the
newborn was most commonly in over the duration of
NBAS assessment and which was recorded at the end of
the NBAS evaluation) of the newborn. We converted the
raw scores on the NBAS items into the following seven
clusters as recommended by Lester et al [28]: habituation,
orientation, motor, range of state, regulation of state,
autonomic stability and abnormal reflexes. The associa-
tion of the predictor variables was then assessed with the
cluster scores.

Blood lead measurement

Cord blood samples (5 ml) were obtained for each
neonate in a metal-free K3 EDTA bulb and analyzed
within 48 hours of sample collection for blood lead by
flameless atomic absorption spectrophotometry (Hitachi
7-8000) in parts per billion at a wavelength of 283.3 nm
with a slit width of 1.3 nm using the method described by
Lagesson et al [29]. The detection rate of lead for the
instrument was 1 pg/l, with an average error rate of 5% for
reproducibility of results. The samples were analyzed for
estimation of the lead concentration within 48 hours of
collection.

Covariates

Table 1 describes the characteristics of the study subjects.
In multiple linear regression analyses (described below),
we used the following covariates: maturity, hours of birth,
sex, birth weight, head circumference, fetal and maternal
obstetric problems, specific disorder in fetus/newborn,
problem noted during labor, use of oxytocic agents, rup-
ture of membranes before onset of labor, tobacco intake
by the mother and alcohol intake by the mother. The
meaning and description of some of these covariates is
provided in details in Supplementary Table 1 (see addi-
tional file 1, supplementary table 1). The covariates were
measured based on the antenatal medical records, labor
notes and by interviewing the mothers.

Statistical analysis

Our general strategy for statistical analysis was to test the
association between cord blood lead levels and each
NBAS cluster score in univariate and multivariate con-
texts. Since, in theory, the NBAS clusters represent essen-
tially orthogonal i.e. uncorrelated factors, we used the
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Table I: Characteristics of the neonatal study subjects (n = 176)

Maturity in weeks (mean + S.D) 38.93 £ 345
Hours of birth (mean + S.D) 45.78 £ 15.15
Sex

Male (n, %) 99 (56.3)

Female (n, %) 77 (43.7)
Birth weight (g, mean + S.D) 2644.35 + 413.15
Head circumference (cm, mean * S.D) 3247 £ 2.13
Umbilical cord blood lead level (ug/dL, mean + S.D) 5.15 £ 12.65

Fetal obstetrical problem (n, %)

Yes 6 (34)
No 157 (89.2)
Unknown 13 (7.4)

Specific disorder in fetus/neonate (n, %)

Yes 17 (9.6)
No 145 (82.4)
Unknown 14 (8.0)

Maternal obstetrical problem (n, %)

Yes 44 (25.0)
No 119 (67.6)
Unknown 13 (7.6)

Problem noted during labor (n, %)

Yes 59 (33.5)
No 109 (61.9)
Unknown 8 (4.6)

Use of oxytoxic agents during labor (n, %)

Yes 44 (25.0)
No 127 (72.2)
Unknown 5(2.8)

Rupture of membranes before labor onset (n, %)
No 135 (76.7)
Less than 24 hours 29 (16.5)
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Table I: Characteristics of the neonatal study subjects (n = 176) (Continued)

24 to less than 72 hours 5(2.8)
72 to less than 120 hours 1 (0.6)
More than 120 hours 1 (0.6)
Unknown 5(2.8)

Maternal medical problem during this pregnancy (n, %)

Yes 30 (17.1)
No 137 (77.8)
Unknown 9 (5.1

Tobacco intake by mother (n, %)

No 164 (93.2)
Yes 8 (4.6)
Unknown 4(2.2)

Alcohol intake by mother (n, %)

Yes 3(1.8)
No 169 (96.0)
Unknown 4(2.2)

House painted (n, %)

No or white wash 98 (55.7)
Yes, some 35(19.9)
Yes, complete 39 (22.2)
Unknown 4(22)

Age of house paint (n, %)

< 5years 62 (83.8)
5—10 years 7 (9.5
Unknown 5(6.7)

NBAS cluster scores (mean + S.D)

Habituation 2891 +3.29
Orientation 43.06 £ 8.19
Motor 26.60 £ 3.69
Range of state 16.05 + 3.83
Regulation of state 18.69 + 5.38
Autonomic stability 14.12 £ 3.29
Abnormal reflexes 237 £1.98
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score for each NBAS cluster as an outcome. For estimating
the unadjusted influence, we used only CBL level as the
predictor. Subsequently in a multiple linear regression
model we estimated the adjusted influence of CBL for
each NBAS cluster score by including the covariates men-
tioned above, the initial and predominant states of
arousal (Table 2). It was essential to include both initial
and predominant states in the multiple regression models
because there two variables were not completely collinear
with each other indicating that in a given infant often the
initial state was not the same as the predominant state
(Spearman's rho = 0.093, p = 0.1938). Lastly, only for the
"abnormal reflexes" cluster we used single and multiple
Poisson regression analyses because the scores for this
cluster actually represent the count of the number of
abnormal reflexes.

Our next step of analysis was to assess the association of
the CBL levels with the NBAS cluster scores in a multivar-
iate context. For this purpose, we first conducted analysis
of covariance (ANCOVA) using each NBAS cluster as the
outcome and CBL as the predictor - first alone (unad-
justed analysis) and then using initial and predominant
states as covariates (adjusted analysis). Using the results
from these analyses, we tested for the influence of blood
lead on multiple outcomes using the Multiple Indicator
Multiple Causes (MIMIC) model under the umbrella of
Structural Equations Modeling (SEM). The details of the
MIMIC model that we employed in our analyses are
described below.

Additionally, we used Poisson regression to test the asso-
ciation between blood lead and the number of abnormal
reflexes and multiple logistic regression analysis to test the
association between various reflexes and dichotomized
values of blood lead as described in the succeeding sec-
tions. We used Stata 8.0 (Stata Corp, College Station, TX)
and Amos 5.0 (Amos Development Corp, Spring House,
PA) for statistical analyses. Unless specified otherwise, an
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alpha error rate of 0.05 was used to test statistical signifi-
cance.

Results

The characteristics of the study subjects are described in
Table 1 and Supplementary Table 1 (see additional file 1,
supplementary table 1). Only two (1.1%) neonates were
premature (<32 weeks), 10 (11.3%) had head circumfer-
ence less than 30 cm, eight (4.6%) were small (birth
weight < 2 kg), three (1.7%) were very small (birth weight
< 1.5kg) and 14 (8.0%) had cord blood lead exceeding 10
pg/dL. In general, therefore our study sample mostly
included healthy neonates. This was also reflected by the
mean scores for each of the NBAS clusters as shown in
Table 1. During the NBAS evaluation, the most common
initial states were light sleep (65 neonates, 36.9%), deep
sleep (43 neonates, 24.4%) and alertness (35 neonates,
19.9%) while the most common predominant states were
alertness (70 neonates, 39.7%), open eyes (49 neonates,
27.8%) and crying (31 neonates, 17.6%).

CBL and NBAS cluster scores

The results shown in Table 2 indicated that when the anal-
yses were conducted in all study subjects, the CBL levels
significantly correlated with the autonomic stability and
abnormal reflexes clusters even after adjustment for the
aforementioned covariates. However, when the same
analyses were performed in neonates with CBL levels <10
pg/dL, the unadjusted analyses identified the association
of the CBL levels with the range of state and regulation of
state clusters but the adjusted model identified the associ-
ation with orientation and regulation of state clusters. We
also considered whether the association of CBL with each
NBAS cluster is specifically influenced by the potential
effect of the initial and predominant states of the newborn
on the NBAS cluster scores and found, using ANCOVA,
that it was not (see additional file 1, supplementary table
2). This first pass analysis through the multiple regression
models and ANCOVA thus indicated that i) The CBL lev-

Table 2: Results of regression analyses for prediction of NBAS cluster scores based on CBL and other covariatesT in all neonates (left

column) and neonates with CBL levels <10 ug/dL.

NBAS cluster All Neonates

Neonates with CBL < 10 ng/dL

Unadjusted (coefficient, p)

Adjusted (coefficient, p)

Unadjusted (coefficient, p) Adjusted (coefficient, p)

Habituation 0.0145, 0.468 0.0292,0.213 -0.0432,0.812 -0.0057, 0.988
Orientation 0.0092, 0.853 0.0176, 0.753 0.2823,0518 1.5972, 0.053
Motor 0.0188, 0.446 0.0108, 0.724 -0.2733,0.136 0.4154, 0.282
Range of state -0.0304, 0.196 -0.0419, 0.085 -0.5135, 0.008 -0.1957, 0.548
Regulation of state 0.0030, 0.930 0.0458, 0.336 -0.7138,0.010 -1.2912, 0.036
Autonomic stability -0.0567, 0.008 -0.0506, 0.077 -0.1219, 0.462 -0.3156, 0.507
Abnormal reflexes* 0.0118, 6.8 x 10-5 0.0073, 0.084 -0.0487, 0.163 -0.1049, 0.168
T List of the covariates is provided in the Methods section, Study Variables subsection

* Estimated using Poisson regression analysis
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els correlated with specific NBAS clusters; ii) The CBL lev-
els were differentially associated with NBAS clusters in all
subjects versus subjects with CBL levels below 10 ug/dL
and iii) The association of CBL levels with NBAS clusters
varied between the unadjusted and adjusted analyses in
neonates with low-dose prenatal lead exposure.

Correlation among NBAS cluster scores

Even though the NBAS clusters are theoretically uncorre-
lated, we assessed if the correlations among these clusters
were dataset-specific. To consider this possibility and the
implications thereof, we first assessed the correlation
structure of the seven NBAS clusters in all neonates as well
as in neonates with CBL levels below 10 pg/dL (Figure 1
and additional file 1, supplementary table 3). Not surpris-
ingly, we observed that there were a number of statistically
significant correlations between pairs of NBAS clusters.
Specifically, the habituation, orientation and motor clus-
ters were strongly correlated with each other while the
range of state and regulation of state clusters showed a
trend towards a significant correlation with each other in
all neonates as well as in neonates with CBL levels below
10 pg/dL. Arguably, this correlation structure can alter the
interpretations regarding the simultaneous influence of
the predictors on the NBAS clusters. Therefore, we chose
to conduct further analyses in which we modeled the
influence of CBL levels and other covariates simultane-
ously on the NBAS clusters.

A£z8E 85 B Fg52Egs
ORI ORI

MOT MoT

RAN RAN

REG REG

AUT AUT

REF :l REF j
Correlation -1 NS 1
ColorCode NN [ NN
Figure |

Correlation structure of the NBAS cluster scores in
all neonates (A) and neonates with the CBL levels
below 10 pg/dL (B). The color codes at the bottom pro-
vide a reference for the magnitude and significance of the
Pearson correlation coefficients. Open boxes represent sta-
tistically non-significant correlation coefficient. The actual
estimates of correlation coefficients and their significance val-
ues are shown in Supplementary Table 3 (see additional file |,
supplementary table 3). The NBAS clusters shown here are:
habituation (HAB), orientation (ORI), motor (MOT), range
of state (RAN), regulation of state (REG) and autonomic sta-
bility (AUT) and abnormal reflexes (REF).
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Simultaneous effects of CBL on neonatal behavior:
specification of the MIMIC model

To be parsimonious, we wanted to select the most signifi-
cant NBAS clusters that were least likely to be correlated
with each other. For this purpose, using a reverse
approach, we first used CBL levels as the outcome and the
NBAS cluster scores as the predictors. We conducted step-
wise linear regression with a strict retention probability
criterion of 0.05. The clusters that were retained in the
final model (see additional file 1, supplementary table 4)
were motor, autonomic stability and abnormal reflexes in
all neonates and range of state in neonates with CBL levels
below 10 ug/dL. Therefore, we chose these four clusters as
outcomes for modeling the simultaneous effects of CBL.
This choice of the NBAS clusters was also consistent with
the observed correlation structure since habituation and
orientation were strongly correlated with the motor clus-
ter while regulation of state was moderately correlated
with the range of state.

We then chose four neonate-related predictors which we
modeled as the covariates — CBL levels, head circumfer-
ence, maturity and birth weight. There were three reasons
for choosing this set of covariates. First, there exists litera-
ture support for a putative association of these covariates
with NBAS cluster scores. Second, in a series of stepwise
regression models in our dataset, these variables were con-
sistently associated with one or more of the NBAS clusters
(see additional file 1, supplementary table 5). Finally, as
these variables can be considered to be of a continuous
disposition, the correlation matrices to be used in struc-
tural equations modeling are more reliable and easier to
construct and require no preprocessing of the data.

The path diagram of our model (Figure 2A) thus con-
tained four predictors and four outcomes. In SEM, a
model of this nature is referred to as the Multiple Indica-
tor Multiple Causes (MIMIC) model [28]. In the proposed
MIMIC model, none of the predictors directly influences
any of the outcomes, that is, there exists no direct arrow in
the path diagram (Figure 2A) from any predictor to any
outcome - they all pass through a conceptual, latent and
unmeasured variable. We argue that these four predictors
influence a latent (unobserved) trait which we refer to as
the "neonatal behavior". In our model, the NBAS clusters
were thus considered as indicators of the neonatal behav-
ior.

We modeled the influence of the predictors on neonatal
behavior and on the four outcomes within the framework
of structural equations modeling (SEM). The regression
weights (parameters labeled as 1, to r, in Figure 2A) thus
measure the influence of the predictors on each outcome
in a multivariate context. The random errors of measure-
ment associated with all observed variables - four predic-

Page 6 of 12

(page number not for citation purposes)



Behavioral and Brain Functions 2006, 2:22 http://www.behavioralandbrainfunctions.com/content/2/1/22

A Neonatal NBAS
Predictors Cluster

1 Head 1
L Circumference f Motor

1 Cord Blood
——> Lead

1
rs ___y-|Rangeof state ‘(‘ Ca

Neonatal

Behavior G Cs
[P ;
1 : e Autonomic
— | Maturity |~ "'(—-
Y /?' stability Cs
-
e
I o

/
Birth Weight |~ Abgormal 1 .
reriexes

B C < &
All neonates Neonates with CBL <10 microg/dl
S A S S S S 1.000 -
g
v}
= *
g
S 0.500 1 - Mmoo 0.500 -
s 0003 - ® %
] 0.0006 0083 00003 400
* - 0.034

¢ 0000+ ! , . . , . ! 0.000 0635 0669
g & 0763 * .
= 6208 0.166
ﬂJ
& 0500 s 00007 0,500 = == === == = e e e
%; 0,003 0,003
e -1.000 4

=}
m

Standardized indirect effect
Standardized indirect effect

MOT

Figure 2

Structural equations modeling of the influence of neonatal predictors on the NBAS clusters. (A) The MIMIC
model. The details of this model are given in text. Rectangles represent observed variables, circles represent latent variables,
one-headed arrows represent influence and double-headed arrows represent covariance. The numbers or identifiers along the
arrows are the model parameters. For ease of identification, the one-headed arrows of interest are color coded. Parameters
e ,—egrepresent the errors in measurement of observed variables. (B and C) Standardized regression coefficients for the color
coded influences shown in panel A. Numbers indicate the statistical significance. The analysis was first conducted in all neonates
(B) and then in neonates with CBL levels below 10 ug/dL (C). (D and E) Standardized indirect effects of the neonatal predic-
tors (x-axis) on the NBAS cluster scores (y-axis). The z-axis represents the magnitude of the effect. Red cylinders indicate a
negative effect while green cylinders indicate a positive effect. The analysis was conducted in all neonates (D) and then in
neonates with CBL levels below 10 pg/dL (E). Complete results of SEM are shown in Supplementary Table 6 (see additional file

I, supplementary table 6). Abbreviations for the NBAS clusters are: motor (MOT), range of state (RAN), autonomic stability
(AUT) and abnormal reflexes (REF).
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Table 3: Association of NBAS items with risk of possessing high
CBL levels: results from final models using stepwise multiple
logistic regression analyses.

NBAS Item Risk of CBL levels > the shown cut-off
point
OR 95% CI P
5 ug/dL
Range of State cluster
Peak of excitement 0.60 0.37 -0.98 0.042
Autonomic stability
cluster
Tremors 0.77 0.63 — 0.94 0.012
Abnormal reflexes
Moro's reflex 3.37 1.13-10.04 0.029
Walking reflex 3.55 1.24-10.15 0.018
10 ug/dL
Autonomic stability
cluster
Tremors 0.75 0.58 — 0.96 0.023
Abnormal reflexes
Babinski sign 4.26 1.01 -17.8 0.047
Walking reflex 5.99 1.44 - 24.9 0.014
25 ug/dL
Abnormal reflexes
Babinski sign 1.3 1.89 —68.1 0.008
Walking reflex 8.17 1.36 —49.2 0.022

tors and four outcomes - were included as shown
(parameters labeled as e, to ez in Figure 2A). Since the
measurements of NBAS clusters are correlated, we assume
that the measurement errors associated with these varia-
bles will also be correlated (shown by the curved arrows
in the model and the parameters labeled as ¢, to ¢).
Finally, to make the model identifiable, we constrained
the head circumference — neonatal behavior regression
weight to unity.

Results from the MIMIC model

Figure 2B-E and Supplementary Table 6 (see additional
file 1, supplementary table 6) show the results of SEM
analyses using the MIMIC model. As the predictor and
outcome variables are measured on different metrics, we
present the data in the form of standardized estimates of
the regression coefficients (Figure 2B and 2C). We
observed that when the analysis was conducted in all
neonates, CBL levels and maturity independently influ-
enced neonatal behavior - more mature neonates had a
better behavior score. Interestingly, this influence of CBL
and maturity was detectable only with respect to auto-
nomic stability and abnormal reflexes - the other two out-
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comes were not influenced. This analysis thus recaptured
the observations from the previous analysis that even in a
multivariate and multiple-outcome context the independ-
ent influence of CBL on autonomic stability and abnor-
mal reflexes was discernible.

When the analysis was restricted to neonates with CBL lev-
els below 10 ng/dL, we observed a notable shift in the pat-
tern of association. The CBL levels were now the only
statistically significant predictor and the influence on the
neonatal behavior was limited to the motor, range of state
and autonomic stability clusters. Thus, concordant with
the earlier results, our results of MIMIC modeling reaf-
firmed that the dominant effects of CBL were different in
all neonates compared to neonates with low-dose expo-
sure to lead.

Our results of the SEM modeling indicated that the model
fit was not adequate either for all neonates or for neonates
with CBL <10 pg/dL. We further investigated the reason
for this apparent lack of fit for which purpose we assessed
the predictive performance of 10 other models nested
within the model shown in Figure 2A. While constructing
the nested models, we considered all combinations of the
four predictors taken three at a time and then taken two at
a time. These 10 models and their performance is shown
(see additional file 1, supplementary table 7) in Supple-
mentary Tables 7A (for all neonates) and 7B (for neonates
with CBL <10 pg/dL). A close look at the model fits for
these nested models revealed the following: i) Removal of
CBL as a predictor from the MIMIC model always wors-
ened the model fit; ii) Inclusion of maturity and head cir-
cumference was most of the times associated with a poor
fitting model; iii) The best model for all neonates was
with two predictors: CBL and maturity; and iv) The best
model for neonates with CBL <10 ug/dL contained CBL
and head circumference. Thus, the full model with all four
predictors was associated with a poor model fit but we
have shown it here only because it permitted us to study
the effects of CBL adjusted for other potential confound-
ers.

Association of increased CBL levels on items within the
significantly associated NBAS clusters

Given the significant multivariate effects of CBL levels on
the four NBAS clusters included in the MIMIC model
analyses in the previous step, we next considered whether
there were any specific items within these clusters that
were associated with the risk of increased CBL levels. For
this purpose, we dichotomized the CBL levels into high
and low using three different cut-off points: 5, 10 and 25
pg/dL. Using each of these binary outcomes we used back-
ward stepwise unconditional multiple logistic regression
analyses with a probability criterion of 0.05 to identify the
NBAS items most significantly associated with the likeli-
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hood of possessing CBL levels exceeding these cut-offs.
The results of these analyses are shown in Table 3.

We observed that not all items within each cluster were
significantly associated with the risk of an increased CBL
level. For example, if a high value (>25 pg/dL) for the CBL
cut-off was used then only two abnormal reflexes - Babin-
ski's sign and walking reflex - were significantly associ-
ated. At the currently used cut-off of >10 ug/dL, tremors
were additionally identified to be significantly associated,
while at a lower cut-off of >5 nug/dL, the peak of excite-
ment also was significantly associated. Moreover, Moro's
reflex rather than Babinski's sign was the significant
abnormal reflex.

Discussion

In the process of human brain development the perinatal
period characterizes a critical interval during which there
is highest rate of brain development, rampant genesis of
new synapses, widespread neuronal proliferation, and
maximum density of the N-methyl-D-aspartate (NMDA)
receptors [31-37]. The last of these facts bears a special rel-
evance to lead neurotoxicity since it has been argued that
the Ca++ permeable NMDA receptors also act as the neuro-
nal gateway for Pb++[38]. Therefore the newborn brain is
especially prone to the toxic effects of environmental neu-
rotoxicants [26] and can be expected to be sensitive to
even low doses of lead exposure. Based on this biological
rationale, using the NBAS administered within three days
of birth and employing multivariate statistical approaches
for analysis, we observed that umbilical cord blood lead
levels were significantly associated with different aspects
of the neonatal behavior even at relatively low doses of
exposure.

Study findings

We observed that the association of CBL levels with NBAS
clusters was differential in two respects. First, not all NBAS
clusters were equally associated with the CBL levels. Bio-
logically, since the development of the newborn brain is
neither simultaneous nor equivalent across all areas
[26,39-41]; it can be expected that the influence of lead
may not be alike on all areas of the developing brain.
Indeed, several experimental studies have demonstrated
that in the rat models of lead toxicity, the predominantly
affected brain areas include the hippocampus [42,43], the
hypothalamus [44], the prefrontal cortex [45], the tempo-
ral cortex [46] and the cerebellum [47]. In humans, the
posterior hippocampus has been shown to be associated
with behavior [48], the prefrontal cortex is known to con-
trol cognitive functions like language, abstract reasoning,
problem solving, social interactions, and planning
[49,50], the temporal lobe along with portions of hippoc-
ampus and prefrontal cortex has been implicated in object
working memory [51] while cerebellum is the known seat

http://www.behavioralandbrainfunctions.com/content/2/1/22

of locomotion control. Our findings that the motor, range
of state, autonomic instability and the abnormal reflexes
NBAS clusters were specifically associated with the CBL: i)
corroborate the conjecture that all domains of neonatal
behavior will not be equally influenced by exposure to
lead; and ii) are consistent with the known behavior-
related functions of those areas in the human brain that
have been shown in animal studies to be the primary tar-
gets for the effects of exposure to lead.

Second, and more interestingly, we found that the NBAS
clusters associated with CBL levels in all neonates were
not the same as the NBAS clusters identified by restricting
the analyses to low levels of exposure. In neonates with
CBL <10 ug/dL, we did not observe an association of the
varying CBL levels with the abnormal reflexes cluster but
did uncover an association with the motor cluster. These
data indicate that relatively higher values of CBL will be
needed for lead to demonstrate its influence on the abnor-
mal reflexes; however at a relatively milder dose it may
continue to demonstrate an association with the motor,
autonomic instability and range of state clusters. Evidence
to support the deleterious effects of low-dose lead expo-
sure on human neonatal behavior is continuously increas-
ing [24,25,52,53] however a novel finding of the present
study is that the patterns of behavior are different in
neonates with CBL <10 ug/dL as compared to those with
a higher dose of exposure.

Study limitations

Our study suffers from three limitations. First, for the rea-
sons explained earlier, the main focus of our study was the
behavioral patterns in the newborn which we assessed
using NBAS. However, this is a cross-sectional study
design - a fact that does not permit inferences about the
potential causal role of low-dose lead exposure
[25,54,55].

Second, a single measurement of umbilical cord blood
lead is unlikely to faithfully capture the overall cumulative
exposure to lead [25] thereby making our measurement of
lead exposure questionable. We did not have data on
serial measurements of the lead concentrations in
mother's blood over the entire duration of pregnancy.
Our rationale for using umbilical CBL was based on the
following observations: i) As reported by previous studies,
the correlation coefficient between maternal and umbili-
cal cord blood lead levels ranges between 0.55 to 0.92
[56,57]; ii) All through gestation, lead is known to cross
the placenta and is considered to be the most important
source of umbilical cord blood lead [58]; and iii) inde-
pendent of the maternal bone lead - an index of the
cumulative lead exposure - umbilical cord blood lead has
been shown to be a significant predictor of child develop-
ment [25]. Considering these pieces of evidence from the
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literature and the absence of serial measurements of
maternal blood lead in our study, we used umbilical cord
blood lead as a surrogate for the cumulative lead exposure
of the newborn.

Third, we did not have data on co-exposure of the new-
born to other toxicants like cadmium and polychlorinated
biphenyls which can also imitate some of the effects of
lead [54,59,60]. In the absence of this data, our study will
not be able to definitively point towards a causal role of
lead, however the compatibility of our findings with the
existing literature and the robust analytical methods used
in this study urge the consideration of a plausible role of
low-dose lead exposure in determining the patterns of
neonatal behavior.

Study implications

With the caveats mentioned in the preceding section, we
believe that our study has three important implications.
First, it is not currently known whether the neonates who
are affected by the low levels of lead exposure grow into
children more likely to be affected with regards to their
overall mental health. However, it has been observed that
children exposed to low doses of lead show suboptimal
cognitive functioning and reduced intelligent quotients
[12-14]. Further, the following observations indirectly
suggest a strong link between the events in early neonatal
life and childhood development: gestational low-dose
exposure to lead in rats can lead to a significant future risk
of alterations in monoaminergic metabolism during
adulthood [61]; neonatal infection can result in robust
hippocampal-dependent memory impairment in adult-
hood [62]; neonatal prefrontal cortex lesions can manifest
in adult animals as behavioral disturbances [63]; and
early life does have an influence on the behavioral pat-
terns in later life [64]. Considering all these observations
together, it is conceivable that neonates demonstrating
behavioral disturbances secondary to lead exposure may
continue to manifest these disturbances in childhood.

We believe that, among others, a possible reason for the
discordance in the results and interpretations of the effects
of low-dose lead exposure on neonatal behavior can be
attributed to a lack of a standardized analytical protocol.
Theoretically, lead can have multiple and simultaneous
effects and we suggest that future studies need to incorpo-
rate statistical techniques like SEM to handle the data
more efficiently and accurately. The use of Generalized
Estimating Equations (GEE) for regressing the predictors
[65] on multiple outcomes is another attractive alterna-
tive. In either case, the emphasis needs to be laid on the
measurement and identification of a concomitant influ-
ence of blood lead - alone or with other predictors - on
multiple outcomes related to behavior.

http://www.behavioralandbrainfunctions.com/content/2/1/22

Another area of interest in the field of lead poisoning
relates to the policies and practice of screening. Sargent
and others [66] argue that in order to reduce the false pos-
itive error rate, it may be unwarranted to screen for chil-
dren with blood lead levels between 10 and 15 pg/dL. As
an alternative, Binns et al [67] suggested high-risk popula-
tion screening. In situations where blood lead tests may
not be easily or inexpensively available, it has also been
thought to consider the use of blood lead questionnaires
[68,69]. In that vein, we identified only a few NBAS items
to be specifically correlated with the risk of possessing
high CBL levels. Our findings imply that peak of excite-
ment, tremors and abnormal Babinski's sign and walking
reflexes may together serve as a potential initial screen to
identify neonates possessing moderate to high CBL levels.
While our study was not designed to address the issue of
screening for lead toxicity, our results suggest that
neonates with the aforementioned characteristics may
need a further evaluation with a special emphasis on lead
poisoning.

Conclusion

Needleman [4] believes that we are now into a "fifth
cycle" of understanding the effects of this commonest
environmental toxicant. Our findings concur with the
observation that the effects of reduced levels of blood lead
only indicate a possible avoidance of the physical presen-
tation of lead poisoning; they may not however preclude
the more subtle behavioral repercussions that can con-
tinue to have a high impact on the social realm of the dis-
ease. Therefore efforts to reduce exposure to this
physiologically redundant but environmentally toxic
metal need to continue.
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