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Introduction

Infection with enterohemorrhagic Escherichia coli (EHEC) is a 
leading cause of bloody diarrhea and hemorrhagic colitis, occa-
sionally resulting in life-threatening systemic complications 
including hemolytic uremic syndrome (HUS).1,2 This food and 
waterborne zoonotic agent has been associated with numerous 
outbreaks worldwide and constitutes a serious public health 
threat. Of over 380 EHEC serotypes, the O157:H7 serotype is 
the one most highly associated with outbreaks and severe dis-
ease in North America.3,4 However, the non-O157 serotypes also 
represent a significant public health concern, and are frequently 
associated with HUS, particularly in Latin America, Europe, and 
Australia.3,5

EHEC infection typically begins with watery diarrhea, vomit-
ing and abdominal cramping that then progresses to bloody diar-
rhea. In the majority of infected individuals, the infection resolves 
within a week to 10 d. However, in 5–7% of infected individu-
als, the infection leads to a systemic, sometimes life-threatening 
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Enteric pathogens must not only survive passage through 
the gastrointestinal tract but must also coordinate 
expression of virulence determinants in response to localized 
microenvironments with the host. Enterohemorrhagic 
Escherichia coli (EHEC), a serious food and waterborne human 
pathogen, is well equipped with an arsenal of molecular factors 
that allows it to survive passage through the gastrointestinal 
tract and successfully colonize the large intestine. This review 
will explore how EHEC responds to various environmental cues 
associated with particular microenvironments within the host 
and how it employs these cues to modulate virulence factor 
expression, with a view to developing a conceptual framework 
for understanding modulation of EHEC’s virulence program in 
response to the host. In vitro studies offer significant insights 
into the role of individual environmental cues but in vivo studies 
using animal models as well as data from natural infections will 
ultimately provide a more comprehensive picture of the highly 
regulated virulence program of this pathogen.
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complication known as hemolytic uremic syndrome (HUS). 
HUS is characterized by thrombocytopenia, hemolytic anemia, 
and acute renal failure. Currently, treatment consists primarily of 
supportive therapy including rehydration.6-11 Conventional anti-
biotic treatment is generally not recommended although there is 
no clear consensus on this matter. In vitro studies have shown 
that, at least for EHEC O157, sublethal doses of antibiotics, par-
ticularly trimethoprim, the quinolones or furazolidone, promote 
the production and release of Shiga toxins, a development that 
constitutes a risk factor for progression to HUS.12-18 A number 
of clinical studies have also shown that patients on antibiotic 
therapy for hemorrhagic colitis have a higher risk of developing 
HUS.8,13,18-21 However, it should be noted that these studies are 
often limited by small sample size as well as the advanced stage 
of illness of the patients and the findings may be more relevant 
for certain EHEC seropathotypes. There is evidence that anti-
biotic treatment of EHEC O104:H4 does not promote Shiga 
toxin release22 and two clinical studies found that antibiotic 
treatment of EHEC O104:H4 infection did not enhance the risk 
of HUS.23,24 Other agents often used to treat bacterial infection 
including antimotility agents, narcotics and non-steroidal anti-
inflammatory medication are also not recommended for EHEC 
infection. Given the increasing number of EHEC outbreaks and 
HUS complications and the lack of available therapeutic strate-
gies, there is a significant, critical need for new approaches to the 
prevention and treatment of EHEC infection. Recent research 
on toxin antibodies, novel peptides and small molecule drugs as 
well as zinc-based salts have shown some promise in the quest for 
effective preventative and/or very early treatment strategies.25-29

EHEC Virulence Factors

EHEC was first identified as the pathogen responsible for colitis-
mediated HUS by Karmali et al. who found that patients pre-
senting with diarrhea and HUS were positive for a toxin capable 
of inducing irreversible cytotoxicity in cultured Vero cells.30 The 
toxin, originally referred to as Verotoxin, was later shown to be 
structurally and antigenically similar to the toxin produced by 
Shigella dysenteriaie type 1, a finding which resulted in the name, 
Shiga toxin (Stx).31 Stx contains two major structural subunits, A 
and B, the former which has RNA N-glycosidase activity against 
28S rRNA, resulting in protein synthesis inhibition and the latter 
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LEE-encoded proteins, including EspA, EspH, Map, EspF, and 
EspG, also promote EHEC colonization.59,60

Expression of Virulence Factors

It is well established that EHEC virulence factor expression is 
influenced by numerous experimental conditions including 
temperature, culture media, pH, bile salts, and even host cell 
factors.61-71 Clearly, the pathogen successfully survives passage 
through the human gastrointestinal tract (GIT), but recent 
research suggests that it may also use exposure to different GIT 
environments to regulate expression and function of virulence 
factors. The idea that environmental conditions may cue tempo-
ral-spatial expression of virulence factors in a pathogen has been 
garnering significant attention recently.68,72 In this review, we will 
examine key host environmental cues that influence EHEC viru-
lence factor expression with a view to understanding how they 
may play a role in the temporal-spatial regulation of EHEC viru-
lence during passage through the human GIT.

Acid Stress

Depending on intestinal motility and the location within the 
food bolus, bacteria must be able to survive up to 2.5 h at pH 
values ranging from 2–6, in order to successfully transit from 
the human stomach. Both nonpathogenic and pathogenic E. coli 
encode four different acid resistance systems that provide protec-
tion against exposure to pH as low as 2–2.5.73,74 Since the infec-
tious dose of EHEC is typically very low (50–100 organisms), 
acid tolerance and resistance are critical virulence traits. The 
acid resistance systems are dependent on culture conditions and 
growth phase and are employed differentially by EHEC for sur-
vival in foods vs. the intestinal tract.73,75 The glutamate-depen-
dent acid-resistance system (Gad; AR3) is one of three amino 
acid decarboxylase systems (Ar2–Ar4) and is thought to offer the 
best protection below pH 3. The AR1 system which employs the 
stationary phase alternative sigma factor, RpoS, and the global 
regulatory protein, cAMP receptor protein (CRP), provides an 
acid adaptation or tolerance response (ATR) that permits E. coli 
exposed to sublethal pH values (pH 5) to survive subsequent 
exposure to lower pH values (pH 2.5). Since the pH of the 
human stomach can increase to pH 6 after a large meal before 
dropping to pH 2, the acid adaptation response may be physio-
logically relevant in the survival of ingested EHEC. However, the 
acid resistance/adaptation response can also be triggered prior to 
ingestion, either in the bovine intestinal tract or within acidic 
foods.73 Studies have further revealed that EHEC O157:H7 that 
are already expressing acid resistance remain acid resistant for at 
least a month during refrigeration and that no further induction 
upon encountering pH 2.5 is required.74 These findings suggest 
that EHEC in contaminated foods are well prepared to survive 
the acid stress of gastric passage.

In addition to the expression of acid resistance systems, expo-
sure to acid can trigger induction or repression of specific viru-
lence genes and sets of genes in EHEC. In a DNA microarray 
study, investigators examined the gene expression profiles of 

which binds to globotriaosylceramide-3 (Gb3) on the surface 
on endothelial cells, permitting toxin dissemination and toxin-
mediated tissue damage.32-36 Human renal glomerular endothe-
lial tissue express high levels of surface Gb3 which may explain 
why Stx production results in acute renal failure.30,37

EHEC pathogenesis is not however limited to toxin-mediated 
effects. Hemorrhagic colitis, an earlier event in the infection, is 
thought to be promoted by a number of virulence factors that 
include fimbrial and nonfimbrial adhesins, flagella, Stx, and the 
Type III secretion system. The primary adhesin, intimin, a bacte-
rial outer membrane protein encoded in the chromosomal patho-
genicity island, LEE (locus for enterocyte effacement), promotes 
bacterial adhesion to the columnar epithelial cells lining the ter-
minal ileum and transverse colon through binding to its own 
injected receptor, Tir (translocated intimin receptor), as well as 
binding to host cell proteins, integrin and nucleolin.38-42 However, 
intimin mutants still bind to host epithelial cells, providing per-
suasive evidence of the involvement of other adhesins.43,44 A 
number of other non-fimbrial EHEC adhesins have been impli-
cated in adhesion including the plasmid-encoded toxB, the chro-
mosomal genetic locus, efa1 (EHEC factor for adherence), and 
the chromosomally-encoded adhesins, Iha (Vibrio cholerae IrgA 
homolog), Cah (calcium-binding antigen 43 homolog), and 
OmpA (outer membrane protein A).44-46 Fimbrial structures that 
have been implicated in host adhesion include two long polar 
fimbriae, F9 (a type 1 pilus homolog), two type IV pili (HCP 
in EHEC O157 and TFP in a non-O157 EHEC), the sorbitol-
fermenting EHEC O157:H-plasmid-encoded fimbriae, SFP and 
ECP (E. coli common pilus), a pilus structure produced by both 
pathogenic and nonpathogenic E. coli.47 The long polar fimbriae 
of EHEC O157:H7 appear to play a role in sheep and pig coloni-
zation although some studies have suggested they may also play 
complementary roles in adhesion to human cells.48 By contrast, 
F9 fimbriae may actually prevent or disrupt adhesion since F9 
mutants show increased adhesion to cultured epithelial cells.49 
HCP are recognized by the sera of HUS patients and may func-
tion in a synergistic manner with the adhesion-receptor pair, int-
imin-Tir.50,51 ECP may play a role in colonization of pathogenic 
and commensal E. coli strains, promoting interbacterial interac-
tions in biofilm communities.52,53 Flagella have also been reported 
to function as adhesins, mediating bacterial adherence to mucins, 
the primary component of the mucous coat in the gastrointesti-
nal tract.54 Finally, Stx has also been shown to promote EHEC 
adhesion to host epithelial cells by upregulating surface expres-
sion of two receptor candidates, phosphatidylethanolamine and 
nucleolin.55,56

Other virulence factors include the LEE-encoded type III 
secretion system translocation (TTSS) and effector proteins, 
as well as a variety of non-LEE encoded effector proteins,57 all 
of which contribute to the modulation of host cell signaling to 
support bacterial replication and survival, host colonization and 
the development of disease. Host cell changes include marked 
cytoskeletal rearrangements, disruption of intestinal barrier 
function, downregulation of the host inflammatory response, 
and induction of host cell apoptosis.58 Although intimin and Tir 
are the primary mediators of human intestinal adhesion, other 
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pump, a two component signal transduction system (basRS/
pmrAB) and a lipid A modification pathway (arnBCADTEF and 
ugd).69 Interestingly, this correlated with bile salt-induced resis-
tance to the antimicrobial agent, polymyxin B, which was basS- 
and arnT-dependent. ArnT encodes the enzyme that transfers 
L-Ara4N to lipid A, a modification that decreases the negative 
charge of the lipopolysaccharide and has been shown to enhance 
resistance to several cationic antimicrobial peptides.89,99,100 The 
authors also reported that bile salt treatment did not enhance 
Shiga toxin-mediated cytotoxicity, a finding that was consistent 
with the downregulation of stx2 genes after bile salt treatment. 
Finally, expression of several other well established virulence fac-
tors including those encoded on the LEE pathogenicity island, 
was not altered by bile salt treatment. These findings suggest that 
bile secreted into the small intestine serves an environmental cue 
for EHEC, signaling changes that result in protective modifica-
tions of the bacterial outer membrane, thereby enhancing suc-
cessful migration of the pathogen through the small intestine 
while at the same time suppressing the expression of virulence 
factors required for subsequent colonization and infection of the 
large intestine.

Ethanolamine

The constant turnover of intestinal epithelial cells and com-
mensal flora in the human gastrointestinal tract generates a large 
number of membrane lipid metabolites including the breakdown 
product of phosphatidylethanolamine, ethanolamine (EA).101 
Through degradation to ammonia and acetaldehyde, EA can 
serve as a source of nitrogen and occasionally carbon for some 
bacteria. Recent studies indicate that several GI pathogens includ-
ing Clostridium, Listeria, Enterococcus, EHEC, enteropathogenic 
E. coli (EPEC), and Salmonella possess genes necessary to catabo-
lize EA and that EA utilization (Eut) may be a possible virulence 
determinant.101 In Salmonella enterica, the global virulence regu-
lators, Fis and CsrA, have been found to regulate eut genes and 
mutations in those genes triggered a loss of virulence in a mouse 
model of infection.102,103 Recent studies have also shown that EA 
serves as a source of nitrogen but not carbon for EHEC grown 
under conditions that mimic the intestinal environment.

Interestingly, the source of host-generated EA, phosphatidyl-
ethanolamine, has also been found to play a role in EHEC patho-
genesis. EHEC preferentially binds to phosphatidylethanolamine 
(PE) in the host epithelial cell membrane and induces apoptosis 
in the host cell, resulting in the upregulation of outer leaflet PE 
levels and increased adhesion to the apoptotic cells.56,104 Studies 
with the related attaching and effacing pathogen, EPEC, showed 
that PE binding by EPEC modulated host phospholipid metabo-
lism, leading to increased outer leaflet PE and similar to EHEC, 
increased adhesion to the host cell.105-107 These data suggest that 
the elevated host outer-leaflet PE levels triggered by pathogen 
binding to epithelial cells in the large intestine may be providing 
a critical source of EA for the pathogen.101

Recent studies by Kendall et al. now indicate that EA may 
also serve as an environmental cue to EHEC to modulate vir-
ulence factor expression.70 EHEC cultured in minimal media 

EHEC O157 that had been acid stressed and then neutralized 
relative to the same unstressed strain.66 There were significant 
expression changes in virulence factors associated with adhe-
sion, motility and type III secretion including genes encoding 
known and putative adhesins, fimbria, flagella, and curli as well 
as many of the LEE-encoded type III translocation and effec-
tor proteins. These changes correlated with changes in virulence 
properties including enhanced motility and host cell adhesion 
following acid stress and neutralization. The TTSS genes whose 
products mediate colonization and infection in the large intes-
tine were downregulated following acid stress and this is con-
sistent with their negative regulation by two regulators, GadE 
and H-NS, under acid conditions.76,77 Adhesin expression profiles 
were more variable, depending on the nature and duration of the 
acid stress with several known adhesins including intimin show-
ing little change and a few novel adhesins showing significant 
upregulation, suggesting that acid stress alters the adhesin profile. 
Interestingly, adhesion of acid-stressed EHEC to human epithe-
lial cells is increased and at least one of the novel adhesins appears 
to play a role in the acid-induced adhesion.78 Flagellar synthesis 
genes were also upregulated under acute acid stress along with a 
modest increase in motility, a response which may offer a defense 
strategy against acute acid. Interestingly, there was no change in 
stx gene expression and no increase in Stx-mediated cytotoxic-
ity after acid stress which is consistent with the fact that Stx-
induced cytotoxicity is generally associated with large intestine. 
Collectively, these findings suggest that acid stress serves to arm 
EHEC with defensive strategies including acid resistance and 
enhanced motility for escape as well as downregulation of genes 
whose proteins are typically involved in colonization and subse-
quent infection of the large intestine.

Recent studies have revealed that EHEC also employs the 
transcriptional regulator SdiA to coordinate the transcription of 
the LEE genes needed for A/E lesion formation and the gad genes 
required acid resistance, at least in cattle.79-81 SdiA is a member of 
the LuxR family of transcriptional regulators and it senses acyl-
homoserine lactones (AHL) produced by other bacteria. Based 
on these studies, it has been proposed that SdiA senses AHL, 
upregulates gad genes required for acid resistance, and downregu-
lates LEE genes required for colonization. These findings sup-
port a model for modulation of the EHEC virulence program in 
the bovine intestinal tract, where EHEC resides as a commensal 
organism.

Bile

Bile resistance, a critical virulence property of gastric pathogens, 
is generally achieved through active efflux using a variety of 
resistance nodulation division (RND) efflux systems and altered 
outer membrane permeability often achieved through modifica-
tions of lipopolysaccharide layer.82-86 Studies have shown that bile 
also serves an environmental cue for a number of enteric bacte-
ria including Salmonella, enteropathogenic E. coli, and EHEC 
by modulating the expression of specific virulence factors.69,83,87-98 
DNA microarray analysis of EHEC O157:H7 treated with bile 
salts showed upregulation of genes encoding the AcrAB efflux 
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a complex human gut microbiota including the predominant spe-
cies, Bacteroides thetaiotaomicron, repressed stx2 mRNA expres-
sion in a manner independent of SdiA, QseA, QseC, or AI-3.118 
This is consistent with other studies that show that pure cultures 
of several probiotic strains inhibit stx2 transcription in labora-
tory media.119 It is also well established that certain commen-
sal bacteria exert generalized antibacterial effects against enteric 
pathogens through the production of antimicrobial proteins such 
as colicins, lantibiotics, and microcins, which typically result in 
inhibited pathogen growth.120 These data point to the positive 
benefit of normal gut microbiota in protecting against EHEC 
infection, leading to the speculation that disruptions in gut 
microbiota may enhance risk of EHEC infection.

In the final analysis, the impact of normal gut microbiota on 
EHEC infection must be contextualized within our enhanced 
understanding of mucosal microbial populations based on recent, 
in-depth investigations.121 As we begin to fully appreciate the 
extensive variation in the microbial community structure along 
the entire length of the human gastrointestinal tract, we recog-
nize the need for further research to better understand the roles 
of the gut microbiota within specific microenvironments in the 
modulation of the EHEC virulence program.

Host Hormones, Epinephrine, and Norepineprine

EHEC, along with a number of other disease-causing organisms 
including ETEC, Salmonella enterica, Vibrio parahemolyticus, and 
Edwardsiella tarda, have been shown to use host-generated hor-
mones epinephrine and norepinephrine as signals for differential 
regulation of virulence factors mediating invasion, motility, and 
in the case of EHEC and EPEC, A/E lesion formation.115,117,122-125 
EHEC uses the histidine sensor kinases QseC and QseE as sen-
sors of the two hormones.126 QseC, via its cognate response regu-
lator QseB, regulates flagellar and motility genes and through 
QseF, QseC is able to activate production of Stx.79,117 Through 
another response regulator, KdpE, QseC also upregulates LEE 
genes.117 Not surprisingly, deletion of qseC attenuates EHEC 
virulence. The second sensor, QseE, responds to epinephrine as 
well as to phosphate and sulfate and now appears to regulate the 
LEE genes and nleA (nonLEE-encoded effector A) negatively.79 
However, this negative regulation is mediated indirectly through 
transcriptional inhibition of the response regulator, RcsB, which 
is a positive regulator of the LEE. Regulation of EHEC viru-
lence by epinephrine and norepinephrine appears to be quite 
complex and is still not fully resolved. Nevertheless, that data 
collectively suggest that EHEC coordinates a temporal response 
to the microbial flora-produced AI-3 and the two host-derived 
hormones epinephrine and norepinephrine to assist in cueing 
the site of colonization and to enhance approach to the epithe-
lial layer through increased motility and increased A/E lesion 
formation.79,117

Low Oxygen

The environment of the intestinal tract is characterized 
by variable oxygen levels and a number of studies on other 

containing EA showed increased expression of genes encoding 
virulence regulators (Ler, QseE, and QseC) as well as Shiga 
toxin (Stx2a) and also showed increased characteristic attach-
ing and effacing (A/E) lesions on host epithelial cells. However, 
the nature of that regulation is still not fully understood. While 
the eut genes are upregulated by culture in EA, the increased 
expression of virulence genes appears to be independent of the 
Eut catabolic enzymes. A positive transcriptional regulator of the 
eut locus, EutR, appears to partially regulate expression of the 
virulence genes under certain growth conditions in EA but the 
data also suggest the involvement of a second as yet unidenti-
fied regulator. Nevertheless these data provide evidence that EA 
in the microenvironment of the intestinal lumen may be acting 
as an environmental cue for virulence modulation in EHEC to 
assist in colonization of the large intestine.

Microbial Flora Metabolites

During passage through and colonization of the human GIT, 
EHEC encounters the highly complex microflora and the metab-
olites that they produce. These metabolities can include simple 
metabolic byproducts such as short chain fatty acids (SCFA) 
as well as metabolites that allow the microflora populations to 
modulate their metabolism according to the size of their popu-
lations. The three principal SCFAs present in the intestine are 
acetate, propionate and butyrate and the concentrations of these 
acids vary through the ileum and the colon.108-111 High concentra-
tions of SCFAs (above 50 mM) more typical of that found in the 
proximal and distal colon have been shown to inhibit the growth 
of EHEC while low concentrations, particularly butyrate, (from 
6.25 to 25 mM) more typical of the distal ileum enhance expres-
sion of virulence genes involved in motility, adhesion and induc-
tion of A/E lesion formation,112,113 suggesting that SCFAs may 
be cueing EHEC migration and adhesion to the distal ileum. 
However, another study reported that high concentrations of 
SCFAs (172 mM) more typical of the distal colon were associated 
with increased expression of the gene encoding the adhesin Iha114 
suggesting that at least this adhesin is promoting host adherence 
in the colon. Since Iha can also function as an iron siderophore 
and, in this study, was upregulated along with TonB, the outer 
membrane ferrichrome transport protein, it is also possible that 
SCFAs may be cueing the pathogen to increase its iron-scavenging 
capacity in the colonic environment. EHEC is also able to sense 
the quorum signaling molecule AI-3, secreted by commensal 
flora, using the histidine kinase-response regulator two compo-
nent signaling system, QseCB.115-117 EHEC responds to AI-3 with 
increased flagellar synthesis and motility and it is thought that 
increased motility permits the pathogen to more closely approach 
the mucosal epithelium at the site of colonization. Collectively, 
these studies suggest that EHEC employs certain molecular cues 
secreted by commensal flora to upregulate virulence factors that 
enhance motility, adhesion and iron-scavenging, all of which 
promote the establishment of infection.

However there are other molecular structures secreted by the 
normal gut microbiota that may protect the host against infec-
tion. De Sablet et al. showed that one or more factors secreted by 
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Temporal-Spatial Cueing

We have yet to put together the picture of how EHEC adapts 
to each of the successive environments of the human GIT and 
responds to these various cues in a temporal-spatial fashion. By 
assembling a sequential list of environmental cues encountered 
by the pathogen along with data on the modulation of virulence 
factors and properties, one can begin to envision a model for 
the temporal-spatial regulation of the EHEC virulence program 
(Table 1). Passage through each of the local GIT environments 
appears to differentially arm EHEC with specific protective 
mechanisms appropriate to the local environments including 
enhanced resistance to acid, bile, and cationic antimicrobial pro-
teins along with increased motility which could mediate escape 
from stressful environments. Exposure to different microenvi-
ronmental cues also alters expression of virulence factors and 
properties that may provide EHEC with selective advantages 
in current or upcoming local environments including AI-3-
induced acid tolerance possibly to upcoming SCFA stress, and 
flagella-mediated motility toward the gut epithelium. As EHEC 
approaches the site of colonization and infection, exposure to 
environmental cues in the ileum and colon including short chain 
fatty acids, quorum signals, ethanolamine, host hormones, and 
changes in oxygen levels is accompanied by the upregulation 
of virulence factors that promote adhesion, A/E lesion forma-
tion, and cytotoxicity, all of which promote colonization and 
the establishment of infection. While the picture is beginning 
to emerge, there are still many gaps and some inconsistencies. 
What is still missing is the integration of signals delivered in a 

pathogens report that oxygen levels do modulate pathogen 
virulence.72,127,128 While the lumen of the intestinal tract is rela-
tively anaerobic, there is a zone of relative oxygenation adjacent 
to the mucosal surface that is generated by diffusion from the 
microvilli capillary network.128,129 E. coli can sense changes in 
oxygen availability and switch from aerobiosis to either anero-
biosis or microaerobiosis, a process which is governed by two 
global regulators, Fnr (anaerobiosis) and ArcA (microaerobio-
sis).130-132 Studies reveal that E. coli are alternatively dependent 
on microaerobic and anaerobic respiration and that this respira-
tory flexibility is a key determinant in their ability to success-
fully colonize the human intestine. Despite our understanding 
of this respiratory flexibility in E. coli, there is very little known 
about how varying oxygen concentrations modulate EHEC 
virulence. A recent study examined a model of EHEC infection 
of the apical side of polarized epithelial cells under oxygen con-
centrations of 1–2% atmospheric pressure (considered micro-
aerobic) and found that EHEC-host adhesion was increased 
and that expression and translocation of EHEC TTSS effec-
tor proteins were also increased.133 The increased adhesion 
appeared to be mediated primarily by the TTSS translocon, 
EspA, while other potential adherence factors including flagella 
and the E. coli common pilus were only minimally expressed. 
These results suggest that the microaerobic environment adja-
cent to the intestinal microvilli may upregulate expression of 
EHEC virulence factors that promote successful colonization 
of the large intestine. They also point to the need for further 
study on the role of oxygen availability in modulating EHEC 
virulence.

Table 1. Modulation of EHEC virulence program by microenvironmental cues in the human gastrointestinal tract

Local GIT 
Environment

Cue
Regulons 
Involved

Virulence factors: expression 
changes

Virulence modulation References

Stomach Low pH
RpoS, CRP, 

H-NS, GadE

↑ AR1–4, ↑ Flagella and motility genes, 
↑ novel adhesins

↓ LEE genes

↑ acid resistance,  
↑ motility

↑ adhesion
66, 73 and 77

Duodenum Bile BasRS, PhoP?

↑ arnBCADTEF

↑ acrAB

↓ stx2

LPS modification,

↑ Bile and CAMP resis-
tance

69 and 89

Ileum
AI-3(quorum sensing)

QseCB, SdiA
↑ gad genes, flagella

↑ motility, ↑ acid resis-
tance (to SCFAs?)

81 and 115

SCFA (< 25 mM) ↑ LEE, flagella ↑ adhesion, ↑ motility 112, 113

Colon

EA
EutR, Ler, QseE, 

QseC
↑ Stx2a ↑ cytotoxicity 70

SCFA (> 50 mM) ↑ Iha
↑ adhesion, ↑ iron scav-

enging
114

Low oxygen Fnr, AcrA
↑ EspA, ↑ TTSS effectors (at microaero-

bic oxygen levels)
↑ adhesion, A/E lesion 132 and 133

Epinephrine, norepineph-
rine

QseCB, QseCF, 
QseC/KdpE

↑ flagella

↑ LEE genes

↑ Stx

↑ motility,

↑ A/E lesion

↑ cytotoxicity

117

Epinephrine, phosphate, 
sulfate

QseE Inhibits RcsB, ↓ LEE? ↓ A/E lesion? 79

Cues encountered at various locations within the GIT are provided along with associated changes in the expression of specific virulence factors and 
properties (increased, ↑, or decreased, ↓). Regulons reported to be involved in the responses are also provided.
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regulated by the environment and to more fully understand this 
regulation will involve well-designed animal infection models 
and more data from infection outbreaks.
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sequential but not necessarily spatially isolated fashion. Large 
scale studies using molecular genomics, genetics, and proteomic 
approaches have generated huge amounts of information but 
determining the physiological relevance of these data remains 
a challenge. Natural infections can provide us with retrospec-
tive information but again the data are difficult to evaluate in 
the absence of appropriate controls. Animal models will likely 
provide us with the most useful insight but it is still difficult 
to appreciate the value of each cue or sets of cues or sequence 
of cues in a definitive manner. Expression of EHEC virulence 
factors, both the timing and the level of expression, is highly 
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