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A B S T R A C T   

Objectives: Acquisition-related differences in diffusion magnetic resonance imaging (dMRI) hamper pooling of 
multicentre data to achieve large sample sizes. A promising solution is to harmonize the raw diffusion signal 
using rotation invariant spherical harmonic (RISH) features, but this has not been tested in elderly subjects. Here 
we aimed to establish if RISH harmonization effectively removes acquisition-related differences in multicentre 
dMRI of elderly subjects with cerebral small vessel disease (SVD), while preserving sensitivity to disease effects. 
Methods: Five cohorts of patients with SVD (N = 397) and elderly controls (N = 175) with 3 Tesla MRI on 
different systems were included. First, to establish effectiveness of harmonization, the RISH method was trained 
with data of 13 to 15 age and sex-matched controls from each site. Fractional anisotropy (FA) and mean 
diffusivity (MD) were compared in matched controls between sites using tract-based spatial statistics (TBSS) and 
voxel-wise analysis, before and after harmonization. Second, to assess sensitivity to disease effects, we examined 
whether the contrast (effect sizes of FA, MD and peak width of skeletonized MD - PSMD) between patients and 
controls within each site remained unaffected by harmonization. Finally, we evaluated the association between 
white matter hyperintensity (WMH) burden, FA, MD and PSMD using linear regression analyses both within 
individual cohorts as well as with pooled scans from multiple sites, before and after harmonization. 
Results: Before harmonization, significant differences in FA and MD were observed between matched controls of 
different sites (p < 0.05). After harmonization these site-differences were removed. Within each site, RISH 
harmonization did not alter the effect sizes of FA, MD and PSMD between patients and controls (relative change 
in Cohen’s d = 4 %) nor the strength of association with WMH volume (relative change in R2 = 2.8 %). After 
harmonization, patient data of all sites could be aggregated in a single analysis to infer the association between 
WMH volume and FA (R2 = 0.62), MD (R2 = 0.64), and PSMD (R2 = 0.60). 
Conclusions: We showed that RISH harmonization effectively removes acquisition-related differences in dMRI of 
elderly subjects while preserving sensitivity to SVD-related effects. This study provides proof of concept for 
future multicentre SVD studies with pooled datasets.  
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1. Introduction 

Combining data from multicentre studies is becoming increasingly 
important in neuroimaging, with the aim to increase statistical power 
and provide outcomes that are more generalizable than those obtained 
at single-centre level (Lorca-Puls et al., 2018; Van Horn & Toga, 2014). 
However, joint analysis of multicentre magnetic resonance imaging 
(MRI) can be challenging if inter-site variability due to acquisition- 
related inconsistencies is not taken into account (Vollmar et al., 2010). 

Inter-site variability is particularly problematic in diffusion MRI 
(dMRI) and can be caused by a range of factors, including scanner 
hardware (e.g., scanner manufacturer, magnetic field strength, gradient 
strength, field inhomogeneities), software, acquisition parameters (e.g., 
voxel size, number of gradient directions, echo time) (Helmer et al., 
2016). All these factors may affect the measured diffusion signal in-
tensity and metrics derived from the data. In prospective multicentre 
studies, this variability can be controlled using standardized acquisitions 
and scanners from the same manufacturer (Konieczny et al., 2020). 
However, when retrospectively combining data form different cohorts, 
differences in acquisition can be substantial. Even with phantoms, dMRI 
metrics have shown more than 7% variability across sites (Palacios et al., 
2017; Teipel et al., 2011; Timmermans et al., 2019). In the human brain, 
this variability is even more pronounced and non-uniform across tissues 
with acquisition-related differences reaching the same order of magni-
tude as case-control differences (e.g., traumatic brain injury vs. controls, 
Kumar et al., 2009). In such scenarios, if multicentre data were naively 
pooled into a single analysis, true biological effects would likely be 
masked by acquisition-related differences. It is therefore crucial that 
multicentre dMRI is harmonized prior to joint-analysis (Tax et al., 
2019). 

Two main kinds of retrospective dMRI harmonization techniques 
have been developed to date. The first category operates on each 
diffusion metric individually (e.g., fractional anisotropy – FA, and mean 
diffusivity – MD) by using statistical approaches such as meta-analysis, 
or by modelling the difference between sites with covariates during 
analysis (e.g., ComBat, Fortin et al., 2017). By contrast, the second 
category of harmonization operates directly on the raw dMRI data rather 
than on each diffusion metric (Karayumak et al., 2019; Koppers et al., 
2019; Mirzaalian et al., 2015). This type of harmonization is more 
general since the raw diffusion signal is harmonized in a model- 
independent manner, theoretically allowing any type of subsequent 
analysis. In this study, we focus specifically on the second type of 
harmonization with the rotation invariant spherical harmonics (RISH) 
methods (Mirzaalian et al., 2015). 

The core idea of the RISH method is to map the dMRI signal from a 
‘target’ site to a ‘reference’ site, using groups of healthy subjects 
matched for factors such as age, sex, etc. This signal mapping is possible 
because the dMRI signal intensity can be represented in a spherical 
harmonics (SH) basis with a given number of parametrization co-
efficients (Tournier et al., 2004). From this representation, RISH fea-
tures can be extracted and scaled to harmonize the dMRI signal between 
two sites (Karayumak et al., 2019). Applications of RISH harmonization 
have been presented using synthetic data and with data of healthy young 
subjects, with recent work showing that acquisition-related differences 
are removed while preserving age- and sex-related effects (Karayumak 
et al., 2019). Recently, this method has also been applied to harmonize a 
large dataset of patients with Schizophrenia and investigate changes 
across the lifespan (Cetin-Karayumak et al., 2020). However, the 
applicability of the RISH method to older individuals exhibiting brain 
atrophy or to patients with (diffuse) white matter lesions remain 
unclear. 

In this work, we evaluate the RISH harmonization framework in the 
context of a retrospective multicentre analysis of individuals with brain 
lesions due to cerebral small vessel disease (SVD). SVD is a leading cause 
of cognitive impairment and dementia and it is often investigated with 
dMRI (Baykara et al., 2016; Lyoubi-Idrissi et al., 2017; Wiegertjes et al., 

2019). The patterns of diffusion change in SVD are well documented 
using the diffusion tensor model, with patients typically exhibiting 
widespread increase of MD, peak width of skeletonized MD (PSMD) and 
decrease of FA, often related to white matter hyperintensity (WMH) 
burden (Tuladhar et al., 2015; Van Norden et al., 2012). Hence, this 
patient population is well-suited to investigate the efficacy of harmo-
nization methods. Using scans from five SVD cohorts acquired on 
different systems (Philips Healthcare, NL, and Siemens Healthineers, 
DE) and with different protocols, we aimed to establish if application of 
the RISH method removes acquisition-related differences in dMRI of 
elderly subjects, while preserving the sensitivity to disease effects in 
SVD. Finally, we show proof of concept of how multicentre harmonized 
data can be pooled to perform robust inference of the relation between 
WMH burden and dMRI metrics. 

2. Methods 

2.1. Datasets and inclusion criteria 

For this retrospective analysis, we obtained scans from five cohorts 
including healthy elderly subjects and patients with SVD. These cohorts 
differed in study design and inclusion criteria (described below), 
comprising four samples with sporadic SVD and one sample with 
genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy 
with Subcortical Infarcts and Leukoencephalopathy, CADASIL). For the 
present study, we used a harmonized definition for patients and con-
trols. Patients with sporadic SVD had symptomatic SVD defined as a) 
history of stroke, with a corresponding small subcortical infarct visible 
on MRI or b) cognitive complaints and presence of WMH burden on MRI 
(Fazekas score ≥ 2, Fazekas et al., 1987). The presence of CADASIL was 
confirmed by molecular genetic testing of the NOTCH3 gene or ultra-
structural analysis of a skin biopsy (detection of pathognomonic gran-
ular osmiophilic material, Wollenweber et al., 2015). Patients were 
excluded if they had other major neurological or psychiatric conditions 
(e.g., multiple sclerosis, epilepsy, Parkinson’s disease). Controls had no 
history of stroke or cognitive complaints for which they sought medical 
advice, and their MRI did not show signs of lacunes or WMH with 
Fazekas score ≥ 2. All subjects had a structural MRI (T1-weighted) and a 
dMRI scan. Characteristics of the study samples included in this study 
(397 patients and 175 controls) are provided in Tables 1. All studies 
included in this analysis were approved by the ethics committees of the 
respective institutions and all participants provided written informed 
consent. 

2.1.1. Utrecht1 
Patients (n = 171) were selected from the Parelsnoer study memory 

clinic cohort (Aalten et al., 2014). Age-matched controls (n = 53) were 
recruited from a community-based cohort (Reijmer et al., 2013). All MRI 
scans fromboth cohorts were acquired on the same 3 Tesla Philips 
scanner (Achieva, Philips, Best, the Netherlands). T1-weighted scans for 
both cohorts were acquired with the following parameters: voxel size: 1 
× 1 × 1 mm3, echo time (TE): 4.5 ms and repetition time (TR): 7.9 ms. 
dMRI data were obtained with a voxel size: 2.5 × 2.5 × 2.5 mm3, TR/TE 
6638/73 ms, 45 diffusion gradients directions with a b-value of 1200 s/ 
mm2, and 1b = 0 s/mm2 averaged 3 times. Fluid-attenuated inversion 
recovery (FLAIR) images were obtained with TR/TE/inversion time (TI): 
11000/125/2800 ms, voxel size: 1 × 1 × 3 mm3. 

2.1.2. Hong Kong 
Patients (n = 20) and controls (n = 20) were selected from a 

community-based cohort, the Chinese University of Hong Kong–Risk 
Index for Subclinical brain lesions in Hong Kong (CU-RISK) (Lam et al., 
2019). MRI scans were acquired on a 3 Tesla Philips scanner (Achieva, 
Philips, Best, the Netherlands). T1-weighted images were obtained with 
TR/TE: 7.49/3.46 ms, voxel size: 0.60 × 1.04 × 1.04 mm3 and dMRI had 
a TR/TE: 8944/60 ms, voxel size: 1 × 1 × 2 mm3; 32 diffusion gradient 
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directions with b-value 1000 s/mm2 and 1b = 0 s/mm2. FLAIR images 
were acquired with TR/TE/TI: 8000/328.6/2400 ms, voxel size: 0.55 ×
0.44 × 0.44 mm3. 

2.1.3. Munich 
Patients (n = 72) with CADASIL and controls (n = 34) were selected 

from the prospective VASCAMY (Vascular and Amyloid Predictors of 
Neurodegeneration and Cognitive Decline in Nondemented Subjects) 
study (Baykara et al., 2016). All MRI scans were acquired on a 3 Tesla 
Magnetom Verio scanner (Siemens Healthineers, Erlangen, Germany). 
T1-weighted scans were obtained using TR/TE: 2500/4.73 ms, voxel 
size: 1 × 1 × 1 mm3 and dMRI were acquired with a voxel size: 2 × 2 × 2 
mm3, TR/TE: 12700/81 ms, 30 diffusion gradient directions with a b- 
value of 1000 s/mm2, and 1b = 0 s/mm2. FLAIR images were obtained 
with TR/TE/TI: 5000/395/1800 ms, voxel size: 1 × 1 × 1 mm3. 

2.1.4. Utrecht2 
A second dataset from the UMC Utrecht consisted of patients (n = 34) 

and controls (n = 18) from an ongoing prospective observational cohort 
study Zoom@SVDs (van den Brink et al., 2021). MRI scans were ac-
quired using the same scanner system and acquisition parameters as the 
Utrecht1 dataset. However, since multiple scanner software and hard-
ware (coil) updates occurred between the two studies, scans from the 
Zoom@SVDs study are treated as a separate site. 

2.1.5. Singapore 
Patients (n = 100) and controls (n = 50) were selected from a 

community-based cohort, the Epidemiology of Dementia In Singapore 
(EDIS) study (Hilal et al., 2013). All MRI scans were performed on a 3 
Tesla Siemens Magnetom Trio Tim scanner (Siemens Healthineers, 
Erlangen, Germany). T1-weighted scans were obtained with TR/TE: 
2300/1.9 ms, voxel size: 1 × 1 × 1 mm3 and dMRI were acquired with a 
TR/TE: 6800/85 ms, voxel size: 3.1 × 3.1 × 3 mm3; 61 diffusion 
gradient directions with b-value 1150 s/mm2 and 7b = 0 s/mm2. FLAIR 
images were obtained with TR/TE/inversion time (TI): 9000/82/2500 
ms, voxel size: 1 × 1 × 3 mm3. 

2.2. MRI data pre-processing 

All datasets were pre-processed using ExploreDTI version 4.8.6 
(Leemans et al., 2009) and the Functional Magnetic Resonance Imaging 
of the Brain (FMRIB) software library (FSL, v6.0.1). Images were cor-
rected for signal drift (Vos et al., 2016) , eddy currents, subject motion 
with rotation of the B-matrix (Leemans and Jones, 2009) , and suscep-
tibility induced distortions (Veraart et al., 2013) . dMRI data were 
nonlinearly registered to the T1 and resampled to an isotropic resolution 
of 2 × 2 × 2 mm3 and brain masks were generated using brain extraction 
(BET) tool from FSL. All images were visually inspected to exclude the 
presence of major artifacts and misregistration. Since the dMRI data 
were acquired with different b-values in the different cohorts, we 
adjusted for differences in b-values as part of the harmonization pipe-
line. We estimated the signal of all dMRI data to a common b-value (b =
1000 s/mm2) using a linear scaling of the signal decay (S/S0) in the 
logarithmic domain (Jensen et al., 2005; Steven et al., 2014). This signal 
decay has been validated in phantoms and healthy controls and shown 
to be robust for datasets with closely spaced b-values centred around b 
= 1000 s/mm2 where the diffusion signal is not heavily weighted to-
wards non-Gaussian effects (Magin et al., 2019) . This approach was also 
utilized by (Karayumak et al., 2019) for the RISH harmonization 
method. In our case, b-value scaling was applied to Utrecht1, Utrecht2 
and Singapore, which had original b-values of 1200 s/mm2 and 1150 
s/mm2. 

WMH volumes were segmented from the FLAIR images using an 
automated pipeline (coroflo) and registered the MNI152 template (Kuijf 
et al., 2019). All volumes were normalized to the percentage of intra-
cranial volume (ICV) of the MNI brain. 

2.3. Harmonization with RISH features 

Harmonization of dMRI with rotation invariant spherical harmonics 
(RISH) features was first proposed by Mirzaalian et al. 2015, with recent 
improvements allowing harmonization of scans with different acquisi-
tion parameters (Karayumak et al., 2019), which is the case in our study. 
This type of harmonization is based on the fact that dMRI signal along 

Table 1 
Demographics and imaging parameters of the study samples.   

Utrecht 1 Hong Kong Munich Utrecht 2 Singapore 

Controls (N 
= 53) 

Patients (N 
= 171) 

Controls (N 
= 20) 

Patients (N 
= 20) 

Controls (N 
= 34) 

Patients (N 
= 72) 

Controls (N 
= 18) 

Patients (N 
= 34) 

Controls (N 
= 50) 

Patients (N 
= 100) 

Demographics 
Age, years 71.0 ± 4.8 74.9 ± 9.0 69.2 ± 3.4 74.1 ± 3.3 71.1 ± 4.4 53.4 ± 6.3 62.4 ± 6.9 66.9 ± 8.9 66.6 ± 4.8 72.6 ± 6.9 
Male sex (%) 31 (58) 99 (59) 10 (50) 10 (50) 17 (49) 23 (32) 10 (55) 22 (65) 31 (52) 35 (35) 

Cognitive testing 
MMSE 28 [28–30] 26 [24, 28] – – 30 [29, 30] 30 [27,30] 29 [28,30] 29 [27,30] 28 [27,29] 22 [18,25] 
MoCA – – 25 [23, 27] 19 [14, 20] – – – – 27 [26,28] 11 [18,21] 

MRI markers 
WMH volume 
(% ICV) 

0.3 [0.1, 
0.6] 

1.2 [0.5, 
2.7] 

0.1 [0.05, 
0.1] 

0.6 [0.3, 
1.1] 

0.2 [0.1 0.7] 6.2 [3.5, 
10] 

0.03 [0.02, 
0.08] 

0.7 [0.3, 
1.3] 

0.04 [0.02, 
0.09] 

0.8 [0.08, 
1.16] 

WMH 
(Fazekas) 

0 [0, 1] 2 [1, 2] 0.5 [0, 1] 2 [2, 3] 0 [0, 1] 3 [2, 3] 1 [1,1] 2 [2,3] 1 [1,1] 2 [1,3] 

Lacunes 
(present) 

0 (0) 69 (36) 0(0) – 0 (0) 49 (6) 0(0) 17 (50) 0 (0) 37 (37) 

Imaging parameters 
Scanner 3 T Philips Achieva 3 T Philips Achieva 3 T Siemens Verio 3 T Philips Achieva 3 T Siemens Magnetom Trio, 

Tim 
Software 
version 

R3.1 MR Release 5.1 syngo MR B19 MR Release 5.6.0 syngo MR B19 

Voxel size 
(mm2) 

2.5 × 2.5 × 2.5 1 × 1 × 2 2 × 2 × 2 2.5 × 2.5 × 2.5 3.1 × 3.1 × 3.0 

b-value (s/ 
mm2) 

1200 1000 1000 1200 1150 

# of directions 45 32 30 45 61 

Data presented as mean ± SD, number (percentages) or median [interquartile range]; SVD = small vessel disease; CADASIL = cerebral autosomal-dominant arte-
riopathy with subcortical infarcts and leukoencephalopathy; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment; WMH = white matter 
hyperintensity; ICV = intracranial volume. 
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unique gradient directions can be represented with a basis of spherical 
harmonics (SH). From this representation, RISH features that describe 
different aspects of the signal can be calculated. RISH features can be 
viewed as the total energy at a specific angular frequency (order) in the 
SH space. The core assumption of this method is that two groups of 
healthy subjects matched for age, sex, lesion burden, etc., are expected 
to have similar diffusion profiles on a group level and thus none of the 
RISH features should be statistically different between sites. Under this 
assumption, eventual group differences observed in diffusion measure-
ments such as FA and MD are attributed to scanner-related in-
consistencies, as previously shown in healthy controls (Ning et al., 
2020). To ensure that the average of RISH features captures site prop-
erties on a group level and not characteristics of individuals, a minimum 
number of training controls (15–20) is required from each site (Kar-
ayumak et al., 2019). Subsequently, a scaling is determined between the 
average of RISH features such that scanner-related differences are 
removed between sites. This mapping is linear in the SH domain, but 
non-linear in the original diffusion signal domain. We provide a detailed 
description of RISH harmonization in the supplementary information, 
and further theory can also be found in the original method papers 
(Karayumak et al., 2019; Mirzaalian et al., 2015) 

In short, RISH harmonization pipeline consists of two parts: 1) 
learning inter-site differences in the form of scale maps between RISH 
features of the reference and target site (Fig. 1, part 1); and 2) applying 
the learned scale maps to harmonize all dMRI datasets of the target site 
(Fig. 1, part 2). The learning part is performed using age- and sex- 
matched controls as training data. From the dMRI signal, the RISH 
features are calculated and registered to a common spatial template 
generated from training subjects with ANTs (Avants et al., 2010). In the 
template space, the expected values of RISH features are defined as the 
sample mean over the number of training subjects and voxel-wise scale 
maps of RISH features are estimated between the target and reference 
site. Next, in the application part, the scale maps are warped to the 
subject space and used to harmonize the SH coefficients of the target 
site. Finally, the harmonized diffusion signal can be reconstructed. 

2.4. Experimental design and analysis 

2.4.1. Effectiveness of RISH harmonization 
Here we assess if acquisition-related differences in diffusion metrics 

between sites can be removed by RISH harmonization. The first step was 
to select Training Controls from every cohort that were as similar as 
possible between sites to minimize sources of variability other than 
scanner. The Utrecht1 cohort was used as a reference site because the 
age range of the controls allowed matching with all other sites. This was 
done on a site-by-site basis, generating four sets of Training Controls 
with participants from every site matched for age and sex to participants 
from Utrecht1 (demographics in supplementary Table S1). Tract-based- 
spatial-statistics (TBSS, Smith et al., 2006) and voxel-based analysis 
were used to compare the FA and MD between Training Controls of the 
reference and target sites, before and after harmonization. For the TBSS 
pipeline, FA and MD were estimated using the diffusion tensor model 
(dtfit from FSL). Next, FA maps were aligned to the MNI152 template 
and a white matter skeleton representing the centers of major bundles 
was computed. Subsequently, FA and MD of the skeleton were compared 
between reference and target sites in a voxel-wise fashion using t-tests 
with threshold-free cluster enhancement (5000 permutations). This 
comparison was also extended to the whole brain to ensure that 
acquisition-related differences in grey matter regions and other struc-
tures are also removed. 

We also evaluated the generalizability of effectiveness of harmoni-
zation beyond the Training Controls. This was done by creating a group 
of Validation Controls with data from Utrecht1 (n = 15), Munich (n =
15) and Singapore (n = 15), since those sites had a sufficient number of 
controls outside the Training Controls to generate separate sets of 
matched groups (demographics in supplementary Table S2). Similar to 
the analysis with training controls, TBSS and voxel-based analysis were 
used to compare validation controls between each target site and the 
reference, before and after harmonization. Furthermore, one-way 
ANOVA was performed to compare the average FA and MD of the 
TBSS skeleton across these three sites. 

2.4.2. Sensitivity to disease effects in SVD 
For this objective we included all patients from all sites 

Fig. 1. Harmonization steps using RISH features. Part 1) All scans are pre-processed to correct for artefacts, followed by b-value mapping to a common b-value of 
1000 s/mm2. Voxel-wised scale maps are computed using a set of Training Controls matched for age and sex between the reference and the target site. Part 2) The 
scale maps are then applied to harmonize the remaining scans of the target site. 
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(demographics in Table 1). We made a selection of controls that 
included both training and validation controls, while ensuring that the 
average age was similar across sites (demographics in supplementary 
Table S3). We matched controls for age across sites in order to have a 
common reference to calculate effect sizes against patients. Thus, after 
harmonization controls are expected to have similar diffusion measures 
while the contrast with their respective patient groups should not be 
affected. To assess sensitivity to disease effects, general linear model 
(GLM) adjusted for age and sex was performed to examine the contrast 
(effect sizes of FA, MD and PSMD from the TBSS skeleton) between 
patients and controls within each site, before and after harmonization. 

In patients, we also explored the sensitivity to disease effects by 
relating WMH volume with FA, MD and PSMD, before and after 
harmonization. Linear regression adjusted for age and sex was per-
formed. Since the WMH volumes was non-normally distributed, a Box- 
Cox transformation was applied (Box & Cox, 1964). We determined 
the R2 and standardized regression coefficients (β), before and after 
harmonization. 

2.4.3. Proof of concept of data pooling 
We evaluated if disease effects were similar if patients were 

compared to Internal Controls or to a pooled set of matched controls 
derived from external centres only. GLM adjusted for age and sex was 
performed to compare patients from Utrecht1 and from Munich versus 
External Controls pooled from other sites. We compared effect sizes of 
FA, MD, PSMD obtained with External Controls to the original effect 
sizes with Internal Controls. 

Finally, we demonstrated proof of concept of data pooling by relating 
WMH volume with FA, MD and PSDM on pooled data of patients from 
multiple sites, and compared the fit of the curve before and after 
harmonization. Similar to the analysis within sites, linear regression was 
performed. 

3. Results 

3.1. Effectiveness of RISH harmonization 

Fig. 2 shows RISH features of order 0, 2 and 4 obtained from the 
Training Controls and corresponding scale maps, before harmonization. 

We observed widespread differences in RISH features between the 
reference and target sites that were dependent on the tissue type. Small 
differences were observed in regions with prevalently single fiber pop-
ulations (e.g., corpus callosum) for all orders of RISH features, whereas 
more peripheral white matter and grey matter regions showed bigger 
differences across sites (see scale maps). Furthermore, data from Hong 
Kong, Munich and Singapore sites showed larger differences from the 
reference (Utrecht1) than Utrecht2. 

Before harmonization, significant differences in FA and MD were 
found between the reference and each target site across the entire brain 
(Fig. 3), especially for Hong Kong Munich and Singapore (p < 0.05). 
After harmonization, all significant differences in the white matter 
skeleton between the target sites and the reference were removed. When 
analysing the whole brain, FA differences were still seen for the Hong 
Kong site (p < 0.05), mainly in subcortical grey matter and near tissue 
interfaces with cerebrospinal fluid, probably due to misregistration 
(Fig. 3, top right panel). A map of effect sizes further clarifies that dif-
ferences (positive or negative Cohen’s d) are removed after harmoni-
zation (i.e., effect sizes become closer to zero, Supplementary Figure S1). 

Regarding Validation Controls (Fig. 4), voxel-wise differences in FA 
and MD in the white matter skeleton and across the whole brain were 
removed after harmonization, with exception of minor differences at 
tissue interfaces, probably due to misregistration. When comparing the 
average FA and MD of the skeleton, significant differences in FA were 
found across sites before harmonization (F (1,43) = 18.2, p < 0.001, 
Fig. 5A). All differences in FA were removed after harmonization. The 
average MD of the skeleton did not differ across sites before or after 
harmonization (Fig. 5B). 

3.2. Sensitivity to disease effects in SVD 

Fig. 6 depicts differences in dMRI metrics between patients and 
controls within each site, with quantitative values shown in Table 2. 
Before harmonization, patients had a significantly lower FA (Fig. 6A), 
higher MD (Fig. 6B) and higher PSMD (Fig. 6C) than controls in all sites 
except Hong Kong: FA (d = -0.96 to − 2.07, p < 0.001); MD (d = 1.02 to 
1.99, p < 0.001); PSMD (d = 0.93 to 1.71, p < 0.001). After harmoni-
zation, all effect sizes were preserved, regardless of if they were small 
(0.2), medium (0.5) or large (0.8). On average, the relative change in 

Fig. 2. Left (top to bottom): RISH features of order 0, 2 and 4 calculated with Training Controls of each site. Different columns correspond to the different sites. Right 
(top to bottom): Scale maps for each RISH feature obtained by scaling each target site to the reference. Different columns correspond to different target sites. The red- 
blue colormap indicates the scaling factor between the two sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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effect size from pre- to post-harmonization was 3.9 % (Table 2). Voxel- 
wise analysis of one of the target sizes (Munich) shows that regional 
differences between patients and controls are preserved after harmoni-
zation (Supplementary Figure S2). 

Before harmonization, WMH volume was significantly associated 
with all dMRI metrics in all sites, FA (R2 = 0.37 to 0.68, p < 0.001); MD 
(R2 = 0.57 to 0.70, p < 0.001); PSMD (R2 = 0.49 to 0.76; p < 0.001), 
except Hong Kong where associations MD were not significant (Fig. 7). 
After harmonization, all associations were preserved regardless of the 
strength, with R2, standardized β coefficients being marginally affected. 
The relative change in R2 after harmonization was 2.8%. 

3.3. Proof of concept of data pooling 

When comparing Utrecht1 patients to External Controls before 
harmonization, differences in FA were close to twice as large as the 
original effect size obtained with Internal Controls from Utrecht1 (d =
-1.87, compared to − 0.96, Fig. 8A). After harmonization, the effect size 
of FA between Utrecht1 patients and External Controls was more com-
parable to the original effect sizes (Cohen’s d = -1.1, compared to 
− 0.96). Results were similar when we performed the same analysis 
using patients from Munich (Fig. 8B)): effect sizes between patients and 

the External Controls were more similar to the original effect size after 
harmonizing the data (original effect size: d = -2.07; effect size with 
External Controls before harmonization d = -1.67, after harmonization 
d = -2.1). For MD and PSMD, the effect sizes between patients and 
External Controls were similar to the original effects for both Utrecht1 
and Munich, even before harmonization (Fig. 8 C-F). 

Regarding associations between WMH and FA on the pooled data 
before harmonization, FA values from different sites were clustered in 
separate clouds (Fig. 9A). This non-harmonized data still described a 
significant association between WMH volume and FA but with weaker 
correlations than some individual sites due to the clustering effect (R2 =

0.33; p = 2 × 10-31). After harmonization, data points were more aligned 
around the fitted curve, with the measurements behaving as a single 
center data (Fig. 9B). This resulted in stronger associations between 
WMH volume and FA (R2 = 0.62; p = 2 × 10-75). For MD (Fig. 9 C-D) and 
PSMD (Fig. 9 E-F), the clustering of points was less prominent, but as-
sociations with with WMH volume also became stronger after harmo-
nization. Before harmonization, MD (R2 = 0.61; p = 7 × 10-74); PSMD 
(R2 = 0.56; p = 6 × 10-64); after harmonization, (MD: R2 = 0.64; p = 7 ×
10-89); PSMD (R2 = 0.60; p = 5 × 10-71). 

Fig. 3. Results of the TBSS (left) and whole brain voxel-wise analysis (right) comparing FA (top) and MD (bottom) between Training Controls of each target site and 
the reference, before and after harmonization. The yellow–red colormap shows voxels where statistical differences were observed after multiple comparison cor-
rections (p-value < 0.05). Corresponding maps of effect sizes are shown in Supplementary material (Part 3, Fig. S1). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Results of the TBSS and whole brain voxel-wise analysis comparing FA (left) and MD (right) between Validation Controls of each target site and the reference, 
before and after harmonization (demographics in supplementary Table S2). The yellow–red colormap shows voxels where statistical differences were observed after 
multiple comparison corrections (p-value < 0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 5. Boxplots of average FA (panel A) and MD (panel B) of the white matte skeleton compared between Validation Controls, before and after harmonization 
(demographics in supplementary Table S2). The dashed blue line represents the mean of the reference site. The blue marker within each boxplot indicates the mean of 
the corresponding group, which were compared between sites using a one-way ANOVA. Top: FA before harmonization, F (1,43) = 18.2, p < 0.001; FA after 
harmonization, F (3,43) = 0.2, p = 0.8. Bottom: MD before harmonization: F (3,43) = 0.83, p = 0.06; MD after harmonization: F (3,43) = 2.6, p = 0.4. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

We investigated the applicability of RISH harmonization to remove 
acquisition-related differences in multicentre dMRI of elderly subjects 
with SVD while preserving disease-related effects. Before harmoniza-
tion, we observed significant differences in FA and MD across sites, 
which were removed after harmonization, both in the Training Controls 
and in Validation Controls not involved in the training step. Importantly, 
effect sizes of FA, MD and PSMD for group differences between patients 
and controls as well as for associations with WMH volume within each 
site were preserved after harmonization. The harmonized controls could 
be effectively considered as a single-site dataset. The pooled data of 
patients covered a wide range of WMH burden, allowing to demonstrate 
a strong relation between WMH volume and dMRI metrics. 

The RISH method has been previously implemented using scans of 
healthy young subjects without apparent brain lesions for the training 
step (Cetin-Karayumak et al., 2020; Mirzaalian et al., 2015) . Here, we 
have evaluated whether peculiar characteristics of the elderly brain, 
such as presence of lesions as WMH brain atrophy and larger ventricles, 
which are present to some extent even in control subjects, could affect 
the computation of the scale maps of RISH features. In our study, the 
selection criteria for controls was based on low burden of SVD. Thus, the 
training controls were minimally affected by WMH and had relatively 
similar brain volumes. The largest differences in RISH features were 
observed in grey matter and peripheral white matter areas, where par-
tial volume effects might play a role on the diffusion profile (Vos et al., 
2011, 2012). After harmonization differences in FA and MD between the 
target sites and the reference were removed across the brain, except for 

Fig. 6. Average FA (panel A), MD (panel B) and PSMD (panel C) of the white matter skeleton compared between patients (green) and controls (gray) within each site 
(demographics for selected controls in supplementary Table S3). Results are displayed for the reference site and for each target site before and after harmonization. 
Corresponding p-values and effect sizes are displayed in Table 2. The dashed line indicates the mean value of controls of the reference site. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Hong Kong where minor differences in MD still persisted in deep grey 
matter structures and at tissue interfaces with cerebrospinal fluid. This is 
likely due to residual inaccuracies in image registration or differences in 
WMH burden and brain volumes in Training controls, given these were 
not explicitly matched for these markers (Supplementary Figure S7). 
Accordingly, we suggest that when dealing with data of elderly subjects 
it might be beneficial to match Training Controls not only for age and sex 
(Hsu et al., 2008) , but also in terms of WMH lesion distribution, brain 
volumes or other demographics that contribute for variation in diffusion 
(e.g., handedness, race, etc., Büchel et al., 2004), although this might be 
challenging to achieve in practice in most studies. This is particularly 
important when the inclusion criteria for controls are not based on MRI 
markers of SVD but rather on variables such as being cognitively 
healthy. Another important consideration for studies implementing the 
RISH method is that imaging artefacts specific of one site or few subjects 
(e.g., ghosting, incomplete fat saturation) might be learned as part of the 
harmonization features, and propagate into the harmonized dataset. In 
our study, an example of these artefacts can be seen as rings due to 
incomplete fat suppression on the L4 scale maps shown in Fig. 2. 
Nevertheless, their impact on the harmonized data was deemed minimal 
and it did not significantly affect any subsequent result. The RISH 
method does not assume that two groups of healthy older subjects are 
completely identical, but as shown by our work, if groups are matched 
for major factors, differences in RISH features can be learned on a group- 
level, without major influence of individual properties. This is further 
supported by our results on the generalizability of RISH harmonization 
with Validation Controls. We demonstrated not only that dMRI metrics 
of subjects not involved in the training step are harmonized, but also the 
transitivity of harmonization, e.g., that the independent harmonization 
of two target sites to the reference also implies harmonization between 
target sites. 

Next, we demonstrated that RISH harmonization does not affect the 
sensitivity of dMRI to effects of SVD. Well-known differences in FA, MD 
and PSDM between patients and controls observed within each site 
before harmonization were preserved (Baykara et al., 2016; Wiegertjes 
et al., 2019). Effect sizes were unaffected after harmonization (relative 
change = 3.9 %.), regardless of whether the magnitude was small, me-
dium or large. We believe such small change in effect size can be deemed 
negligible, and is likely caused by registration and interpolation inac-
curacies (Karayumak et al., 2019). We also repeated the same analysis 
with the statistical harmonization method ComBat (Fortin et al., 2017) 
for comparison. RISH harmonization outperformed ComBat in this 
dataset, which was not able to preserve effect sizes within all sites (see 
supplementary Information, Part 6). Recent work has shown that 
application of the RISH method does not alter the relation between dMRI 
metrics and biological effects such as age-related changes (Karayumak 
et al., 2019; 2020). Here, we extended such finding by showing that 
RISH harmonization also preserved the relation between WMH volume 
and dMRI metrics, a well-established relation in this kind of patients 
(Van Leijsen et al., 2017), regardless of the strength or the sample size 
available within each site to test such associations. 

To date, most studies of SVD with dMRI have been single-site based, 
and the inclusion of cohorts from other sites, which can differ substan-
tially in terms of acquisition, has been limited to external validation 
only. Our results with External Controls indeed show that multicentre 
data without standardized acquisition across centres cannot be simul-
taneously analysed, as their integration before harmonization would 
result in biased effect sizes when comparing patients and controls. Effect 
sizes obtained with External Controls before harmonization were biased 
up to 1 standard deviation, which is on the same order of magnitude as 
typical differences between patients and controls. Conversely, after 
harmonization External Controls behaved as single-site dataset that 
could be used as reference for patients from all sites with minimal bias in 
effect sizes. An important implication of this result is that harmonization 
can potentially address data obsolescence. Diffusion scans are routinely 
acquired at single-site level for the purpose of testing specific Ta
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hypotheses, and discarded afterwards as hardware updates are imple-
mented or the acquisition protocols are adjusted. Being able to account 
for such differences might allow to include previously acquired data 
across multiple studies, thus valorising previous investments and 
reducing the burden of scanning new controls in prospective studies. 
Another potential benefit of harmonization is in longitudinal studies 

where upgrades in scanner systems complicate the comparison of data at 
different time points (Takao et al., 2012). Still, for prospective multi- 
center studies and especially clinical trials, which typically lack a 
healthy control group needed for post-hoc data harmonization, stan-
dardization of the acquisition should still have a high priority. 

After establishing that RISH harmonization allows to integrate data 

Fig. 7. Scatter plots of associations between WMH volume, FA (top), MD (middle) and PSMD (bottom) within sites, before and after harmonization. MD and PSMD 
values are given in mm2/s. *p < 0.05 for β coefficients. 
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from different cohorts, we demonstrated associations between WMH 
volume and dMRI metrics on the pooled dataset of patients, which 
resulted into improved statistical power due to the larger sample size. 
Since the cohorts included in this study had different disease burdens, 
the pooled data covered a larger spectrum of WMH volumes, allowing to 
test associations with more confidence than what the individual sites 
would allow. Since WMH volume already has strong correlations with 
dMRI metrics (Bendlin et al., 2010), even the non-harmonized pooled 
data resulted in significant associations. However, R2 were lower than 
some individual sites, showcasing again the risk of performing in-
ferences using non-harmonized data. After harmonization, data points 
of different sites behaved as a single-center data and more aligned with 
the fitted curve, resulting in and increase of R2. The impact of harmo-
nization is likely to be even more important in the study of other cor-
relates of SVD with more subtle effect sizes than WMH (e.g., relation 
between dMRI metrics and cognition, Du et al., 2020) or when assessing 
disease progression over time (van Leijsen et al., 2019). 

5. Limitations and future directions 

Despite its advantages, RISH harmonization does not come without 
limitations. To minimize differences in diffusion weighting across sites, 
we used a linear scaling to map the diffusion signal to a b-value of 1000 

s2/mm, which is only applicable to a limited range of b-values. For 
prospective multicentre studies, it is crucial to minimize differences in 
acquisition parameters such as b-values, but for retrospective studies 
with already acquired data, harmonization of scans with largely 
different b-values needs further investigation. As clinical protocols 
continuously improve and more complex sequences are implemented (e. 
g., multi-shell data), future work should also investigate whether RISH 
harmonization is suitable for such advanced dMRI applications in SVD 
(De Luca et al., 2018; Konieczny et al., 2020; Rydhög et al., 2017). 
Moreover, since we focused our analyses on the dMRI metrics most 
commonly associated with SVD (FA, MD, PSMD), further analyses are 
required in order to generalize our conclusions to other metrics obtained 
from higher level analysis such as fiber tractography (De Luca et al., 
2020) and network theory in SVD (Reijmer et al., 2015). 

6. Conclusions 

Despite the limitations, our study is the first to prove the feasibility of 
RISH harmonization of multicentre dMRI scans in the context of SVD. 
We showed that harmonizing the raw dMRI signal is effective in 
removing acquisition-related differences, while preserving the sensi-
tivity to disease effects. This ultimately allowed us to directly pool scans 
acquired at different sites into a single analysis and increase the power of 

Fig. 8. Boxplots of FA (A-B), MD (C-D) and PSMD (E-F) of the white matter skeleton compared between patients and controls. (Left): Comparisons between Utrecht1 
patients and Internal Controls and between Utrecht1 patients and External Controls, before and after harmonization. (Right): Comparisons between Munich patients 
and Internal Controls, and between Munich patients and External Controls, before and after harmonization (demographics for selected controls in supplementary 
Table S3). Data from each site is color coded as follows: red = Utrecht1; green = Hong Kong; blue = Munich; black = Utrecht2; magenta = Singapore. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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dMRI inferences. Our work paves the way not only for the validation of 
dMRI markers of SVD in large scale multicentre studies, but also for 
studies that aim to answer new research questions where statistical 
power is critical, such as untangling underlying aetiologies in SVD 
populations (e.g., free-water imaging, Finsterwalder et al., 2020). When 
translated to even larger scales, harmonization could significantly 
improve the sensitivity and specificity for studies attempting to identify 
tract specific damage and network connections related to cognitive 
dysfunction (Konieczny et al., 2020). 

7. Data availability statement 

The data used in this study is available upon contact and agreement 
with the respective investigators of each cohort. The harmonization 
method used in this work was originally developed by Mirzaalian et al., 
2015 and the code is publicly available at https://github.com/pnlbwh 
/dMRIharmonization. 
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