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Abstract 

Background: Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and 
depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and 
the high variability in treatment response. However, although several studies have been conducted, the molecular 
mechanisms underlying Li therapeutic effects remain unclear.

Methods: In order to identify molecular signatures and biological pathways associated with Li treatment response, 
we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients 
diagnosed with BD classified as Li responders (n = 11) or non‑responders (n = 9).

Results: We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non‑
responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a 
modulatory effect of Li on several immune‑related functions. Indeed, among the functional molecular nodes, we 
found NF‑κB and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder 
patients, suggesting anti‑inflammatory properties of Li.

From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package 
on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA‑
miRNA pairs, mainly involved in inflammatory/immune response.

Conclusions: Our results highlight that Li exerts modulatory effects on immune‑related functions and that epige‑
netic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in 
Li response. Moreover, our data suggest the potentiality to integrate data coming from different high‑throughput 
approaches as a tool to prioritize genes and pathways.
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Introduction
Bipolar disorder (BD) is a severe and disabling psychi-
atric condition characterized by intermitting states of 
mania and depression, affecting 1–3% of the population 
worldwide. The onset of the illness is around 20 years of 
age and it is associated with a reduced quality of life, sub-
stantial societal costs and the highest suicide rate among 
psychiatric disorders [1–3]. Management of patients 
diagnosed with BD requires both acute treatment of 
manic or hypomanic episodes above to a maintenance 
therapy to prevent relapses and further episodes.

Mood stabilizers are used as the first-line therapy 
in the treatment of BD, and among this class of com-
pounds, lithium (Li), introduced by John Cade in 1949, 
still represents the gold standard treatment for stabiliza-
tion, prophylaxis and suicide prevention [4, 5]. However, 
patients diagnosed with BD receiving Li need regular 
monitoring due to Li narrow therapeutic index and the 
risk to develop multiple side effects [5, 6]. Further com-
plexity in the management of Li therapy is represented 
by the heterogeneity in Li response: approximately 30% 
of patients appear good responders, whereas 70% of them 
are classified as partial or non-responders [7–9].

A growing body of evidence suggests that the response 
to Li prophylaxis has a strong genetic background and 
familiar heritability [10–16]. Recent findings from the 
largest genome-wide association study (GWAS) con-
ducted by the International Consortium on Lithium 
Genetics (ConLiGen) have indeed suggested the involve-
ment of two long non-coding RNA (lncRNA) genes, 
AL157359.3 and AL157359.4, in Li response [7].

However, so far, findings from pharmacogenetic studies 
have been able to explain only a small proportion of the 
observed variability, suggesting that other factors could 
be involved, including for example epigenetic mecha-
nisms, such as DNA methylation, histone modification 
and microRNAs (miRNAs). MiRNAs are single-stranded, 
non-coding RNA molecules, 18–25 nucleotides-long, 
with a key role in the regulation of messenger RNA 
(mRNA). Indeed, they act by inducing either degrada-
tion or translational silencing of their target mRNA, but 
in certain instances, miRNAs may activate translation or 
even act at the level of transcription by binding to spe-
cific gene promoters [17–20]. MiRNAs are involved in 
key processes such as neurogenesis [21], neural plastic-
ity and higher brain functioning [22] and they have been 
also associated with neurodegenerative disorders [23, 24] 
and psychiatric illnesses [25]. Interestingly, although still 

limited, available data on miRNAs expression support 
the hypothesis that these small non-coding RNAs could 
influence the treatment response in patients diagnosed 
with BD [8, 26, 27].

Among human cellular models, lymphoblastoid cell 
lines (LCLs) represent a valid and useful experimen-
tal tool to study Li response in patients diagnosed with 
BD, including epigenetic mechanisms, as already dem-
onstrated [28–34]. Despite some limitations associated 
with the Epstein-Barr Virus (EBV) transformation, LCLs 
show several advantages [35]. Indeed, the genomes of 
LCLs remain stable during subsequent cell divisions. This 
stability in part reflects the fact that the EBV genome is 
not incorporated into the germ-line genome but rather 
remains in the cell cytosol [35]. Interestingly, although 
some of the epigenomic signatures are lost during the 
EBV immortalization process and the subsequent in vitro 
propagation, many of them persist and may be useful to 
study disease-related epigenomic modifications [36–42].

Although Li treatment response in patients diagnosed 
with BD has been studying for decades, findings from 
already available studies have been elusive mainly due 
to: i) the complexity of the mechanism of action of Li 
[43, 44], ii) the involvement of multiple molecular pro-
cesses [45, 46], and iii) the use of different animal mod-
els or in vitro human cell lines (for a review see [8, 34]). 
Moreover, the heterogeneity among all studies (in terms 
of analyzed samples, technologies and methods used, 
inclusion/exclusion criteria of patients’ selection, sample 
size), the lack of independent replication cohorts to vali-
date initial findings and of standard operative procedures 
among different laboratories (i.e. methods of collecting, 
storing, processing and analyzing markers), as well as the 
high-throughput approaches across different studies have 
produced big data sets, contributing to make the picture 
even more complex to understand.

To overcome all these limitations and to reduce hetero-
geneity among the studies, new successful strategies have 
been introduced by combining modalities coming from 
different high-throughput methods, which can be useful 
to prioritize a stringent number of genes and pathways 
involved in Li treatment response. For example, Huns-
berger and colleagues have conducted an integrative 
approach combining miRNAs and mRNAs expression 
profiling of LCLs derived from BD Li responder and non-
responder patients before and after in vitro Li treatment 
[30]. Interestingly, the results of this study suggested 
that in vitro Li treatment down-regulated miRNA Let-7 

Keywords: Bipolar disorder, Lymphoblastoid cell line, Lithium, Gene expression, microRNAs, Transcriptome and 
miRNome integrative analysis



Page 3 of 19Cattane et al. BMC Psychiatry          (2022) 22:665  

family in both groups, but specifically in the group of 
BD responders [30]. However, these interesting findings 
have not been replicated by further studies [47]. Another 
example of high-throughput data integration has been 
proposed by Pisanu and colleagues who applied a con-
vergent analysis of genome-wide genotyping and tran-
scriptomic data from LCLs of patients diagnosed with 
BD identifying a zinc finger gene, ZNF493, as a potential 
Li-responsive target [48].

Within this scenario, in the present study, we aimed to 
investigate the effects of Li treatment response in LCLs 
obtained from patients diagnosed with BD character-
ized for Li response. Thus, we performed an integrative 
analysis on both mRNAs and miRNAs microarray data 
by combining differential expression analyses and corre-
lation of expression levels with miRComb, an R package 
able to combine miRNA and mRNA expression data with 
hybridization information [49]. Our goal was to identify 
molecular signatures and biological pathways that could 
underlie the effects of Li therapeutic response. This could 
have a clinical utility helping clinicians to develop a per-
sonalized medicine approach. Moreover, we aimed to 
find biological signatures (mRNAs, miRNAs) involved in 
Li response not only to better understand the molecular 
mechanisms associated with Li therapeutic treatment, 
but also to identify novel targets for the development of 
new drugs.

Materials and methods
Patients
Twenty patients with a diagnosis of Bipolar Disorder type 
I were recruited at the Expert Center for bipolar disorder 
of Paris (France) as part of a research protocol (Clinical 
Trials Number NCT02 627404) approved by the ethical 
committee (Comité de Protection des Personnes – La 
Pitié- Salpétrière Hospital – Paris – France) (reference: 
P111002-IDRCB2008-AO1465–50). All participants pro-
vided written informed consent prior to inclusion.

Diagnosis was made according to the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-IV 
Edition), and the Li response was evaluated by using 
the Retrospective Criteria of Long-Term Treatment 
Response in Research Subjects with BD score, also 
known as ALDA scale.

Briefly, the ALDA scale is composed of two subscales: 
the A scale and the B scale. The A scale evaluates the 
improvement of symptoms during the treatment with Li, 
while the B scale describes five clinical factors that may 
potentially confound the pharmacological response.

The ALDA score assumes an integer value between 0 
and 10 calculated by subtracting the B from the A score. 
Subjects with ALDA score ≥ 7 are classified as “respond-
ers”, whereas those with ALDA score < 7 represent 

“non-responders” [50]. Accordingly, in our study patients 
diagnosed with BD were defined as Li responders (R, 
n = 11) or non-responders (NR, n = 9).

Demographical information, details of the clinical char-
acterization and assessment of Li response of all patients 
diagnosed with BD have been reported in Table 1.

Lymphoblastoid cell lines
Lymphoblastoid cell lines (LCLs) from patients diag-
nosed with BD were established from fresh blood by 
transforming lymphocytes with Epstein-Barr virus (EBV) 
following standard protocols [28, 51]. When reaching the 
confluence state, each cell line was stored in liquid nitro-
gen until use. For the present study, LCLs were thawed 
and cultured in RPMI-1640 medium supplemented with 
10% foetal bovine serum, 1% penicillin/streptomycin, 1% 
L-Glutamine 200 mM (Thermo Fisher Scientific, USA) 
in a 5%  CO2 humidified incubator at 37 °C. LCLs were 
seeded at 2 ×  105 cells/ml and grown in T75 Flask. After 
4 days, cells were harvested for RNA isolation.

All the cells were tested  free of mycoplasma by  using 
TransDetect® PCR Mycoplasma Detection Kit (Clinis-
ciences, France).

RNA extraction
From each cell line, total RNA, including miRNAs, was 
isolated from 5 ×  106 cell pellets with the miRNeasy 
mini kit according to the manufacturer’s protocol (QIA-
GEN, Hilden, Germany). RNA quantity and quality were 
determined by using a NanoDrop-1000 spectrophotom-
eter (NanoDrop Technologies, Thermo Fisher Scientific, 
USA). RNA purity was considered adequate when the 
A260/280 ratio was in the range of 1.8–2.0 and when 
the A260/230 ratio was in the range of 2.0–2.2. RNA 

Table 1 Demographical and clinical information of BD 
responder (R) and non‑responder (NR) patients

R
(n = 11)

NR
(n = 9)

Age (mean ± SD) 49.06 ± 12.51 45.81 ± 6.62

Sex (M/F) 6/5 6/3

Ethnicity Caucasian Caucasian

Smoking (yes/no) 6/5 5/4

Age of onset (mean ± SD) 27.91 ± 9.78 29.67 ± 10.22

N° of lifetime mood episodes (mean ± SD) 7.09 ± 4.89 11.29 ± 5.79

ALDA total score (mean ± SD) 8.27 ± 1.01 1,89 ± 1.27

CTQ total score (mean ± SD) 38.55 ± 7.54 41.56 ± 10.70

Medication (yes/no)
 ‑ Lithium

9/2 5/4

 ‑ Atypical antipsychotics 1/10 6/3

 ‑ Anticonvulsants 2/9 4/5

https://clinicaltrials.gov/ct2/show/NCT02627404
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integrity number, assessed using the Agilent 2100 Bioan-
alyzer (Agilent, Santa Clara, CA, USA), was in the range 
of 7–10.

Microarrays
Transcriptome analysis
For the whole transcriptomic profiling, 250 ng of total 
RNA were processed with the WT PLUS Reagent Kit 
(Thermo Fisher Scientific, USA) and were subsequently 
hybridized onto the GeneChip Human Gene 2.1 ST Array 
Strips on a GeneAtlas platform (Thermo Fisher Scientific, 
USA). The comprehensive coverage of these array strips 
allows the simultaneously evaluation of > 30.000 cod-
ing transcripts, of > 11.000 long intergenic non-coding 
transcripts and alternative splicing events/transcript 
variants with probes designed to maximize exon cover-
age. Samples have been randomized and stratified in a 
way that each array strip included the same number of 
Li responder and Li non-responder patients diagnosed 
with BD. Washing and staining were conducted on the 
Fluidics station; scanning was performed on the Imaging 
station. All procedures were run following the manufac-
turer’s instructions.

miRNome analysis
250 ng of total RNA including miRNAs were processed 
with the FlashTag Biotin HSR RNA Labeling kit (Thermo 
Fisher Scientific, USA) and subsequently hybridized onto 
the GeneChip miRNA 4.1 Array Strip on a GeneAtlas 
platform (Thermo Fisher Scientific, USA). As reported 
before, samples have been randomized and stratified in 
a way that each array strip included the same number of 
Li responder and Li non-responder patients diagnosed 
with BD. Washing and staining were conducted on the 
Fluidics station, whereas scanning was performed on the 
Imaging station. All procedures were run following the 
manufacturer’s instructions.

Statistics
Microarray data analysis
Strip array data quality control was checked by GeneAt-
las integrated analysis software (Thermo Fisher Scien-
tific, USA) for both GeneChip Human Gene 2.1 ST Array 
Strips and GeneChip miRNA 4.1 Array Strips.

Briefly, raw microarray data (.CEL files) were imported 
and analyzed with the commercially available software 
Partek® Genomic Suite® (Partek, St. Louis, MO, USA). 
Probe set normalization and summarization were com-
puted using Robust Multi-Array (RMA) algorithm. We 
checked for quality control and batch effects using the 
Principal Component Analyses (PCA), and we did not 
observe any outliers or batch effect.

Analysis of variance (ANOVA) was performed to 
assess, separately, the expression levels of both mRNAs 
and miRNAs in LCLs obtained from BD responders ver-
sus non-responders.

To identify the list of differentially expressed mRNAs 
and miRNAs, we filtered ANOVA results using both fold 
change |FC| ≥ 1.2 and p-value ≤0.05. Moreover, in the 
list of miRNAs we selected the probe sets only for the 
Human organism.

Pathway analysis of differentially expressed mRNAs
Differentially expressed genes with RefSeq annotations 
were analyzed using the Core Analysis functionality in 
Ingenuity Pathway Analysis (IPA) software (QIAGEN, 
Hilden, Germany) to describe key aspects of the molecu-
lar function, biological process and cellular component 
of gene products. This software is based on a proprietary 
database able to identify specific cellular pathways and to 
generate biological networks.

Pathway analysis of differentially expressed mature miRNAs
The identification of potentially altered molecular path-
ways as targeted by differentially modulated miRNAs 
was performed by using DIANA-miRPath (v.3) tool web-
server [52]. Specifically, an in silico target prediction was 
performed on differentially expressed mature miRNAs by 
using DIANA-microT-CDS algorithm, which combines 
the analysis of 3′-untranslated regions (3′-UTRs) and 
coding sequence regions [53]. MiRNA-gene interactions 
were filtered using the default threshold equal to 0.8 and 
the False Discovering Rate (FDR) algorithm (FDR cut-
off = 0.05) was applied.

An enrichment analysis of miRNA target genes was 
executed in Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database and a list of significant pathways 
(p-value ≤0.05) showing all targeted genes and number 
of miRNAs was computed [52].

mRNAs‑miRNAs combined analysis
In order to detect the relevant pairs of interacting mRNA-
miRNA for Li response, an integrated analysis of mRNAs 
and miRNAs expression levels was performed. First, dif-
ferentially expressed mRNAs and miRNAs between BD 
responders and non-responders were filtered to focus on 
gene expression regulation mechanisms associated with 
Li response. Among all identified mRNAs and miRNAs, 
a correlation analysis was performed to detect mRNA-
miRNA pairs that were inversely correlated based on the 
biological assumption that a miRNA negatively regulates 
the expression of its mRNA targets. The analysis has been 
performed using miRComb, an R package able to com-
bine miRNA and mRNA expression data with hybridiza-
tion information [49].
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We first used LIMMA package to perform differential 
analysis and to filter for differentially expressed mRNAs 
and miRNAs (|FC| ≥ 1.2 and nominal p-value ≤0.05). 
The intensity signals of microarray (after RMA normali-
zation) among all the couples of identified differentially 
expressed mRNAs and miRNAs have been tested for 
association with Pearson correlation (that is to test for 
the presence of an inverse linear relationship between a 
given couple of mRNA-miRNA).

We also computed an S score = − 2  (logratiomiRNA 
x  logratiomRNA) to have a weigh within each couple of 
mRNA and miRNA, representing the level of alteration 
among Li responders and non-responders (the higher 
the score the higher the deregulation). We considered a 
positive S score (> 0), to take into account only mRNA-
miRNA pairs within which mRNA and miRNA showed 
an opposite direction of expression, in terms of FC [49].

We extracted the most relevant mRNA-miRNA pairs 
by filtering for Pearson correlation coefficient ρ ≤ − 0.38, 
showing an anti-correlation trend, a nominal p-value 
≤0.05 and a positive S score.

Results
Transcriptomic signatures associated with lithium 
response
Our first aim was to identify changes at the transcrip-
tome level that could be associated with Li response. 
From the comparison between BD responder and non-
responder patients, we identified 335 differentially 
modulated genes (217 were up-regulated and 118 down-
regulated) (Supplementary Table  1 for the entire list of 
significant genes) in LCLs of Li responders.

To strengthen our analysis, we compared our results 
to already available transcriptomic studies by perform-
ing a bibliographic search in PubMed, using the following 
keywords: “lithium; bipolar disorder; peripheral blood; 
gene expression” OR “lithium; bipolar disorder; lympho-
blastoid; gene expression”. We found 15 studies conducted 
in peripheral blood samples and 21 performed in LCLs 
obtained from patients diagnosed with BD, responders 
or non-responders to Li, but also from controls. When 
we looked for common genes within our list and already 
available studies, we found an overlap of 42 Li-responsive 
genes modulated in the same direction upon treatment 
with Li (Supplementary Table 2) [29, 30, 32, 33, 54–57].

mRNAs pathway and network analyses
To identify possible deregulated biological processes 
underlying Li treatment response, we performed a path-
way and network analysis on the list of 335 differentially 
expressed genes. We found 54 significantly modu-
lated pathways represented in the pie chart (Fig. 1) and 
in Supplementary Table  3. As shown in the pie chart, 
57% of the pathways are involved in cellular immune 
response, including Th1 and Th2 pathways, OX40 sig-
nalling, B cell development, T helper cell differentiation, 
Antigen Presentation, Calcium-induced T Lymphocyte 
Apoptosis, Inflammasome pathway and Nur77 signal-
ling in T Lymphocytes. Other pathways relevant to BD 
pathophysiology and Li treatment response are related 
to neurotransmitters and other nervous system signal-
ling (5%) (i.e. ErbB signalling), cell cycle regulation (4%) 
(i.e. Cdc42 and 14–3-3 mediated signalling) and metabo-
lism (4%) (i.e. Type I Diabetes Mellitus Signalling).

Fig. 1 Pie chart gathering 54 significant pathways, identified in patients diagnosed with BD who respond to Li, according to their biological 
functions
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In addition, to predict how genes in our data set 
could interact with each other, we performed a network 
analysis on the same list of 335 differentially expressed 
genes. Interestingly, IPA revealed 21 relevant func-
tional networks (Supplementary Table  4). As shown in 
Fig.  2, Nuclear Factor kappa B (NF-κB), Tumor Necro-
sis Factor (TNF) and Signal Transducer and Activator 
of Transcription 3 (STAT3) might represent important 
functional nodes associated with Li treatment response.

Furthermore, to predict directional effects of the 
networks, we used Molecule Activity Predictor (MAP) 
and Path designer functionalities in IPA, which take 
into account the observed expression changes to com-
pute functional effects on neighbouring molecules. 
Networks showing NF-κB, TNF and STAT3 among the 
hub genes resulted globally inhibited in patients diag-
nosed with BD who responded to Li treatment (Fig. 2).

Results of eQTL‑mapping studies from blood and/or brain 
tissues
To better investigate the effects of Li response on gene 
expression levels in BD responders and non-responders, 

we performed an in-silico analysis based on the matching 
between expression Quantitative Trait Loci (eQTL) and 
the genetic signals available from BD GWAS [58].

Our aim was to identify to which extent the genetic 
regulation of gene expression was associated with the 
genetic signal of the analyzed phenotype, represented by 
BD symptomatology, hypothesizing that Li treatment in 
BD responders could counterbalance alterations in gene 
expression levels relevant for BD. For our purpose, we 
retrieved the list of differentially regulated genes in blood 
and brain tissues (according to GTEx eQTL data) consid-
ering BD GWAS summary statistics from the Psychiatric 
Genomics Consortium [59]. We took into account only 
those genes that reached significance (nominally signifi-
cant p-value < 0.05). We then compared this list with the 
whole data set of differentially expressed genes between 
BD responder and non-responder patients found in our 
transcriptome microarray analysis (Table  2). Specifi-
cally, we were interested in those genes with an oppo-
site directionality between case/control and Li response. 
The only gene that survived this analysis was fascicula-
tion and elongation protein zeta (FEZ1). A significant 

Fig. 2 Networks implicated in response to Li treatment in BD responders. NF‑kB, TNF and STAT3 are among the hub genes
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association by TWAS suggests that a down-regulation of 
FEZ1 expression levels increases the risk for BD (TWAS 
Z = − 2.15; p-value = 0.0318). Interestingly, in our analy-
sis, we found a significant increase of FEZ1 mRNA lev-
els in BD responders versus non-responders (FC = 1.51; 
p-value = 0.0314), suggesting FEZ1 as a potential target 
of Li therapeutic effects.

miRNomic signatures associated with Li response
In order to evaluate which miRNAs could be differen-
tially modulated by Li, we also performed a miRNome 
microarray analysis in LCLs. We found a list of 77 
mature miRNAs that were significantly modulated in BD 
responders versus non-responders. Out of these, 46 were 
up-regulated and 31 down-regulated (Supplementary 
Table 5). To verify whether these differentially expressed 
mature miRNAs have been already associated with Li 
response, we conducted a search in PubMed using the 
following keywords “lithium; bipolar disorder; miRNAs” 
and we found 17 articles. We identified only two com-
mon miRNAs modulated in the same direction (up-reg-
ulated in LCLs of patients diagnosed with BD following 
chronic Li treatment) between our list and previous stud-
ies: hsa-miR-34a-5p (FC = 1.26, p-value = 0.0378) and 
hsa-miR-152-3p (FC = 1.54, p-value = 0.007), which were 
consistent with the literature [60].

MiRNAs pathway analysis
In order to investigate the biological systems regulated 
by differentially expressed miRNAs in BD responder 
patients, we conducted a pathway analysis by using Diana 
Tool software (miRPath v.3). Interestingly, we identi-
fied a list of 77 statistically significant pathways (Table 3 
and Supplementary Table  6) mainly involved in: i) neu-
rodevelopment, such as Hippo signalling pathway, Axon 
guidance, Glutamatergic synapse, Neurotrophin signal-
ling pathway, FoxO signalling pathway, mTOR signal-
ling pathway, GABAergic synapse, Cholinergic synapse, 
Wnt signalling pathway and Dopaminergic synapse; ii) 

intracellular signal transduction (i.e. ErbB signalling 
pathway, Ras signalling pathway, Rap1 signalling pathway, 
MAPK signalling pathway, cAMP signalling pathway, 
AMPK signalling pathway, PI3K-Akt signalling pathway 
and cGMP-PKG signalling pathway); iii) inflammatory/
immune system response, including TGF-beta signalling 
pathway and T cell receptor signalling pathway.

Predicted mRNA‑miRNA interactions
The innovative approach of our study mainly consists in 
the integration analysis between transcriptomic and miR-
Nomic data carried out on the same patients diagnosed 
with BD. Briefly, by using miRComb R package [49], we 
combined transcriptomic and miRNomic expression data 
with microarray hybridization information to compute 
all possible correlations between deregulated and differ-
entially modulated mRNAs and miRNAs. Our goal was 
to highlight those mRNA-miRNA interactions that may 
play an important role in the outcome of Li treatment 
response.

We thus selected the previously mentioned 335 and 
77 significantly deregulated mRNAs and miRNAs, 
respectively, and we computed all possible correla-
tions. Among all mRNA-miRNA possible interactions, 
7627 had a p-value ≤0.05. We considered only mature 
mRNA-miRNA pairs and we eliminated the isoforms of 
the same gene, obtaining 5450 significant mature mRNA-
miRNA interactions with a Pearson correlation index 
ρ ≤ − 0.38 (Supplementary Table  7). In order to further 
reduce the number of interactions, we used a cut-off 
of p-value ≤0.05 and filtered mRNA-miRNA pairs by 
Pearson correlation index ρ ≤ − 0.5. We identified a list 
of 2027 significant mature mRNA-miRNA interactions 
(Supplementary Table  8). Moreover, as miRComb does 
not take into account competitivity among different miR-
NAs targeting the same gene, we also used the S score 
(> 0), an index representing the level of alteration among 
mRNAs and miRNAs, to further prioritize the mRNA-
miRNA pairs in those cases where: i) mRNA and miRNA 

Table 2 Common genes between GTEx data and differentially expressed genes in our analysis. TWAS: Transcriptome‑Wide Association 
Studies; TWAS. Z is an estimation of the strength of association between the predicted expression of a gene and a complex trait. TWAS. 
P is the p‑value associated with the TWAS test. On the left (a), genes that reached the significance in reference data set from GTEx; on 
the right (b), genes in common between GTEx eQTL data and our list of differentially expressed genes
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Table 3 List of 77 statistically significant pathways targeted by differentially modulated miRNAs identified using Diana Tool software 
(miRPath v.3)

KEGG pathway p‑value genes miRNAs

1 Mucin type O‑Glycan biosynthesis 5.16E‑15 27 41

2 Proteoglycans in cancer 1.17E‑11 165 63

3 Pathways in cancer 1.43E‑07 312 67

4 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 5.37–07 62 56

5 Hippo signalling pathway 5.37E‑07 124 64

6 Renal cell carcinoma 8.87E‑07 60 56

7 ECM‑receptor interaction 6.54E‑06 66 55

8 Axon guidance 6.54E‑06 104 60

9 ErbB signalling pathway 1.03E‑05 75 55

10 TGF‑beta signalling pathway 1.67E‑05 68 55

11 Thyroid hormone signalling pathway 1.67E‑05 98 61

12 Signalling pathways regulating pluripotency of stem cells 3.42E‑05 114 61

13 Adherens junction 5.07E‑05 65 60

14 Focal adhesion 5.07E‑05 165 64

15 Ras signalling pathway 5.07E‑05 177 68

16 Rap1 signalling pathway 5.27E‑05 167 62

17 Lysine degradation 1.13E‑04 39 57

18 Bacterial invasion of epithelial cells 3.08E‑04 65 60

19 Glutamatergic synapse 3.79E‑04 90 60

20 Endocytosis 3.79E‑04 163 62

21 Glioma 4.34E‑04 53 53

22 Adrenergic signalling in cardiomyocytes 6.85E‑04 113 61

23 Pancreatic cancer 7.03E‑04 56 54

24 Morphine addiction 7.88E‑04 74 59

25 Phosphatidylinositol signalling system 8.54E‑04 63 55

26 Adipocytokine signalling pathway 1.07E‑03 58 57

27 Gap junction 1.78E‑03 70 59

28 Oxytocin signalling pathway 2.12E‑03 122 59

29 MAPK signalling pathway 2.13E‑03 192 66

30 cAMP signalling pathway 2.20E‑03 153 65

31 Platelet activation 2.36E‑03 103 62

32 Circadian rhythm 3.00E‑03 29 42

33 AMPK signalling pathway 3.00E‑03 96 62

34 Neurotrophin signalling pathway 3.00E‑03 96 65

35 FoxO signalling pathway 3.16E‑03 105 59

36 Small cell lung cancer 3.21E‑03 70 52

37 Regulation of actin cytoskeleton 4.44E‑03 162 61

38 PI3K‑Akt signalling pathway 4.69E‑03 252 65

39 mTOR signalling pathway 4.73E‑03 50 51

40 Estrogen signalling pathway 4.73E‑03 76 58

41 Chronic myeloid leukemia 4.83E‑03 61 54

42 Prostate cancer 4.89E‑03 71 57

43 Ubiquitin mediated proteolysis 5.43E‑03 105 60

44 Dorso‑ventral axis formation 5.73E‑03 25 37

45 Long‑term depression 6.81E‑03 46 51

46 Prolactin signalling pathway 6.81E‑03 56 55

47 Protein processing in endoplasmic reticulum 8.06E‑03 122 67

48 Acute myeloid leukemia 8.36E‑03 47 52
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within the pair showed an opposite direction of expres-
sion and ii) different miRNAs shared the same mRNA 
target: higher score means that both mRNA and miRNA 
are highly deregulated in Li responders. We obtained 97 
mRNA-miRNA interactions representing those that are 
more likely to occur in the context of good response to 
Li treatment (Table  4). As an example, we show some 
plots of the  most significant pairs in that table, namely 
hsa-miR-574-3p and Ring Finger protein 125 (RNF125) 
(ρ = − 0.83), hsa-miR-3128 and ELAV Like RNA Binding 
Protein 3 (ELAVL3) (ρ = − 0.72), Creatine Kinase, Mito-
chondrial 1A (CKMT1A) (ρ = − 0.71), Keratin Associated 
Protein 9–1 (KRTAP9–1) (ρ = − 0.70), hsa-miR-3201 and 
Histone Cluster 3, H2a (HIST3H2A) (ρ = − 0.69) (Fig. 3).

Discussion
In this exploratory study, we investigated the effects of 
Li response in LCLs derived from patients diagnosed 
with BD, responders or non-responders to therapeutic 

treatment, to further elucidate the biological and molec-
ular processes involved in Li therapeutic action. We used 
an integrative approach on both mRNAs and miRNAs 
microarray data by combining differential expression 
analyses with correlation of expression levels. The prem-
ise is that the expression changes of specific mRNAs 
and miRNAs will reflect alterations in specific target 
genes and biological pathways that underlie therapeutic 
action, thus, we sought to identify differentially regulated 
mRNAs and miRNAs in LCLs from BD responder and 
non-responder patients. This molecular signature may 
allow the identification of biomarkers able to shed light 
on both Li therapeutic effects and BD pathophysiology.

Through an exploratory transcriptome microarray 
analysis, we identified 335 differentially expressed genes 
between BD responder and non-responder patients 
and 42 of them were in common with previously pub-
lished transcriptomic studies performed in LCLs or in 
peripheral blood samples of patients diagnosed with 

Table 3 (continued)

KEGG pathway p‑value genes miRNAs

49 Prion diseases 1.05E‑02 22 38

50 Retrograde endocannabinoid signalling 1.05E‑02 77 56

51 Colorectal cancer 1.05E‑02 50 56

52 Choline metabolism in cancer 1.05E‑02 79 60

53 Dilated cardiomyopathy 1.21E‑02 70 52

54 GABAergic synapse 1.25E‑02 64 54

55 Other types of O‑glycan biosynthesis 1.43E‑02 24 36

56 T cell receptor signalling pathway 1.43E‑02 81 53

57 Gastric acid secretion 1.58E‑02 60 54

58 Endometrial cancer 1.58E‑02 43 56

59 Circadian entrainment 1.63E‑02 77 62

60 Amoebiasis 1.64E‑02 78 55

61 p53 signalling pathway 1.64E‑02 55 51

62 Chagas disease (American trypanosomiasis) 1.67E‑02 77 52

63 Non‑small cell lung cancer 1.73E‑02 44 51

64 Cholinergic synapse 1.92E‑02 85 57

65 Glycosaminoglycan biosynthesis ‑ heparan sulfate / heparin 2.30E‑02 19 40

66 Hepatitis B 3.16E‑02 102 61

67 cGMP‑PKG signalling pathway 3.16E‑02 122 63

68 Calcium signalling pathway 3.31E‑02 131 61

69 Melanoma 3.46E‑02 56 52

70 HIF‑1 signalling pathway 3.56E‑02 79 55

71 Hypertrophic cardiomyopathy (HCM) 3.63E‑02 63 51

72 Shigellosis 3.68E‑02 50 52

73 Cocaine addiction 3.82E‑02 37 46

74 Wnt signalling pathway 4.33E‑02 105 62

75 Caffeine metabolism 4.71E‑02 5 10

76 Dopaminergic synapse 4.71E‑02 97 65

77 Thyroid hormone synthesis 4.86E‑02 52 50
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BD [29, 30, 32, 33, 54–57], supporting the reliability 
and reproducibility of our analysis. Among all common 
genes, the most studied and recurring ones were repre-
sented by Branched Chain Amino Acid Transaminase 
1 (BCAT1), which was up-regulated in our data set and 
in three studies, all performed in LCLs [33, 54, 55] and 
by RAB11 Family Interacting Protein 1 (RAB11FIP1) 
whose up-regulation was reported by our study and 
by three different works, all performed in LCLs as well 
[29, 33, 55].

The pathway and network analyses performed on the 
list of 335 differentially expressed genes revealed that 
they are mainly involved in cellular immune response 
and, to a lesser extent, in neurotransmitters and other 
nervous system signalling, cell cycle regulation and 
metabolism. In support of these findings, our data sug-
gest that the therapeutic effects of Li mainly affect the 
immune system and the inflammatory response: indeed, 
functional molecular nodes with a biological role in the 
treatment response to Li are represented by NF-κB, TNF 
and STAT3, known for their pro-inflammatory role in 
mental disorders [61, 62]. Interestingly, networks related 
to these molecules resulted globally inhibited in patients 
diagnosed with BD who responded to Li treatment, con-
firming the anti-inflammatory properties of Li [62].

Worth of note is that top canonical pathways identified 
in our study are also represented among the most signifi-
cantly ones obtained from the cross-trait meta-GWAS 
and pathway analysis based on GWAS summary statis-
tics and treatment response to Li coming from GWAS 
of schizophrenia and from ConLiGen, respectively 
[63]. Briefly, in this study, the authors tested whether a 
polygenic score for schizophrenia was associated with 
Li treatment response in patients affected by BD and 
explored the potential molecular underpinnings of this 
association [63]. According to their results, patients diag-
nosed with BD, who had a low polygenic load for schizo-
phrenia, responded better to Li treatment. Moreover, the 
authors found that genetic variants in the Human Leu-
kocyte Antigens (HLA) genes, the antigen presentation 
pathway, and inflammatory cytokines such as TNF, IL-4 
and IFN-γ could represent central and functional hub 
genes, suggesting that pathways associated with immu-
nity and inflammation could play a key role in Li treat-
ment response [63].

In this regard, previous studies have reported modula-
tory anti-inflammatory effects of Li and highlighted the 
possibility that mechanisms involving pro-inflammatory 
cytokines might play a role in mediating the responsive-
ness of Li in patients suffering from BD (for a review see 

Fig. 3 Top 5 mRNA‑miRNA miRComb interactions. Panel A shows the interaction between hsa-miR-574-3p and RNF125. Panel B shows interactions 
between hsa-miR-3128, ELAVL3, CKMT1A and KRTAP9–1, respectively. Panel C shows the correlation between hsa-miR-3201 and HIST3H2A. Li 
responders are depicted in blue circles, whereas non‑responders are shown in red triangles. The graphs show the correlation between normalized 
values of log2 intensity signal. Regression line shows the negative correlation
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[62]). These mechanisms are not clearly understood, but 
it is commonly thought to be dependent upon the inhi-
bition of Glycogen synthase kinase-3β (GSK-3β), the 
well-established pharmacological target of Li. GSK-3β, 
a serine/threonine kinase ubiquitously distributed in 
mammalian tissues, is able to enhance inflammation and 
immune responses [64] through the activation of NF-κB 
(for a review see [62, 65]). In a simplified model, Li might 
reduce the production of pro-inflammatory mediators by 
inhibiting GSK-3β, thus resulting in a decreased activ-
ity of NF-κB, which leads to an attenuated expression of 
inflammatory-associated molecules and enzymes [62].

According to this hypothesis, Guloksuz and colleagues 
found higher plasma levels of TNF-α in patients diag-
nosed with BD characterized for a poor response to Li 
compared to those showing a good response, suggest-
ing that increased TNF-α levels may affect the clinical 
response to Li [66].

Furthermore, from the analysis of tissue specific eQTL 
(GTEx) and GWAS association data [59], we found that 
decreased expression levels of FEZ1, a well-recognized 
risk factor for schizophrenia [67, 68] also involved in 
neuronal development, neuropathology, and viral infec-
tions [69], increases the risk for BD. Interestingly, in our 
transcriptome analysis we observed a significant increase 
in the expression levels of FEZ1 in BD responders to 
Li treatment. Although no eQTL and GWAS data are 
already available for FEZ1 and Li treatment response, we 
can hypothesize that, if validated and replicated in larger 
cohorts of BD responder patients, this gene might be 
involved in Li therapeutic effects.

Using a similar approach, we also identified 77 miRNAs 
whose expression differentially changed between BD Li 
responders and non-responders. These findings indicate 
that epigenetic modifications may play a key role in mod-
ulating the effect of mood stabilizers, shed light on their 
molecular targets and possibly explain the high heteroge-
neity in the treatment response to Li. Among the most 
significant biological processes modulated by these miR-
NAs in BD responders, we identified several pathways 
involved in neurodevelopment, as the WNT signalling, 
highlighting the key role of this pathway in Li response, 
and in inflammatory/immune system response, corrobo-
rating transcriptomic findings.

Following the same study design previously used for 
the transcriptome analysis, we found that, in line with 
previous studies [60, 70, 71], hsa-miR-34a-5p and hsa-
miR-152-3p were up-regulated in BD responders com-
pared to non-responders. Interestingly, high levels of 
miR-34a have been found in postmortem cerebellar tis-
sue from patients diagnosed with BD, as well as in BD 
patient-derived neuronal cultures generated by repro-
gramming human fibroblasts into induced pluripotent 

stem cells (iPSCs) subsequently differentiated into neu-
rons [72]. Although contrasting results exist, several 
studies have suggested that Li has a modulatory effect 
on miR-34a expression levels [73, 74], which have been 
found consistently up-regulated in LCLs following Li 
treatment [60]. In non-neuronal cells, miR-34a has been 
shown to be a strong inhibitor of the WNT signalling 
and β-catenin-mediated transcription in response to p53 
activation [75, 76]. Given the well-known effects of Li on 
the WNT signalling, through the inhibition of GSK-3β, a 
key molecule within this pathway [77, 78], we can spec-
ulate that miR-34a might contribute to the therapeutic 
effects of Li [60, 72–74, 79, 80].

In addition to miR-34a, we found that miR-152-3p 
expression levels were consistently up-regulated in 
LCLs from Li responders. To our knowledge, no study 
has investigated the effect of Li on the modulation 
of this miRNA. However, miR-152-3p targets a DNA 
methyltransferase (DNMT1) and could interfere with 
gene expression levels and with Li treatment response 
by acting through DNA methylation. Indeed, it is well 
established that Li monotherapy induces a global DNA 
hypomethylation in leukocytes and converging evidence 
from clinical and preclinical studies has suggested that 
different mood stabilizers may exert specific effects on 
the epigenome [81, 82]. According to all these findings, 
our hypothesis, which, however, needs to be further 
examined, is that Li response could be, at least in part, 
mediated by epigenetic mechanisms, which may interact 
each other in a miRNA-epigenetics regulatory circuit, 
influencing the expression of relevant genes possibly 
involved in Li response.

However, the core analysis of the present work is based 
on an innovative approach that enables correlation analy-
sis between transcriptome and miRNome data, simul-
taneously carried out on the same patients, in order to 
highlight those mRNA-miRNA interactions that may 
play an important role in the outcome of Li treatment 
response. To date, only two studies have already inte-
grated miRNAs and mRNAs expression profiling in LCLs 
from BD responder or non responder patients [30, 83]. 
However, their main findings have not been replicated 
by our study. Although the rationale for the experimen-
tal design is based on a similar hypothesis, these studies 
show differences with our study. Indeed, Hunsberger and 
collaborators applied GRANITE, an integrative genomic 
systems biology-based tool, to genome-wide mRNA 
and miRNA expression data obtained from LCLs of BD 
excellent responders or non-responders to Li treatment. 
They found that the Let-7 miRNA family was consist-
ently downregulated by Li in the BD responder group. 
Conversely to our study, LCLs were cultured for 7 days 
with either a therapeutic dose of Li or vehicle in order to 



Page 15 of 19Cattane et al. BMC Psychiatry          (2022) 22:665  

highlight genetic networks differentially influenced by the 
treatment in the responder and non-responder patients 
[30]. In the other study, Pisanu and colleagues sequenced 
small non-coding RNAs with next generation sequenc-
ing (NGS) in LCLs from patients diagnosed with BD 
and characterized for Li response. Then, they integrated 
these data with differentially expressed mRNAs identi-
fied by microarray-based techniques in the same subject. 
The results suggest that miR-320a, miR-155-3p and their 
target genes might represent relevant players in modulat-
ing clinical response to Li [83]. In our study, we used a 
microarray-based approach for both transcriptomic and 
miRNomic analyses, taking advantage of the same micro-
array platform (GeneAtlas platform, Thermo Fisher Sci-
entific, USA). Therefore, the use of the same platform for 
both analyses (mRNAs and miRNAs) has allowed us to 
follow simpler and leaner bioinformatics and data inte-
gration analyses. In addition, while Pisanu and collabora-
tors focused their attention only on the most promising 
genes, we decided to perform a more complex approach 
by investigating biological pathways modulated by dif-
ferentially expressed mRNAs and miRNAs, for a better 
understanding of the biological systems involved in Li 
treatment response.

MiRNAs that most likely occur in our data set of 
mRNA-miRNA interactions are hsa-miR-574-3p, hsa-
miR-3128 and hsa-miR-3201. Bibliographic references 
about these miRNAs are scarce, and mostly highlight a 
putative role in cancer or cardiovascular disorders [84, 
85] as miRNAs could regulate a broad range of biologi-
cal processes, like cell cycle, apoptosis, stress response, 
differentiation, proliferation and angiogenesis among the 
others [73, 86, 87]. Thus, it is possible that their involve-
ment in such processes will in part explain the well-
known neuroprotective and anti-apoptotic effects of Li 
[44, 77, 78, 88].

Regarding mRNAs potentially targeted by these miR-
NAs, we found genes previously associated with Li 
response. Among others, we found Inositol Monophos-
phatase 2 (IMPA2), which has been implicated in BD and 
Li response [44, 77, 89, 90], HLA genes that have been 
recently associated with Li response in BD [63] and Phos-
phatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic 
Subunit Gamma (PIK3CG) whose expression has been 
already found to be modulated by Li treatment in LCLs 
of patients diagnosed with BD [33].

In order to identify mRNA-miRNA interactions that 
may play an important role in Li treatment response, 
we filtered the entire list of significant mature mRNA-
miRNA correlations considering the strength of cor-
relation and we obtained 97 mRNA-miRNA pairs. 
Interestingly, the best pair was represented by hsa-miR-
574-3p and RNF125, because it showed the strongest 

negative correlation coefficient among all mRNA-miRNA 
interactions.

RNF125, also named T cell RING protein in activation 
(TRAC-1), is an E3 ubiquitin ligase that contains a RING 
finger domain in the N-terminus and three zinc-binding 
and one ubiquitin-interacting motif in the C-terminus. 
RNF125 protein may function as a positive regulator in 
the T-cell receptor signalling pathway [91–93]. Activa-
tion of T cells results in a pro-inflammatory response 
necessary to prevent the spread of infection. Limiting T 
cell signalling, however, is essential to prevent this pro-
tective response from causing injury to the host. Findings 
from our analysis suggest a down-regulation of RNF125, 
probably mediated by hsa-miR-574-3p that could result 
in a mitigation of immune response.

Therefore, all data seem to converge on the anti-
inflammatory effects of Li in BD responders, support-
ing the hypothesis that pathways associated with cellular 
immune response could play a biological role in Li treat-
ment response.

We are aware that our findings should be interpreted 
with caution in light of several limitations. In our study, 
we are not able to discriminate whether the observed 
effect is specifically associated with BD or is a general 
effect of Li treatment response. Indeed, in our dataset we 
have a few missing data and therefore we cannot provide 
information about the length of Li treatment. Moreo-
ver, we cannot exclude that the lack or the presence of Li 
treatment may have interfered with the results.

Conclusions
Taken together, our results strengthen the evidence that 
Li may act in modulating the inflammatory signaling and 
immune functions, and provide further evidence for the 
involvement of miRNAs in Li response. However, future 
studies should be conducted in larger cohorts of BD sub-
jects by integrating data from different high-throughput 
approaches to offer a successful strategy for the identi-
fication of molecular signatures related both to mecha-
nism of action and efficacy of Li. This would enable the 
personalization of treatment, define criteria for predict-
ing whether patients diagnosed with BD will respond or 
not to Li, and improve their long-term management and 
prognosis, thus reducing the risk for suicidal behaviours.
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