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The hypothalamic neurosecretory system synthesizes neuropeptides in hypothalamic 
nuclei and releases them from axonal terminals into the circulation in the neurohypoph-
ysis (NH) and median eminence (ME). This system plays a crucial role in regulating body 
fluid homeostasis and social behaviors as well as reproduction, growth, metabolism, and 
stress responses, and activity-dependent structural reorganization has been reported. 
Current knowledge on dynamic structural reorganization in the NH and ME, in which the 
axonal terminals of neurosecretory neurons directly contact the basement membrane 
(BM) of a fenestrated vasculature, is discussed herein. Glial cells, pituicytes in the NH 
and tanycytes in the ME, engulf axonal terminals and interpose their cellular processes 
between axonal terminals and the BM when hormonal demands are low. Increasing 
demands for neurosecretion result in the retraction of the cellular processes of glial 
cells from axonal terminals and the BM, permitting increased neurovascular contact. 
The shape conversion of pituicytes and tanycytes is mediated by neurotransmitters and 
sex steroid hormones, respectively. The NH and ME have a rough vascular BM profile 
of wide perivascular spaces and specialized extension structures called “perivascular 
protrusions.” Perivascular protrusions, the insides of which are occupied by the cellular 
processes of vascular mural cells pericytes, contribute to increasing neurovascular 
contact and, thus, the efficient diffusion of hypothalamic neuropeptides. A chronic phys-
iological stimulation has been shown to increase perivascular protrusions via the shape 
conversion of pericytes and the profile of the vascular surface. Continuous angiogenesis 
occurs in the NH and ME of healthy normal adult rodents depending on the signaling of 
vascular endothelial growth factor (VEGF). The inhibition of VEGF signaling suppresses 
the proliferation of endothelial cells (ECs) and promotes their apoptosis, which results in 
decreases in the population of ECs and axonal terminals. Pituicytes and tanycytes are 
continuously replaced by the proliferation and differentiation of stem/progenitor cells, 
which may be regulated by matching those of ECs and axonal terminals. In conclusion, 
structural reorganization in the NH and ME is caused by the activity-dependent shape 
conversion of glial cells and vascular mural cells as well as the proliferation of endothelial 
and glial cells by angiogenesis and gliogenesis, respectively.
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FigURe 1 | Schematic illustration showing the anatomy and functions of 
mammalian hypothalamic–neurohypophysial and hypothalamic–
adenohypophyseal systems.

2

Miyata Structural Reorganization in Hypothalamic Neurosecretory System

Frontiers in Endocrinology | www.frontiersin.org October 2017 | Volume 8 | Article 275

geNeRAL iNTRODUCTiON

The pituitary gland is known as the “master gland” in mammals 
due to its function as the central endocrine regulator for fluid 
homeostasis, growth, reproduction, metabolism, and stress res
ponses. Neurosecretion is defined as the synthesis and storage 
of neuropeptides in brain neurons and their release from axonal 
terminals into the circulation. Neurosecretory cells resemble 
nonneural endocrine cells in their actions; they release hor
mones into the circulation and regulate a number of physiological 
responses. Scharrer was the first to report a hypothalamic–pitui
tary neurosecretory system that exhibits similar secretory activity 
to that observed in endocrine cells of the peripheral system (1). 
These hypothalamic neurons conduct electrical impulses, similar 
to general brain neurons, but produce neuropeptides that are 
released into the circulation, unlike general brain neurons (2). 
There are currently two wellestablished hypothalamic–pituitary 
neurosecretory systems (Figure 1).

The hypothalamic–neurohypophysial system consists of 
magnocellular neurosecretory neurons that synthesize oxytocin 
(OXT) and arginine vasopressin (AVP) at somata in the hypo
thalamic supraoptic (SON) and paraventricular nuclei (PVN) 
and secrete these neuropeptides into the circulation from axonal 
terminals in the neurohypophysis (NH) (2). OXT is classically 
known to play a vital role in facilitating a range of physiological 
functions, such as labor induction and lactation (3). However, 
recent studies have shown more functions for OXT in social 

cognition, including emotion recognition, trust, and intersub
jective selectivity (4, 5). The primary functions of AVP are the 
maintenance of body fluid homeostasis or proper osmolality via 
water reabsorption in the kidneys and the constriction of blood 
vessels (3). However, recent evidence indicates that AVP is also 
involved in a wide range of social behaviors (6). The deposition 
of tau protein was previously shown to be increased in the NH of 
aged humans, indicating that abnormal tau protein accumulation 
in magnocellular axons in older individuals may cause a dysfunc
tion in body fluid homeostasis (7). Reductions in AVPregulated 
aquaporins, renal urea, and sodium transporters with aging may 
result in multiple abnormalities in several physiological systems 
(8). Thus, the hypothalamic–neurohypophysial system plays 
vital roles for body fluid homeostasis and reproduction and is 
important for controlling social behaviors, and disturbances in 
this system lead to several homeostatic (9) and neuropsychiatric 
(10) dysfunctions.

The other type of hypothalamic–pituitary neurosecretory 
system is the hypothalamic–adenohypophyseal system (11). The 
hypothalamic–adenohypophyseal system, comprising neurose
cretory neurons in the arcuate nucleus, preoptic area, periven
tricular nucleus, and ventromedial hypothalamus, synthesizes 
adenohypophyseal hormonereleasing factors and secretes them 
into the hypophyseal portal vein in the median eminence (ME) 
in order to control the secretion of adenohypophyseal hormones 
(12, 13). The adenohypophysis contains five types of endocrine 
cells: growth hormone (GH), prolactin, gonadotropinreleasing 
hormone (GnRH), adrenocorticotropic hormone, and thyroid
stimulating hormonesecreting cells. Adenohypophyseal hor
mones are known to be involved in many physiological regulatory 
systems, such as growth, reproduction, metabolism, and stress 
responses (14).

The present review introduces advances in structural reor
ganization in the NH and ME of adult mammals, in which 
axonal terminals directly contact the basement membrane (BM) 
of fenestrated capillaries. The following topics are discussed in 
this review: (1) activitydependent neurovascular plastic events 
provided by glial cells and pericytes and (2) the role of angio
genic factors in shaping endothelial and glial cell populations.

SiZe-LiMiTeD vASCULAR PeRMeABiLiTY

The brain vasculature is generally characterized by a blood–brain 
barrier (BBB), which prevents the free entry of a number of bioac
tive and/or toxic molecules into the parenchyma of the brain (15). 
The BBB is important for maintaining the normal physiology of 
the brain and safety of neuronal tissues and a disturbance in the 
BBB leads to severe brain damage (16). However, the vasculature 
of the circumventricular organs (CVOs) lacks a typical BBB and 
possesses a fenestrated characterization unlike that in most of the 
other brain regions (17). CVOs are classified into two categories 
based on their main functions. Sensory CVOs, consisting of 
the organum vasculosum of the lamina terminalis, subfornical 
organ, and area postrema, monitor hormones, ions, osmolality, 
and pH in the blood and are endowed with a wide spectrum of 
receptors for bloodderived molecules (18). They integrate and 
transmit bloodderived information to other hypothalamic and 
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extrahypothalamic regions in order to mainly control body 
fluid and thermal homeostasis and inflammation (18, 19). The 
functions of sensory CVOs have already been described in detail 
(17). Secretory CVOs consisting of the NH and ME release hypo
thalamic neuropeptides as described above.

The BBB is defined as an endothelial cellular sheet that is 
endowed with tight and adherens junctions, which prevent the 
free entry of watersoluble molecules into the brain parenchyma 
(15, 20, 21). Alternatively, ECs express many kinds of transporter 
proteins on the luminal side of the EC membrane, which allow 
for the direct incorporation of amino acids, vitamins, hormones, 
proteins, or other compounds of the blood (22). However, the 
vasculature lacks the expression of tight junction proteins on 
ECs in the NH (23) and ME (24–26). Since there are no neuronal 
somata in the NH and the external zone of the ME, these regions 
do not need an EC barrier to protect neurons and, hence, their 
capillaries possess fenestrated features.

Bloodderived lowmolecularweight (LMW) molecules have 
been detected at the interstitial space after the administration of 
LMW tracers such as neutral amino acid alphaaminoisobutyric 
acid [MW  =  103 (27)], fluorescein isothiocyanate [FITC; 
MM = 390 (23, 28)], Evans blue [MM = 961 (28)], and Dextran 
3,000 [MW  =  3,000 (23)] in the NH; fluorescein [MM  =  332 
(29)], FITC (28, 30, 31), and Dextran 3,000 (31) in the external 
zone of the ME. The molecular weights of these tracers mimic 
those of most hypothalamic neuropeptides. In contrast to LMW 
molecules, bloodderived highmolecularweight (HMW) mol
ecules were not detected at the interstitial space after the admin
istration of tracers, such as bovine serum albumin [MW = 70,000 
(28)], Dextran 10,000 [MM = 10,000 (23)], and Dextran 70,000 
[MM = 70,000 (28)] in the NH; immunoglobulin [MW = 150,000 
(29)], bovine serum albumin [MW  =  70,000 (28)], Dextran 
10,000 [MW = 10,000 (31)], and Dextran 70,000 [MW = 70,000 
(28)] at the interstitial space in the external zone of the ME.

This sizelimited high vascular permeability is reasonable 
when considering the molecular weight of neurohypophysial and 
adenohypophyseal hormonereleasing hormones: the molecular 
weights of adenohypophyseal hormonereleasing hormones 
range from thyrotropinreleasing hormone (MW  =  362.4) to 
growth hormonereleasing hormone (MW = 5,040.4), while those 
of neurohypophysial neuropeptides are OXT (MW = 1,007) and 
AVP (MW = 1,084). LMWsoluble molecules (molecular radius 
<3 nm) have been suggested to move passively through endothe
lial intercellular clefts in capillaries lacking the endothelial BBB. 
On the other hand, the transcellular pathway is considered to 
mediate the transport of bloodderived HMWsoluble proteins 
(molecular radius >3  nm) by caveolae via receptormediated, 
transendothelial channels or a fluidphase pathway (32, 33). 
Horseradish peroxidase has the ability to penetrate the inner 
BM and EC layer and extensively accumulates between the inner 
and outer BM in the NH and ME, but some reaction products of 
horseradish peroxidase are also seen at the interstitial space (34). 
Horseradish peroxidase and germ agglutinin lectin are known 
to be incorporated by mannose receptormediated transcellular 
routes (35, 36). Thus, some, but not all, of HMWsoluble proteins 
are permeable to fenestrated capillaries in the ME and NH by a 
specific transport system.

The expression of collagen I is stronger at the inner BM than 
at the outer BM, whereas that of laminin is stronger at the outer 
BM than at the inner BM in these regions (23, 28). Moreover, the 
inner and outer BMs are both thicker in these neurosecretory 
brain regions than in other typical brain regions [(23); Figure 2]. 
In the glomerulus of the kidney, a thick BM exists between the 
fenestrated EC layer of the glomerular capillary side and the 
foot processes of podocytes of the urinaryspace side (37). The 
glomerular BM is mainly composed of collagen IV, laminins, 
nidogen, and sulfated proteoglycans and contributes to the filtra
tion barrier of the kidney (38). Mutations in genes encoding a 
subtype of either laminin or collagen type IV result in proteinuria, 
which often progresses to nephrotic syndrome and renal failure 
(37). In a previous study using conditional laminin γ1 knockout 
mice as well as adenovirusmediated astrocytespecific laminin 
knockdown mice, a lack of astrocytic laminin was shown to cause 
the breakdown of the BBB (39). Moreover, the lack of astrocytic 
laminin was found to affect astrocytic endfeet polarity, pericyte 
differentiation, and endothelial tight junction protein expression. 
Thus, it is probable that the outer BM has the ability to restrict 
diffusion of bloodderived molecules.

Plasmalemmal vesicle1 (PV1) is strongly expressed at ECs 
in the ME (43) and NH (23). PV1 forms caveolae rings that sur
round lymphocytes and facilitate their transcellular migration 
across the EC layer (44). The expression of PV1 increases when 
the BBB is disrupted, such as brain ischemia or brain tumors (45). 
A previous study reported that the inhibition of PV1 expression 
attenuated vascular endothelial growth factorA (VEGFA)
induced caveola formation and increased the permeability of 
the 70kDa HMW tracer molecule in the retinal vasculature 
containing the blood–retinal barrier, whereas its inhibition had 
no effect on the leakage of LMW fluorescein (46). Thus, PV1 
may control the transport of HMW molecules via an endothelial 
transcellular or caveolar pathway in neurosecretory regions.

SigNiFiCANCe OF THe PeRivASCULAR 
SPACe iN NeUROSeCReTiON

The perivascular structures of the NH (47–50) and ME (51) 
largely differ from those generally observed in the brain because 
they have a wide perivascular space between the inner and outer 
BMs. Therefore, the profile of the outer BM or vascular surface 
in the NH [(40); Figure 2A] and ME [(42); Figure 2B] is more 
complex or uneven than that of the general BBBcontaining brain 
vasculature [(52); Figure  2C]. This irregularity in the vascular 
surface is primarily due to the complex cellular processes of 
pericytes that function as vascular mural cells surrounding ECs 
[(23); Figure 2D]. In the NH, pericytes align parallel to ECs and 
extend their cellular processes or “perivascular protrusions” into 
the interstitial space between axon terminals [(23); Figure 2E]. 
Although the functional significance of a wide perivascular space 
or perivascular protrusions in neurosecretory regions currently 
remains unclear, a recent study indicated that this specialized 
structure is important for neurosecretion (23). The complex 
profile of the perivascular space largely contributes to increases 
in the vascular surface (23). Although the vascular permeability 
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FigURe 2 | Unique perivascular structure with a wide perivascular space and perivascular protrusions in the neurohypophysis (NH) and median eminence (ME) of 
the adult mouse. Low magnification views show that the vasculature contour of the NH and ME is rough and complex, whereas that of the cerebral cortex is smooth 
(A–C). High magnification views of triple labeling immunohistochemistry reveal the presence of a wide laminin-positive perivascular space and perivascular 
protrusions (open arrows), the inside of which contains desmin-positive pericytes (open arrowheads) (D). An electron micrograph shows that pericytes typically 
localize in parallel with the inner basement membrane (BM, red shadow), whereas pericytes sometimes extend their cellular processes vertically with the inner BM to 
constitute perivascular protrusions (blue shadow) (e). Green shadow and solid arrowheads indicate the perivascular space and endothelial cells, respectively. V, 
vascular lumen. Scale bars represent 50 μm (A), 10 μm (D), and 1 μm (e). Micrographs are rearranged with courtesy from BioScientifica [(A) (40)] and permission 
from Springer [(C) (41)] and John Wiley & Sons [(B) (42)]; [(D,e) (23)].
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of LMW molecules is evidently higher in the NH and ME than 
in other brain regions and sensory CVOs [(28); Figures 3A,B], 
detailed analyses revealed that LMW molecules are more likely to 
diffuse through perivascular protrusions rather than evenly from 
vascular surfaces [(23); Figure 3C]. The diffusion route of LMW 
molecules is frequently associated with the cellular processes of 
pericytes [(23); Figure  3D]. Furthermore, the intimate spatial 
relationship between perivascular protrusions and OXT and 
AVPcontaining axonal terminals may enable the efficient dif
fusion of neuropeptides. Electron microscopic observations 
showed that perivascular protrusions occasionally associate with 
interendothelial junctions, suggesting that perivascular protru
sions are formed at interendothelial junctions only (23). In the 
adenohypophysis, a timelimiting step analysis demonstrated that 
Dextran 20,000, corresponding to the size of GH, moved rapidly 
to the perivascular space from the interstitial space, and was then 
slowly cleared from the perivascular space (53). Collectively, these 

findings indicate that a complex and wide perivascular space and 
perivascular protrusions contribute to increasing contact between 
axonal terminals and the vascular BM, and also that perivascu
lar protrusions are the main diffusion route for hypothalamic 
neuropeptides.

ACTiviTY-DePeNDeNT NeURO-gLiAL 
ReORgANiZATiON

The neural activities of hypothalamic OXT and AVPcontaining 
neurons in the SON and PVN are facilitated as the secretion of 
neurohypophysial neuropeptides is enhanced in response to 
a physiological stimulation. In the SON and PVN, structural 
reorganization is accompanied by the hypertrophy of somata, 
the formation of multiple synapses of afferent inputs, and 
an increase in the direct neuronal membrane apposition of 
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FigURe 3 | Continued  
High vascular permeability of fenestrated capillaries in the neurohypophysis 
(NH) and median eminence (ME). Low magnification views reveal the strong 
fluorescence of the blood-derived low-molecular-weight (LMW) fluorescent 
molecule fluorescein isothiocyanate (FITC) in the NH (A) and ME (B). A high 
magnification view shows the strong fluorescence of FITC at the interstitial 
space close to perivascular protrusions [(C); arrowheads]. The fluorescence 
of FITC is also closely associated with the cellular processes of pericytes  
[(D); arrowheads]. Scale bars represent 50 μm (A) and 10 μm  
(C,D). Confocal images are rearranged with permission from Springer  
[(A,B) (28)] and John Wiley & Sons [(C,D) (23)].
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somata and dendritic bundling by the retraction of astrocytic 
cellular processes during a chronic physiological stimulation  
(48, 56–59). This somatic and dendritic structural reorganiza
tion is considered to be associated with coordinate population 
activity in order to respond appropriately to altered physiological 
conditions (60). In addition to hypothalamic nuclei, structural 
reorganization is known to occur in the NH following a chronic 
physiological stimulation (48), which may lead to an increase in 
the diffusion efficiency of neurohypophysial neuropeptides. For 
example, a chronic osmotic stimulation increased the vascular 
permeability of FITC (23) and the small neutral amino acid, 
alphaaminoisobutyric acid (27) in the NH.

A chronic physiological stimulation, such as hyperosmotic 
conditions as well as the suckling stimulation during lacta
tion, has been shown to cause neuroglial reorganization in 
the NH of adult rodents (48). Neurohypophysial glial cells, 
pituicytes, generally enclose the axonal terminals of magnocel
lular neurons and intervene between axonal terminals and the 
vascular BM under unstimulated conditions, while a chronic 
physiological stimulation increases the direct contact of axonal 
terminals to the vascular BM (47, 48, 61, 62). This neurovascu
lar reorganization was previously considered to be caused by a 
shape conversion or the retraction of the cellular processes of 
pituicytes via βadrenergic or adenosine receptors in cultured 
pituicytes [(54); Figures 4A–D] or isolated NH (63). Moreover, 
a similar shape conversion of pituicytes was demonstrated in 
animals that received a chronic hyperosmotic stimulation 
[(55); Figures  4E,F]. The stellation of pituicytes results from 
the inhibition of the small GTPase, RhoA and subsequent actin 
depolymerization (64–66). AVP and OXT have the ability to 
reverse the stellation of pituicytes and return them to their 
original shape by activating Cdc42, another small GTPase that 
reorganizes the actin cytoskeleton in a cortical position (65–67). 
The complex of dystrophins and dystrophinassociatedprotein 
expressed on pituicytes interacts with laminin and the extracel
lular matrix, which may play a role in the retraction and reinser
tion of the cellular processes of pituicytes during neuroglial 
reorganization (68).

Tyrosine hydroxylase, the first ratelimiting enzyme of cat
echolamine synthesis, is localized at an extensive number of 
axonal terminals in the NH (69); however, its localization is 
restricted to the Herring bodies of AVPcontaining axonal fibers 
(70). A chronic hyperosmotic stimulation has been shown to 
decrease AVP levels in the NH and increases those of tyrosine 
hydroxylase (70). ATP is present in millimolar concentrations 
in axon terminals and is coreleased with neuropeptides in 

FigURe 3 | Continued
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FigURe 4 | Morphological alterations in neurohypophysial glial cell pituicytes from a flat, polygonal shape to a stellate shape. Numerous fine fibers of microtubules 
are observed in flat pituicytes cultured from an explant of the rat neurohypophysis (NH), whereas microtubule fibers assemble in stellate pituicytes 60 min after a 
treatment with 1 mM dBcAMP (A,B). The actin cytoskeleton is reorganized from normally occurring stress fibers into more diffusible actin upon a treatment with 
1 mM dBcAMP for 60 min (C,D). Microtubule-associated protein2-positive pituicytes of the NH of adult rats show a dendritic shape in unstimulated control animals, 
while their morphology becomes a less branched and aggregated shape upon a chronic osmotic stimulation (e,F). Scale bars represent 50 µm. Micrographs are 
rearranged with permission from Elsevier [(A–D) (54)]; [(e,F) (55)].
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the NH (71). ATP is broken down to the metabolite product, 
adenosine at the extracellular space, and adenosine then acts 
on adenosine receptors (72). Collectively, these findings indicate 
that the activitydependent release of noradrenaline and/or ATP 
from axonal terminals causes a shape conversion of pituicytes 
in the NH.

In the ME, neuroglial reorganization similarly occurs in a 
manner that is dependent on increased demands for the secre
tion of adenohypophyseal hormones. The axonal terminals of 
GnRH neurons are separated from the BM of capillaries by the 
intervening cellular processes of tanycytes in the ME (73). Radial 

glial cells have been reported to give rise to mature ependymal 
cells as well as neurons and glial cells during development (74) 
and remain in existence at discrete regions of the adult central 
nervous system (75, 76). Residual radial glial cells, called tany
cytes, are found lining the floor and ventrolateral walls of the 
third ventricle of the adult brain (75, 76). More axonal terminals 
of GnRH neurons contact the capillary BM in the estrogen high 
stage during proestrus than in the estrogen low stage during 
diestrus in rodents (77). During the preovulatory gonadotro
phin surge, the retraction of tanycytic cellular processes enables 
the axonal terminals of GnRH neurons to directly contact the 
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FigURe 5 | Activity-dependent morphological alterations in vascular mural 
cell pericytes in the adult mouse neurohypophysis (NH) by a chronic osmotic 
stimulation. Pericytes densely attach to the EC layer in order to constitute a 
thick mural cell layer under unstimulated control conditions, whereas they are 
likely to divide and extend their cellular processes upon a chronic osmotic 
stimulation [red arrowheads; (A,B)]. An electron micrograph reveals that a 
chronic osmotic stimulation changes the ultrastructure of the perivascular 
space with an increase in perivascular protrusions (solid arrows) in the adult 
mouse NH (C). High magnification view of an electron micrograph showing 
that a perivascular protrusion (solid arrow) is enveloped by the outer 
basement membrane (open arrowheads) and associated with inter-endothelial 
junctions (open arrow) (D). Asterisks indicate axonal terminals. Scale bars 
represent 50 μm (A) and 1 μm (C). EC, endothelial cell; V, vascular lumen. 
Micrographs are rearranged with permission from John Wiley & Sons (23).
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pericytes (23). Electron microscopic observations also revealed 
that a chronic osmotic stimulation caused pericytes to extend 
their cellular processes into the extracellular space between 
axonal terminals, thereby increasing the number of perivascular 

capillary BM through the estrogendependent secretion of nitric 
oxide (78–80). The axonal terminals of other types of adeno
hypophysial hormonereleasing hormones have not exhibited 
the neuroglial specialization observed in GnRH neurons (81). 
The axonal terminals of GnRH neurons are often enwrapped 
by the cellular processes of tanycytes and sometimes localize in 
close proximity to fenestrated portal capillaries in the human 
ME (82). The secretion of GnRH was previously shown to be 
downregulated along with reductions in neurovascular contacts 
in aged rodents (83, 84) and humans (85). The sex steroid 
hormone estrogen induces the sudden and massive retraction 
of tanycyte cellular processes by inducing the release of nitric 
oxide from ECs (86, 87). Semaphorin7A, which is expressed 
by tanycytes, not only induces the retraction of GnRH axonal 
terminals but also promotes their ensheathment by tanycytic 
cellular processes through PlexinC1 and Itgb1 receptors (88). 
PlexinC1deficient mice exhibit an increased density of GnRH 
axonal terminals in the ME and have an abnormal ovulation 
and estrous cycle, and tanycytespecific Itgb1 silencing has been 
shown to promote the retraction of tanycyte cellular processes 
in order to increase neurovascular contact between the axonal 
terminals of GnRH neurons and the capillary BM (88). Neuro
glial plasticity in the ME has already been described in detail 
(80, 81, 11). Therefore, a shape conversion of glial cells occurs 
in the NH and ME in response to increased demands for neu
rosecretion in order for more hypothalamic axonal terminals to 
contact vascular surfaces.

PeRiCYTe-DePeNDeNT 
ReORgANiZATiON OF THe 
PeRivASCULAR SPACe

Activitydependent neurovascular structural reorganization has 
been attributed to a shape conversion of glial cells until recently. 
Therefore, changes in vascular/perivascular structures were not 
investigated because the vascular system itself was considered to 
be unchanged. Pericytes are vascular contractile mural cells that 
form an incomplete layer on the abluminal side of the EC layer 
(89). They participate in modifying the vascular ultrastructure 
and gene expression of ECs in response to changes in the brain 
microenvironment (90). Pericytes have been shown to possess 
contractile properties via receptors for vasoactive molecules, 
such as catecholamine, endothelin1, AVP, and angiotensin II 
(91). Recent studies demonstrated that pericytes are important 
for maintaining the tightness of the BBB and vascular density 
during adulthood as well as the formation of the BBB during 
development (15, 20, 21). We previously demonstrated a shape 
conversion of pericytes and structural changes in the perivascular 
space in the NH (23). Light microscopic analyses revealed that 
pericytes have a thick wall that wraps around the EC layer under 
unstimulated control conditions, but may develop thin cellular 
processes and bodies and extend these cellular processes to 
increase protrusions following a chronic osmotic stimulation 
[(23); Figures  5A,B]. A chronic hyperosmotic stimulation was 
shown to increase the number of pericyte cellular processes 
to 2.72fold that of the control without changing the density of 
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FigURe 6 | The expression of platelet-derived growth factor-B (PDGF-B) and PDGF receptor β (PDGFRβ) in the neurohypophysis (NH) and median eminence (ME) 
of adult mice. PDGF-B is prominently expressed at oxytocin (OXT)-containing axonal terminals [arrowheads, (A)] in the NH of the adult mouse. A high magnification 
view shows that PDGF-B is localized at neurosecretory granules within OXT-containing axonal terminals [arrowheads, (B)]. The strong expression of PDGFRβ is 
observed at desmin-positive pericytes in the NH [arrowheads, (C)] and ME [arrowheads, (D)]. Scale bars represent 50 μm (A) and 1 μm (C). Me, ME; NH, NH. 
Confocal images are rearranged with courtesy from BioScientifica [(A–C) (40)] and permission from John Wiley & Sons [(D) (42)].
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protrusions [(23); Figures 5C,D]. This perivascular reorganiza
tion is not accompanied by changes in the area of the perivascular 
space or ECs or the diameter of vessels.

Although the signaling pathways that control the shape 
conversion of pericytes have not yet been elucidated in detail, 
the pericyteregulating factor, plateletderived growth factorB 
(PDGFB), is the most probable candidate. PDGFB is known to 
be a requisite proliferative and chemoattractant factor for pericytes 
and mediates paracrine interactions between ECs and pericytes 
(92). A PDGFB concentration gradient is necessary for pericyte 
attachment toward ECs as well as proliferation and migration 
(20). In the NH, PDGFB is stored at neurosecretory granules in 
OXTcontaining axon terminals [(23); Figures 6A,B]; however, 
PDGFB is also expressed in ECs at the BBB (92). Moreover, 
the strong expression of PDGF receptor β (PDGFRβ) has been 
detected at pericytes in the NH [(23); Figure 6C] and ME [(42); 
Figure 6D]. These findings indicate that a dynamic shape con
version of pericytes causes the structural reorganization of the 
perivascular space with increases in perivascular protrusions, 
which, in turn, enlarge the terminalcontactable vascular area. 
Thus, activitydependent neurovascular reorganization is caused 
by a shape conversion of both glial cell pituicytes and vascular 
mural cell pericytes.

CHANgeS iN THe eC POPULATiON  
BY ANgiOgeNeSiS

Angiogenesis in the brain starts during the embryonic period and 
persists until the early postnatal period, but becomes completely 
quiescent with brain maturation (93, 94). The findings of our 
recent studies challenge this traditional concept that the density 
of ECs in adults remains unchanged throughout life. During 
angiogenesis, endothelial tip cells lead sprouting vessels, extend 
filopodia, and migrate in response to gradients of VEGFA, 
while adjacent endothelial stalk cells trail tip cells and generate 
the trunks of new vessels (95). VEGFA and its receptor VEGF 
receptor 2 (VEGFR2) are predominant angiogenic signaling 
molecules that control the proliferation and sprouting of ECs 
(95, 96). A large number of proliferating ECs have been detected 
in the NH [(40); Figures 7A,A’] and ME [(42); Figure 7B], even in 
healthy normal adult mice. A treatment with a VEGFR signaling 
inhibitor was found to significantly decrease the proliferation 
of ECs in the NH (40) and ME (42). After the cessation of this 
VEGFR inhibitor treatment, a marked increase was observed 
in the proliferation of ECs in the NH [(40); Figures 7C,C’]. By 
contrast, the VEGFR signaling inhibitor promoted the apoptosis 
of ECs in the NH [(40); Figure  7D]. The expression levels of 
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FigURe 7 | Continuous angiogenesis with the proliferation and apoptosis of endothelial cells (ECs) in the neurohypophysis (NH) and median eminence (ME)  
of adult mice. Double labeling immunohistochemistry shows the occurrence of BrdU-labeled nuclei (arrowheads) at ECs in the NH (A,A’) and ME (B). The prominent 
rebound proliferation of ECs (arrowheads) in the NH after the withdrawal of a treatment with a VEGFR-associated tyrosine kinase inhibitor (C,C’). The treatment with 
the VEGFR-associated tyrosine kinase inhibitor induces caspase-3-positive apoptotic ECs in the NH [arrows, (D)]. Scale bars represent 50 μm (A–D) and 5 μm 
[bottom panel in (B)]. BrdU, bromodeoxyuridine; Cas-3, caspase-3; Cont, control; Me, ME; NH, NH; VEGFRI, VEGFR-associated tyrosine kinase inhibitor; 
VEGFRI + I, VEGFRI plus a 5-day recovery period. Photographs are rearranged with courtesy from Bioscientifica [(A–C,C’) (40)] and permission from  
John Wiley & Sons [(D) (42)].
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VEGFA are reported to be higher in the NH than in the adeno
hypophysis and are undetectable in the intermediate lobe (97). 
The expression of VEGFA and VEGFR2 has been observed at 
pituicytes and ECs in the NH, respectively [(40); Figures 8A,B]. 
AVP and OXT both induce Ca2+ signals in pituicytes via the 
V1a subtype of AVP receptors in a manner that depends on 
extracellular Ca2+ (98–100). Glial cells secrete numerous trans
mitters and/or growth factors by Ca2+dependent exocytosis 
(101). A chronic treatment with the VEGFR signaling inhibitor 
was shown to significantly decrease the area and density [(40); 
Figures 9A,B,G] of ECs, but did not significantly affect the area 
of ECs in the adenohypophysis, cortex, or peripheral tissues (40). 
In the ME, VEGFA expression is prominent at axonal terminals 
and VEGFR2 is strongly expressed at ECs [(42); Figures 8C,D]. 
The peripheral and central administration of VEGFA increases 
the density of PV1expressing fenestrated capillaries in the ME 
without affecting the expression of tight junction proteins (26). 
Thus, these recent findings demonstrate the presence of continu
ous angiogenesis in the NH and ME of adult rodents in a manner 
that is dependent on VEGF signaling.

A synchronized decrease has been observed in the densities 
of AVP and OXTcontaining axonal terminals and ECs follow
ing a chronic treatment with a VEGFR signaling inhibitor [(40); 
Figures 9C–F,H]. Microglia have been shown to engulf the axonal 
terminals of OXT or AVPcontaining neurons; some phago
somes and secondary lysosomes possess morphologically intact 

neurosecretory granules and others contain partially destroyed 
neurosecretory granules or amorphous material (102). This find
ing indicates that microglia are responsible for the remodeling 
of the axonal terminal arborization of neurosecretory neurons. 
Microtubuleassociated protein1B is strongly expressed at the 
sprouting axons and growth cones of developing or regenerating 
neurons and plays a role in axonal outgrowth (103). The expres
sion level of phosphorylated microtubuleassociated protein1B 
was found to be markedly increased at axonal terminals in the NH 
during lactation (104). Thus, the population of axonal terminals 
is coordinately regulated to match that of ECs in adult rodents.

CONTROL OF THe gLiAL POPULATiON

As described above, pituicytes are resident glial cells in the NH 
and are responsible for neuroglial structural reorganization. In 
explant cultures of newborn rat NH, oligodendrocyte progenitor 
cells differentiated into stellateshaped type 2 astrocytes in the 
presence of serum, but developed into oligodendrocytes in its 
absence (105). Oligodendrocyte progenitor cells are known to 
be present and give rise to differentiated pituicytes in the NH 
of adult rodents (106). Moreover, a chronic osmotic stimulation 
promoted the proliferation of oligodendrocyte progenitor cells 
and increased the population of pituicytes (107). A PDGFR 
inhibitor was shown to significantly inhibit the proliferation 
of oligodendrocyte progenitor cells in the NH of adults (40).  
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FigURe 8 | The expression of angiogenic factors vascular endothelial growth factor-A (VEGF-A) and VEGF receptor 2 (VEGFR2) in the neurohypophysis (NH) and 
median eminence (ME) of adult mice. VEGF-A and its receptor VEGFR2 are expressed at GFAP-positive astrocytes and CD31-positive endothelial cells (ECs), 
respectively (A,B). VEGF-A is expressed at MAP2-positive somatodendrites and GFAP-positive astrocytes in the internal zone of the ME (C). Inset indicates the 
presence of VEGF-A at synaptophysin-positive axonal terminals in the external zone of the ME. The expression of VEGFR2 is prominent at CD31-positive ECs in the 
ME (D). Scale bars represent 50 μm (A–C), 10 μm [(D) and inset in (A)], and 5 μm [inset in (C)]. GFAP, glial fibrillar acidic protein; Lam, laminin; MAP2, microtubule-
associated protein 2; VR2, VEGFR2. Images are rearranged with courtesy from Bioscientifica [(A,B) (40)] and permission from John Wiley & Sons [(C,D) (42)].
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A previous study reported that PDGFA promoted the prolifera
tion, survival, migration, and differentiation of oligodendrocyte 
progenitor cells in the subventricular zone (108, 109). Although 
the functional significance of activitydependent increases in 
the pituicyte population remains unknown, lactate transport 
between astrocytes and neurons is necessary for maintaining fully 
functional excitatory transmission between primary afferents 
and solitary neurons, even in the presence of a sufficient glucose 
supply (110). Thus, an increase in the population of pituicytes 
may result in the supply of more lactate to neurosecretory axonal 
terminals as an energy source for neurosecretion.

Oligodendrogenesis continuously occurs in adult brains 
throughout life (111). Oligodendrocyte progenitor cells origi
nating in the neonatal SVZ have the ability to migrate into the 
white matter and cortex with widespread rostrocaudal disper
sion (112, 113). In contrast to neonatal brains, the migration of 
oligodendrocyte progenitor cells in the adult SVZ is restricted to 
the corpus callosum, striatum, and fimbria fornix (114). All of 
the oligodendrocyte progenitor cells of adult brains retain their 
proliferative ability and are capable of restoring their population 

after a widespread loss (115). Sox2expressing stem cells exist in 
a marginal zone of the anterior and intermediate pituitary lining 
the pituitary cleft and have the ability to form “pituispheres” in 
cultures that differentiate into all pituitary hormoneproducing 
lineage cells (116, 117). These Sox2expressing stem cells in 
adult pituitary glands contribute to pituitary homeostasis even 
1  year after birth and, thus, are longlived stem cells with the 
ability to generate fully differentiated hormoneproducing 
cells throughout life, in contrast to shortlived progenitor cells  
(118, 119). Moreover, nestinexpressing Sox2positive cells exist 
at the marginal zone and nestinexpressing Sox2negative cells at 
the submarginal zone and body of the gland (117). The pituitary 
gland is entirely ectodermal in origin; the neural ectoderm gives 
rise to the NH and the adenohypophysis develops from Rathke’s 
pouch (120). We previously observed that GFPexpressing glial 
cells were present in the NH using NestinCreERT2 transgenic 
mice (unpublished data). Therefore, we cannot deny the pos
sibility that neurohypophysial oligodendrocyte progenitor 
cells originate from nestinexpressing stem cells that exist in a 
marginal zone of the anterior and intermediate pituitary. Taken 
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FigURe 9 | Effects of a VEGFR inhibitor on the density of endothelial cells (ECs) and axonal terminals in the neurohypophysis of adult mice. The VEGFR inhibitor 
AZD2171 significantly reduces the number of CD31-positive ECs (A,B,g). The VEGFR inhibitor also diminishes the area of arginine vasopressin (AVP)- (C,D,H) and 
oxytocin (OXT)-containing (e,F,H) axonal terminals. Scale bars represent 50 µm. PI, propidium iodide; VEGFRI, VEGFR-associated tyrosine kinase inhibitor; 
VEGFRI + I, VEGFRI plus a 5-day recovery period. Data are rearranged with permission from BioScientifica (40).
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FigURe 10 | Confocal microscopic images showing the localization of DLL4 in the neurohypophysis (NH) and median eminence (ME) of an adult mouse. DLL4 
expression is observed at oxytocin-containing axonal terminals in the NH (A,A’) and at desmin-positive pericytes (B,B’) and synapsin-positive axonal terminals 
(C,C’) in the ME. Scale bars represent 50 μm (A) and 10 μm (B,C). Confocal micrographs are rearranged with permission from John Wiley & Sons [(A,A’) (41)], 
[(B,B’); (C,C’) (42)].
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together, the pituicyte population in the NH is regulated by the 
proliferation of oligodendrocyte progenitor cells in a coordinated 
manner with ECs and axonal terminals.

Tanycytes are potential neural stem cells in the basal hypo
thalamus of mice (121). Tanycytes are present at the floor and 
ventrolateral walls of the third ventricle and are distinguished 
from ependymal cells by the presence of long radial cellular 
processes and lack of beating cilia (75, 76). αTanycytes located 
at the ventrolateral walls of the third ventricle extend cellular 
processes toward the arcuate and ventromedial hypothalamic 

nuclei, while βtanycytes lining the floor of the third ventricle 
project cellular processes toward fenestrated capillaries in the 
ME (75). Lineage tracing using NestinCreERT2 revealed that 
βtanycytes are the most proliferative among tanycytes in infant 
animals (122, 123). However, only αtanycytes are neural stem/
progenitor cells in the adult mouse because they were found to 
selfrenew and give rise to new tanycytes, astrocytes, and small 
numbers of neurons in GLASTCreERT2 transgenic mice (124).  
A lineagetracing analysis using GLASTCreERT2 transgenic mice 
showed that GFP expression was only detected in αtanycytes, 
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not βtanycytes 5  days after tamoxifeninduced recombination 
and was increased in βtanycytes after longerterm chase periods 
(124). Moreover, an in  vitro analysis revealed that αtanycytes, 
not βtanycytes, proliferated in response to FGF2 and possessed 
neurosphereforming and selfrenewal abilities (124). Taken 
together, tanycytes may also proliferate during adulthood which 
is likely due to an intrinsic stem cell capacity as it is not clear if 
(1) a given tanycyte divides continuously during adulthood and 
(2) if many or only very few actually proliferate at all.

NOTCH SigNALiNg AND THe 
eXTRACeLLULAR MiCROeNviRONMeNT

Notch signaling occurs between neighboring cells that express 
Notch receptors and ligands (Jagged1 and 2 and DLL1, 3, and 4)  

and acts in cellfate decisions and morphogenesis during devel
opment (125). Although most studies on Notch signaling in 
brains have been performed on the proliferation and differentia
tion of stem/progenitor cells in developing brains, recent studies 
have shown that Notch signaling controls synaptic plasticity 
and behavior. For example, Notch signaling or the cleavage of 
Notch1 is activated by an increase in synaptic activity and plays a 
role in synaptic plasticity in the hippocampal CA1 region (126). 
DLL4 and Notch3 were found to be expressed at OXTcontaining 
axonal terminals and pituicytes in the NH, respectively [(41); 
Figures 10A,A’]. Similarly, the strong expression of DLL4 was 
observed at axonal terminals and vascular pericytes in the ME 
[(42); Figures 10B,B’,C,C’].

The binding of Notch and its ligand causes the proteolytic 
cleavage of Notch via presenilin protease of the csecretase 
complex and the Notch intracellular domain, or a cleaved Notch 

FigURe 11 | Schematic illustration showing possible mechanisms for neurovascular structural reorganization by a shape conversion of glial cell pituicytes and 
vascular mural cell pericytes and alterations in glial and endothelial cell populations by gliogenesis and angiogenesis, respectively, in the neurohypophysis  
of an adult mouse.
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In summary, these findings have prompted us to propose a 
new model for structural reorganization in the NH (Figure 11). 
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under healthy normal conditions, and neurovascular structural 
reorganization is simply caused by the retraction of these cellular 
processes of pituicytes in response to a chronic physiological 
stimulation. This notion is based on the assumption that the 
vascular system remains unchanged in adult mammals. However, 
our recent findings disprove this notion and demonstrate the 
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vascular mural cell pericytes, which results in an increase in 
perivascular protrusions and the vascular surface area. Moreover, 
we demonstrated the occurrence of the continuous proliferation 
of ECs in healthy adult rodents; however, angiogenesis is consid
ered to occur during the embryonic and early postnatal periods 
and rarely during adulthood in the central nervous system. VEGF 
signaling coordinately regulates the population of ECs and axonal 
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