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This study established an interpretable machine learning model to predict the severity of coronavirus disease 2019 (COVID-19) and
output the most crucial deterioration factors. Clinical information, laboratory tests, and chest computed tomography (CT) scans at
admission were collected. Two experienced radiologists reviewed the scans for the patterns, distribution, and CT scores of lung
abnormalities. Six machine learning models were established to predict the severity of COVID-19. After parameter tuning and
performance comparison, the optimal model was explained using Shapley Additive explanations to output the crucial factors.
This study enrolled and classified 198 patients into mild (1 =162; 46.93 + 14.49 years old) and severe (n=36; 60.97 +15.91
years old) groups. The severe group had a higher temperature (37.42+0.99°C vs. 36.75 +0.66°C), CT score at admission,
neutrophil count, and neutrophil-to-lymphocyte ratio than the mild group. The XGBoost model ranked first among all models,
with an AUG, sensitivity, and specificity of 0.924, 90.91%, and 97.96%, respectively. The early stage of chest CT, total CT score
of the percentage of lung involvement, and age were the top three contributors to the prediction of the deterioration of
XGBoost. A higher total score on chest CT had a more significant impact on the prediction. In conclusion, the XGBoost model
to predict the severity of COVID-19 achieved excellent performance and output the essential factors in the deterioration

process, which may help with early clinical intervention, improve prognosis, and reduce mortality.

1. Introduction

Coronavirus disease 2019 (COVID-19), pneumonia caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), is a highly infectious respiratory disease with a
variable incubation period ranging from 1 to 14 days, and
people are generally vulnerable to the virus.

Reverse transcription-polymerase chain reaction (RT-
PCR) for SARS-CoV-2 is the standard for diagnosing
COVID-19. However, RT-PCR takes 1-2 days to complete
and may report false-negative results. Some areas even faced
a shortage of RT-PCR testing kits [1, 2]. Under these circum-
stances, chest computed tomography (CT) played a vital role
in detecting and assessing patients with COVID-19, especially
in detecting patients with COVID-19 in the early stage [3].

According to clinical presentation, patients with
COVID-19 were classified into four categories: mild type,
moderate type, severe type, and critical type [4]. Most
patients were classified as the mild type and moderate type
with mild symptoms, whereas a small group of patients may
experience acute respiratory distress syndrome (ARDS),
septic shock, coagulation dysfunction, and multiple organ
failure. These patients required ventilators and extracorpo-
real membrane oxygenation during an expensive treatment
and had a high death rate [5]. Previous researchers showed
that up to 5.0% of the patients were admitted to the inten-
sive care unit (ICU), 2.3% of the patients needed invasive
mechanical ventilation, and 1.4% of patients died eventually
[6]. It is unclear why some patients develop into severe or
critical cases, while others only get mild or no symptoms.
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The crucial factors in the deterioration process remain
unknown.

Early identification of severity and crucial factors are
of great value, prompting early clinical intervention and
preventing deterioration of patients’ condition. However,
it is hard for the doctor to identify those patients under
the human limitation on information processing. Hence,
artificial intelligence has been widely applied in the medi-
cal domain, enabling radiologists to make full use of data,
including imaging information, and explore the images’
biological nature. Since the initial outbreak, attempts have
been made to detect COVID-19 using chest CT.

In this study, we established a machine learning model,
combining clinical information, laboratory tests, and chest
CT features for early prediction of the severity and crucial
factors of patients with COVID-19. Our model may help
identify patients who require early clinical intervention to
improve prognosis and reduce mortality.

2. Materials and Methods

2.1. Study Participants. This retrospective study evaluated
de-identified data and involved no potential risk to the
patients. Therefore, the institutional review board waived
the requirement of obtaining written informed consent.
This study included patients with COVID-19, as con-
firmed by RT-PCR, admitted to the People’s Hospital of
Honghu and Honghu Xiaotangshan Hospital from January
1 to March 27, 2020. The inclusion criteria were as fol-
lows: (a) a positive RT-PCR result for SARS-CoV-2 infec-
tion, (b) patients who underwent a chest CT scan and
laboratory tests at admission in the two hospitals men-
tioned above, and (c) no other viral infection or serious
complication. The exclusion criteria were as follows: (a)
patients who underwent a chest CT scan and laboratory
tests in other hospitals and (b) patients whose chest CT
images showed no lesion in the lungs.

Patients’ triage, sex, age, symptoms, pre-existing diseases,
the temperature at admission, and laboratory tests, such as
white blood cell (WBC), neutrophil, and lymphocyte counts,
were collected. Patients with COVID-19 were classified into
four categories [4]: (1) The mild type includes those who
have mild clinical symptoms and no pneumonia manifesta-
tions found in imaging. (2) The moderate type includes the
patients who have symptoms such as fever and respiratory
tract symptoms with pneumonia manifestations seen on
imaging. (3) The severe type fulfilled the following criteria:
respiratory frequency > 30/minute, blood oxygen saturation
<93%, arterial partial pressure of oxygen (PaO,)/oxygen
concentration (FiO,) ratio < 300, and lung infiltrates > 50%
within 24-48 hours. (4) The critical type meets any of the fol-
lowing criteria: occurrence of respiratory failure requiring
mechanical ventilation and the presence of shock and other
organ failures that require monitoring and treatment in the
ICU.

In this study, all patients were classified into four clinical
types according to the criteria mentioned above during treat-
ment. The mild type was excluded because of no pneumonia
manifestations found in imaging. The moderate type was
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classified into the mild group. Concerning the rareness of
the critical type, the severe type and critical type were classi-
fied into the severe group in this study (Figure 1).

2.2. Imaging Techniques. Chest CT scanning (Go Now, Sie-
mens Healthcare, Germany; GE optima 680, GE Healthcare,
USA) was performed at the end of full inspiration in the
supine position. The images were acquired and reconstructed
with 80-130kV tube voltage and automatic tube current mod-
ulation (up to 400 mA). The slice thicknesses were 0.6 mm
(GE optima CT680) and 1.5mm (Go Now), respectively.
The lung window setting was at a window level of -600 Houns-
field units (HU) and a window width of 1500 HU. The scan-
ning range was from the apex to the lung base.

2.3. Image Interpretation. All chest CT images were reviewed
by two radiologists with over five years of clinical experience
in the respiratory system independently. Any disagreement
was resolved by discussion and consensus. The following
aspects were reviewed for each patient: (1) stage (early stage,
progress stage, or restoration stage); (2) distribution (sub-
pleural, scatter, or diffuse) and shape (nodular, patchy, or
large patchy); (3) number of lung lobes involved; (4) presence
of ground-glass opacity (GGO); (5) presence of consolida-
tion, fibrotic lesions, reticular shadow, crazy paving pattern,
air bronchogram, pleural effusion, pleural thickening, and
mediastinal lymphadenopathy (axil diameter > 10 mm); and
(6) CT scores of the percentage of lung involved [7, 8]. Each
lobe was evaluated for the percentage involved on a scale of
0-4 (0: 0% involvement, 1: <25% involvement, 2: 25%-50%
involvement, 3: 50%-75% involvement, and 4: >75% involve-
ment). The total score on the chest CT was the summation of
all five lobes. The maximum possible score was 20.

2.4. Statistical Analysis. Statistical analyses were performed
using SPSS (version 26.0). Continuous variables are
expressed as means and standard deviations and compared
by an independent-sample t-test; categorical variables are
expressed as counts and frequencies (%) and compared
using Fisher’s exact test between the mild and severe
groups. Statistical significance was set at p < 0.05. The area
under the curve (AUC) of different models was compared
by the DeLong test using MedCalc (version 19.4.1).

2.5. Interpretable Machine Learning Model Building. A data-
set was built, including clinical information, laboratory tests,
and chest CT features, from 198 patients with COVID-19, as
confirmed by RT-PCR. The machine learning model was
established using Python 3.7. We randomly split the dataset
into a 70% training and validation set and a 30% test set.
All quantitative features were normalized to the range of 0
to 1. The categorical features were transformed into a one-
hot numerical array. Six machine learning models, including
logistic regression (LR), k-nearest neighbor (KNN), decision
tree (DT), random forest (RF), support vector machine
(SVM), and eXtreme gradient boosting (XGBoost), were
built based on the features after preprocessing. After param-
eter tuning, the model’s performance was assessed using the
AUC. The receiver operating characteristic (ROC) curve of
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Initial cases identified through database search
(n=1281)

Excluded: n = 849

Cases with positive RT-PCR (n = 432)

Cases with negative RT-PCR result
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laboratory tests in other hospitals
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Cases without other viral infection or serious
complication at admission (n = 243)
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FIGURE 1: Flow diagram of patient enrollment.
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each model was further evaluated using DeLong’s test on
MedCalc (Figure 2).

Based on Shapley values from coalitional game theory,
Shapley Additive explanations (SHAP) were used to explain
the model [9, 10]. The SHAP explains the model prediction
by computing each feature’s contribution individually or
jointly to the prediction. With kernelSHAP, treeSHAP,
and deepKernal subclasses, SHAP can explain any machine
learning model’s output.

3. Results

3.1. Statistical Analysis. This study enrolled 198 patients
(mild group: 162 cases and severe group: 36 cases), including
80 males and 118 females. The average age of the mild
(46.93 + 14.49 years) and severe (60.97 + 15.91 years) groups
was significantly different. Patients in the mild group were
admitted to the hospital 10.40 £+ 5.58 days after the onset,
which is longer than that in the severe group (8.00 + 4.88

days, p=0.038). However, the temperature of patients in
the severe group was higher than that of those in the mild
group (37.42+0.99°C vs. 36.75+0.66°C). Fever, cough,
shortness of breath, and dyspnea were significant features
associated with the severe group. In terms of basic diseases,
22.22% (8/36) and 6.79% (11/162) of patients in the severe
and mild groups, respectively, had high blood pressure
(p=0.008) (Table 1).

There were 9.35 + 7.44 and 6.44 + 4.08 days between the
first CT scan and onset of chest CT features in the mild and
the severe groups, respectively. However, the total CT score
and the number of different lobes involved in the severe
group were significantly higher than those in the mild group.
Patients with diffuse (23/36, 63.89%) and large patchy (18/36,
50.00%) appearances were likely to deteriorate. In contrast,
patients with diffuse location and patchy shape of the mild
group were 35.80% and 81.48%, respectively. Moreover,
80.6% of severe group patients showed lung lesions that
had invaded five lobes at admission, compared to 39.5% of
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TaBLE 1: Demographic, clinical characteristics, and laboratory tests of the patients.

Mild group (n =162) Severe group (n = 36) p
Age (years)
Mean (SD) 46.93 + 14.49 60.97 +15.91 <0.001
Range 17-81 28-86
Median age 46 64.50
Gender 0.513
Male 67 (41.36%) 13 (36.11%)
Female 95 (58.64%) 23 (63.89%)

Signs and symptoms at admission
10.40 £ 5.58

36.75£0.66

Days from onset (days)
Temperature ("C)

Fever* 119 (73.46%)
Cough* 96 (59.29%)
Fatigue 34 (20.99%)

Shortness of breath* 16 (9.88%)

Chest tightness* 13 (8.02%)

Dyspnea* 6 (3.70%)
Fear of cold* 6 (3.70%)
Diarrhea* 8 (4.94%)
Headache* 8 (4.94%)
Dizziness 4 (2.47%)
Palpitation* 1 (0.62%)

Preexisting disease

Hypertension* 11 (6.79%)
Diabetes* 6 (3.70%)
CAD* 5 (3.09%)
Lung cancer” 0
Myocardial infarction® 0
Cerebral infarction* 0
Tuberculosis* 0
Laboratory tests
WBC (x10°/L) 5.53+2.30
Neutrophil (x10°/L) 3.61+2.10
Neutrophil ratio (%) 62.48 £ 13.15
Lymphocyte (x10°/L) 1.40 +0.50
Lymphocyte ratio (%) 27.33+10.07
NLR 3.04+2.75

8+4.88 0.038
37.42+£0.99 <0.001
27 (75.00%) <0.001
23 (63.89%) <0.001
10 (27.78%) 0.352
7 (19.44%) 0.140

3 (8.33%) 1

7 (19.44%) 0.002
5 (13.89%) 0.026
1 (2.78%) 1
1 (2.78%) 1
3 (8.33%) 0.105
3 (8.33%) 0.018
8 (22.22%) 0.008
4 (11.11%) 0.077
2 (5.56%) 0.356
1(2.78%) 0.176
1 (2.78%) 0.176
1 (2.78%) 0.176
1 (2.78%) 0.176
7.11+3.53 0.014
5.80 +3.50 0.001
76.15+12.11 <0.001
0.99 +0.47 <0.001
16.80+9.71 <0.001
8.12+9.69 0.004

CAD: coronary artery disease; WBC: white blood cell; NLR: neutrophil-to-lymphocyte ratio. *Fisher’s exact test.

the mild patients (p = 0.001). The manifestations of pleural
effusion, consolidation, crazy paving, and air bronchogram
played an essential role in predicting COVID-19 deteriora-
tion, indicating that these patients were more likely to
develop into severe and critically ill patients (Table 2).

As for laboratory tests, the severe group had a higher
WBC count, neutrophil count, and neutrophil ratio and a
lower lymphocyte count and lymphocyte ratio than the mild

group. Furthermore, the neutrophil-to-lymphocyte ratio
(NLR) in the severe group was significantly higher than that
in the mild group (8.12 + 9.69 vs. 3.04 + 2.75) (Table 1).

3.2, Machine Learning Model Performance and
Interpretability. A dataset was built, including enrolled
patients’ clinical information, laboratory tests, and chest CT
features. We randomly split the dataset into a 70% training



BioMed Research International 5
TaBLE 2: Chest CT features of the patients.
Mild group (n=162) Severe group (n = 36) p
Stage 0.208
Early stage 44 (27.16%) 10 (27.78%)
Progress stage 105 (64.81%) 26 (72.22%)
Restoration stage 13 (8.02%) 0
Location 0.002
Subpleural 50 (30.86%) 2 (5.56%)
Scatter 54 (33.33%) 11 (30.56%)
Diffuse 58 (35.80%) 23 (63.89%)
Shape <0.001
Nodular 11 (6.79%) 1(2.78%)
Patchy 132 (81.48%) 17 (47.22%)
Large patchy 19 (11.73%) 18 (50.00%)
Number of lobes involved <0.001
1 22 (13.58%) 0
2 22 (13.58%) 1 (2.78%)
3 20 (12.35%) 1(2.78%)
4 34 (20.99%) 5 (13.89%)
5 64 (39.51%) 29 (80.56%)
Image manifestations
Pleural effusion 1 (0.62%) 4 (11.11%) 0.004
Fibrosis 64 (39.51%) 15 (41.67%) 0.811
Consolidation 85 (52.47%) 28 (77.78%) 0.006
Reticular shadow 95 (58.64%) 34 (94.44%) <0.001
Crazy paving 9 (5.56%) 15 (41.67%) <0.001
Air bronchogram 55 (33.95%) 26 (72.22%) <0.001
Pleural thickening 62 (38.27%) 24 (66.67%) 0.002
Lymphadenovarix 10 (6.17%) 4(11.11%) 0.493
GGO 162 (100.00%) 36 (100.00%) —
Nodules 68 (41.98%) 19 (52.78%) 0211
Quantitative features
CT from onset (days) 9.36 +7.44 6.44 +4.08 0.002
Total score 4.24 +2.54 8.50 +4.44 <0.001
UOR 0.75+0.65 1.75+1.23 <0.001
MOR 0.62 +£0.66 1.36 £ 0.90 <0.001
IOR 1.10+ 0.68 2.00 +1.20 <0.001
UOL 0.73 £0.59 1.53+0.97 <0.001
IOL 1.04 £0.67 1.86+1.13 <0.001

GGO: ground-glass opacity; UOR: upper lobe of right lung; MOR: middle lobe of right lung; IOR: inferior lobe of right lung; UOL: upper lobe of left lung; IOL:

inferior lobe of left lung.

and validation set (138 cases, 113 in the mild group and 25 in
the severe group) and a 30% test set (60 cases, 49 in the mild
group and 11 in the severe group). Six machine learning
models were built, validated, and tested based on the dataset.
The performance of the models is reported in Table 3. Five
of the six models showed a good fit, except for the DT model
with an AUC of 0.707 (95% confidence interval (CI) (0.575,
0.817), p=10.0097). The AUC of XGBoost ranked first for all
models, with an AUC of 0.924 (95% CI (0.826, 0.976), p <

0.0001). XGBoost achieved 90.91% sensitivity (95% CI
(58.7%, 99.8%)) and 97.96% specificity (95% CI (89.10%,
99.90%)). The RF model achieved a 0.907 AUC (95% CI
(0.804, 0.967), p<0.0001), 90.91% sensitivity (95% CI
(58.7%, 99.8%)), and 95.92% specificity (95% CI (80.4%,
97.7%)). The KNN model obtained a 100% sensitivity (95%
CI (71.5%, 100.00%)); however, KNN had a 0.857 AUC
(95% CI (0.743, 0.934), p <0.0001) and 61.22% specificity
(95% CI (46.2%, 74.8%)). The difference in AUCs between
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TaBLE 3: The AUGC, sensitivity, and specificity comparisons.

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) p
LR 0.891 (0.783, 0.956) 90.91 (58.7, 99.8) 93.88 (83.1, 98.7) 0.1306
KNN 0.857 (0.743, 0.934) 100.00 (71.5, 100.0) 61.22 (46.2, 74.8) 0.2844
DT 0.707 (0.575, 0.817) 45.45 (16.7, 76.6) 95.92 (86.0, 99.5) 0.0095
RF 0.907 (0.804, 0.967) 90.91 (58.7, 99.8) 95.92 (86.0, 99.5) 0.1915
SVM 0.892 (0.785, 0.958) 90.91 (58.7, 99.8) 91.84 (80.4, 97.7) 0.2006
XGBoost 0.924 (0.826, 0.976) 90.91 (58.7, 99.8) 97.96 (89.1, 99.9) —

Two-sided p values were calculated by comparing AUC for the XGBoost model with the other models. AUC comparisons were evaluated using the DeLong test;
LR: logistic regression; KNN: k-nearest neighbor; DT: decision tree; RF: random forest; SVM: support vector machine; XGBoost: eXtreme gradient boosting.
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the XGBoost and RF models was not statistically significant
(p=0.192). The sensitivity of the two models remained the
same; however, XGBoost had higher specificity. Although
the AUC between XGBoost and LR, KNN, and RF showed
no statistical difference, XGBoost acquired the highest Youden
index, sensitivity, and specificity. In general, XGBoost was the
best model in this dataset.

We further explored the interpretability of XGBoost
using the TreeExplainer of SHAP [11]. Figure 3(a) shows
the top 19 features that influenced the severe group predic-
tion in descending order. The early stage of chest CT, total
CT score of the percentage of lung involvement, and age were
the top three contributors to the prediction of deterioration
(Figure 3(a)). Patients in the early stage of chest CT at admis-
sion were more likely to deteriorate. Moreover, a higher chest
CT total score meant that a broader area of the lung was
involved; the patients had an increased risk of becoming
severe or critically ill (Figure 3(b)). Specifically, injury to
the inferior lobe of the right lung (IOR) and upper lobe of
the left lung (UOL) had a more significant impact on the
prediction than the other lobes.

The high neutrophil count, neutrophil ratio, and NLR
were also useful in predicting severe and critically ill patients.
We can take one step further to explore the feature contribu-
tion in individual predictions. The model outputs the proba-
bility of a patient becoming severe or critically ill, followed by
the specific weight of contribution in the single prediction.
Figure 4 shows an example of a SHAP. While the conven-
tional machine learning model merely outputs the predic-
tion, SHAP was able to show the details of how Al concluded.

4. Discussion

The universal manifestation of COVID-19, such as GGO, has
low specificity, making it difficult to distinguish COVID-19
from other types of pneumonia solely based on chest CT
appearance [12, 13]. It would be even harder, more time-con-
suming, and often unfeasible for radiologists to assess the dis-
ease severity based on the lobar extent, type of pulmonary
opacities, clinical information, and laboratory tests, especially
in urgent situations or high demand [8, 14, 15]. Since the
COVID-19 outbreak, attempts using AI have been made to
integrate the information from molecular, medical, and epi-
demiological scales [16, 17]. The cluster computing power
of AI can help with early and improved disease detection
and diagnosis, treatment monitoring, and contact tracing of
infected individuals, which may help predict the future
course of COVID-19 [18]. Moreover, Al can help with
designing and developing vaccines and drugs [19-21]. This
study took a step further and established six machine learn-
ing models to predict COVID-19 patients’ prognosis;
XGBoost ranked first in performance.

Homayounieh et al. [22] performed multiple logistic
regression tests combined with the radiomics of chest CT,
clinical information, and laboratory tests on 115 RT-PCR
positive patients to predict the possibility of ICU admission,
i.e., severe patients. They achieved a 0.84 AUC (95% CI
(0.78, 0.85), p<0.02). In comparison, the XGBoost model
showed a 0.924 AUC (95% CI (0.826, 0.976), p < 0.0001),

90.91% sensitivity (95% CI (58.7%, 99.8%)), and 97.96%
specificity (95% CI (89.10%, 99.90%)) based on the clinical
information, laboratory tests, and chest CT features. Another
issue with AI applications is interpretability. Most Al-
predicted models are a “black box”; that is, it is not possible
to know further details about each feature’s contribution
towards model prediction, an important issue with Al appli-
cations in clinical settings. Therefore, we established an inter-
pretable XGBoost-based module called SHAP.

This interpretable module outputs the contribution of
important features. Patients with features on the list have
a higher possibility of deteriorating to severe or critically
ill condition. In this cohort, the early stage of chest CT
manifestation made the most significant contribution to
the prediction, followed by the total score of chest CT
and age. Lesions in the severe and critically ill patients
seem to be more extensive than mild cases, meaning a
higher total score of chest CT and presence of diffused
patchy and large patchy appearances on the CT image.
Similar to MERS-CoV, patients in the severe group were
usually older than those in the mild group, indicating that
the elderly tends to develop severe or critical forms of
COVID-19, possibly due to comorbidities such as hyper-
tension and underlying immune response [23]. Fever was
a typical symptom of COVID-19, and those with a higher
temperature at admission were more likely to worsen in
the future. The cough was another common symptom,
whereas fatigue, shortness of breath, and dyspnea were
more common in the severe group, which is consistent
with previous research [24, 25]. Furthermore, higher neutro-
phil count, neutrophil ratio, and NLR ratio increased the pos-
sibility of deterioration. Lymphocytopenia is a characteristic
of COVID-19 [26]. The virus proliferates in the respiratory
system, causing a series of immune responses, leading to
changes in lymphocytes and other immune cells [25]. The
lower lymphocyte count and lymphocyte ratio, higher WBC
and neutrophil counts, and higher neutrophil ratio and
NLR may be related to the severity and mortality rate of
COVID-19 [27]. Similar to the days from onset to admission,
the days from symptom onset to the first CT scan for the
severe group were shorter than those for the mild group,
meaning that the initial symptoms were serious, resulting in
early hospital presentation. In contrast, the lesions appeared
to be more extensive in the severe group, suggesting the rapid
progression of COVID-19 in these patients. It is worth noting
that the more extensive injuries in the IOR and UOL, the
more significant their contribution to the deterioration.

With the interpretable machine learning model’s applica-
tion, the medical institutions could identify the potential
severe type and critical type patients, hence applying the
main observation since admission. Once the crucial factors
change during treatment, the doctors could take the early
clinical intervention to stop deterioration in the early stage.

Our study has some limitations. First, the small sample
size and differences in the number of mild and severe patients
may have affected the statistical power of our study. In this
study, we applied stratified sampling in data segmentation
to reduce the influence brought by imbalanced numbers.
Second, the prognostic prediction model may be further



improved by combining chest CT radiomics or deep learning
models. The application of radiomics and deep learning
models may eliminate subjective bias and improve perfor-
mance. Attempts have been made in a previous study on
the detection, outcome, and prognosis prediction of
COVID-19 [2, 28, 29]. Third, this was a retrospective study,
indicating uncontrollable data loss in the collection, such as
procalcitonin and C-reactive protein. In order to ensure a
sufficient data size, we had to give up some laboratory results,
which may have decreased the performance of the model.
Given the limited scale and data, the established XGBoost
model requires further clinical validation.

In conclusion, this study established an interpretable
machine learning model based on the XGBoost algorithm
combined with clinical information, laboratory tests, and
chest CT features, aimed at predicting the possibility of
COVID-19 patients becoming severe and critically ill, which
achieved excellent performance. Furthermore, we explored
the most important features in the deterioration process
using the interpretable SHAP module, which enabled us to
determine the factors that put the patients at risk of develop-
ing ARDS and dying from respiratory failure and take neces-
sary clinical interventions to improve the patient prognosis
and reduce mortality among the severe and critically ill
patients.
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