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Abstract

We recently discovered a regulatory mechanism that stimulates production of the multifunctional 

antimicrobial peptide, cathelicidin antimicrobial peptide (CAMP). In response to subtoxic levels 

of ER stress, increased sphingosine-1-phosphate (S1P) production activates an NFκB→C/EBPα 

dependent pathway that enhances CAMP production in cultured human keratinocytes. Since the 

multifunctional stilbenoid compound, resveratrol (RESV), increases ceramide (Cer) levels, a 

precursor of S1P, we hypothesized and assessed whether RESV could exploit the same pathway to 

regulate CAMP production. Accordingly, RESV significantly increased Cer and S1P levels in 

cultured keratinocytes, paralleled by increased CAMP mRNA/protein expression. Furthermore, 

topical RESV also increased murine CAMP mRNA/protein expression in mouse skin. Conversely, 

blockade of Cer→sphingosine→S1P metabolic conversion, with specific inhibitors of ceramidase 

or sphingosine kinase, attenuated the expected RESV-mediated increase in CAMP expression. The 

RESV-induced increase in CAMP expression required both NF-κB and C/EBPα transactivation. 

Moreover, conditioned media from keratinocyte treated with RESV significantly suppressed 

Staphylococcus aureus growth. Finally, topical RESV, if not coapplied with a specific inhibitor of 

sphingosine kinase, blocked Staphylococcus aureus invasion into murine skin. These results 

demonstrate that the dietary stilbenoid, RESV, stimulates S1P signaling of CAMP production 

through an NF-κB→C/EBPα-dependent mechanism, leading to enhanced antimicrobial defense 

against exogenous microbial pathogens.
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INTRODUCTION

Human epidermis is positioned at the interface with the environment, protecting underlying 

tissues from exogenous microbial pathogens, mechanical damage, and ultraviolet irradiation. 

These protective mechanisms include the generation of antimicrobial peptides (AMP) that 

display activity against a broad-spectrum of different pathogens, including Gram-negative 

and Gram-positive bacteria, fungi, and certain viruses (Dunn et al., 2009; Mendez-Samperio, 

2010; Nijnik and Hancock, 2009; Schroder, 2010). In addition to its antimicrobial function, 

the major AMP, cathelicidin antimicrobial peptide (CAMP), is a multifunctional modulator 

of cytokine secretion/production, angiogenesis and adaptive immune responses (Lai et al., 

2010). Prior studies demonstrated that CAMP expression increases in epithelial tissues, 

including in epidermal keratinocytes (KC), after external perturbations; e.g., wounding, 

suberythemagenic UVB irradiation, oxidative stress, and epidermal barrier abrogation 

(Aberg et al., 2008; Hong et al., 2008; Kim et al., 2009; Mallbris et al., 2010). However, if 

these external perturbations become excessive, they instead produce cell cycle arrest and 

apoptosis by increasing endoplasmic reticulum (ER) stress-induced ceramide (Cer) 

production (Lei et al., 2008). In contrast, subtoxic perturbations produce lower levels of ER 

stress, which also increases Cer transiently. Some of the increased Cer, generated following 

subtoxic stress, is metabolized to S1P, which stimulates CAMP production in epithelial 

tissues, including epidermis, via a (to our knowledge) previously unidentified NF-κB and C/

EBPα-mediated pathway (Park et al., 2012). Importantly, this regulatory mechanism 

operates independently of the well-established vitamin D receptor (VDR)-regulated pathway 

(Gombart et al., 2005), which instead likely predominates under basal (non-stressed) 

condition.

Resveratrol (RESV, trans-3, 4, 5-trihydroxystilbene) belongs to a class of phytoalexins, that 

are synthesized by a restricted number of plants, including berries, peanuts, and red grapes. 

Notably, the synthesis of RESV in these plants increases in response to external stressors; 

i.e., infection or UV irradiation (Shakibaei et al., 2009). RESV exerts antioxidant and other 

anti-inflammatory activities, as well as regulating cellular proliferation, differentiation, Sirt 

modulation, and mitochondria-initiated apoptosis (Sadruddin and Arora, 2009; Shakibaei et 

al., 2009). Pertinent to the current studies, RESV also stimulates Cer levels in multiple cell 

types (Cakir et al., 2011; Dolfini et al., 2007; Signorelli et al., 2009).

We have demonstrated that KC deploy three metabolic mechanisms that protect against Cer-

induced apoptosis (Uchida et al., 2010); i.e., Cer-to-glucosylceramide, Cer-to-

sphingomyelin (see also (Charruyer et al., 2008)), and ceramidase-mediated hydrolysis of 

Cer to sphingosine. We showed further that subtoxic external perturbations that induce ER 

stress and increase cellular Cer production also stimulate metabolic conversion of 

sphingosine to S1P, leading to enhanced CAMP generation (Park et al., 2012). Here, we 
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show that RESV not only increases Cer production, but also that it initiates downstream 

conversion of Cer to S1P, leading to stimulation CAMP production in cultured human KC. 

In addition, we show here that topical RESV stimulates S1P signaling of CAMP production 

in vivo (murine skin). Finally, we demonstrate that pre-treatment of KC with RESV 

enhances antimicrobial defense against virulent, exogenous Staphylococcus aureus. Notably 

RESV itself did not induce ER stress, suggesting that RESV directly stimulates S1P 

signaling of CAMP expression. These studies illuminate yet-another important, and 

potentially clinically-beneficial biological activity of RESV; i.e., the ability to enhance 

epithelial innate immunity through exploitation of an ER stress-initiated pathway.

RESULTS

RESV increases cellular levels of S1P in parallel with enhanced CAMP production

Our prior studies demonstrated that subtoxic levels of ER stress, induced by either external 

perturbations; e.g., UVB irradiation, or an established pharmacological ER stressor, e.g., 

thapsigargin, increase not only levels of cellular ceramide (Cer), but also conversion of Cer 

to its distal metabolite, sphingosine-1-phosphate (S1P), which then stimulated CAMP 

production (Park et al., 2012). Hence, we first assessed here whether exogenous RESV 

stimulates production of cellular Cer, as well as its downstream metabolites, without 

inducing excessive ER stress. Lipid quantification showed a modest, but significant increase 

in Cer, and large increases in both sphingosine and S1P following treatment of cultured 

human keratinocytes (KC) with exogenous RESV at concentrations < 50 µM (Table 1). At 

these RESV concentrations, indicators of apoptosis (i.e., cell viability and PARP cleavage) 

did not become evident (Figs. 1A and 1B), assuring that these concentrations of RESV are 

not toxic. Yet, because still-higher concentrations (>100 µM) slightly decreased cell viability 

(Fig. 1A), we employed RESV at concentrations of < 50 µM in all subsequent studies.

We next determined whether exogenous RESV stimulates CAMP expression in vitro. 

Quantitative RT-PCR (qRT-PCR) analysis revealed a significant increase in CAMP mRNA 

expression in KC after 24 h of exposure to RESV (Figs. 1C and 1D). Consistent with these 

alterations in CAMP mRNA, Western immunoblot analysis showed that CAMP protein 

levels also increased following RESV treatment (Fig. 1E). Finally, ELISA analysis of 

culture supernatant further demonstrated that RESV also enhanced LL-37/CAMP secretion 

from KC (Figs 1F and 1G). Together, these results indicate that RESV elevates cellular Cer 

and S1P levels, in parallel with an increase in CAMP/LL-37 production and secretion.

Increased S1P accounts for RESV-mediated enhancement of CAMP production

Our previous studies demonstrated that S1P, but neither Cer nor sphingosine, accounts for 

the ER-stress-induced increases in CAMP production (Park et al., 2012). Hence, we next 

investigated whether S1P is the Cer metabolite that accounts for the RESV-mediated 

upregulation of CAMP. Co-incubation of KC with RESV and N-oleoylethanolamine (NOE), 

a potent inhibitor of ceramidase, the hydrolytic enzyme that generates sphingosine from Cer, 

significantly attenuated the expected RESV-induced increase in CAMP mRNA and protein 

expression (Figs. 1C and 1E). In contrast, addition of NOE alone did not alter CAMP 
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expression. Together, these results suggest that hydrolysis of Cer by ceramidase(s) is 

required for the RESV-induced stimulation of CAMP expression.

We next determined which distal metabolite of Cer; i.e., sphingosine and/or S1P, is (are) 

responsible for increased CAMP expression. Inhibition of the conversion of sphingosine to 

S1P, using dimethylsphingosine (DMS), did not stimulate, but instead significantly 

attenuated the expected RESV-induced increase in both CAMP mRNA and protein 

expression (Figs. 1D and 1E), strongly suggesting that sphingosine is not the responsible 

metabolite.

To elucidate whether S1P is the responsible signal, we next assessed whether RESV 

stimulates expression of the sphingosine kinase (SPHK1 isoform) that accounts for ER-

stressstimulated CAMP expression (Park et al., 2012). Accordingly, qRT-PCR analysis 

revealed an increase in SPHK1 (1.96 ± 0.09 vs. vehicle control, p<0.01), but not SPHK2 

(1.17 ± 0.06 vs. vehicle control), mRNA expression after incubation of KC with RESV, 

suggesting that RESV stimulates SPHK1 transcription. In contrast, pretreatment of KC with 

a specific inhibitor of SPHK1, SKI, significantly attenuated the expected RESV-induced 

stimulation of both CAMP production (Figs. 1D, 1E, and 1F) and secretion (Fig. 1G). 

Together, these results show that the RESV-induced enhancement of CAMP expression can 

be attributed to increased S1P generation, resulting from stimulation of SPHK1 expression.

RESV increases mCAMP expression in murine epidermis

Prior studies showed that murine CAMP (mCAMP), the murine homologue of CAMP, 

increases in normal mouse skin following exposure to subtoxic levels of ER stress (Park et 

al., 2011), also via S1P-stimulated signaling (Park et al., 2012). Hence, we next investigated 

whether mCAMP expression increases in murine epidermis after topical RESV treatment. 

Morphological evidence of toxicity, such as changes in epidermal thickness or inflammation 

did not become evident in murine skin after treatment with topical RESV (0.5–50 mM [2.5–

250 nmole/cm2]) (Figs. 2A and 2B). Yet at these doses, topical RESV increased both 

mCAMP mRNA and protein expression in murine epidermis (Figs. 2C and 2D). Together, 

these results validate our in vitro studies by showing that topical RESV also stimulates 

mCAMP production in epidermis.

RESV-induced stimulation of CAMP expression requires NF-κB and C/EBPα activation

Our recent studies indicated that NF-κB-mediated C/EBPα activation is a downstream 

signal of increased S1P-dependent CAMP expression (Park et al., 2012). Therefore, we next 

assessed changes in NF-κB phosphorylation after RESV exposure. After incubations with 

RESV, but not vehicle alone, additional phosphorylated NF-κB1 (p50) levels increased, 

while conversely, blockade of the conversion of sphingosine to S1P by SKI attenuated the 

expected increase in phospho-NF-κB generation (Fig. 3A). In addition, the silencing of 

SPHK1 using siRNA significantly attenuated RESV-induced nuclear translocation of NF-κB 

(Fig. 3B). Moreover, an NF-κB reporter assay revealed a significant increase in NF-κB 

transactivity after treatment of KC with RESV (Fig. 3C), while conversely, inhibition of NF-

κB activation, using a specific inhibitor of NF-κB, BAY11-7082, attenuated the RESV-
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induced upregulation of CAMP expression (Fig. 3D). Together, these results indicate that 

the RESV-induced increase in S1P activates NF-κB, leading to increased CAMP expression.

To further delineate the mechanism by which RESV increases CAMP production, we next 

assessed C/EBPα activation, a distal step in S1P-induced CAMP upregulation (Park et al., 

2012), assessed by C/EBPα phosphorylation (at both Ser-21 and Thr-222/226). After 

incubation with RESV, Western immunoblot analysis of C/EBPα demonstrated increased 

phosphorylation of both the Ser-21 and Thr-222/226 sites in a KC nuclear fraction (Fig. 3E). 

In contrast, the addition of SKI selectively decreased the phosphorylation of Thr-222/226 

sites, while the Ser-21 phosphorylation site remained unaffected (Fig. 3E). These results 

suggest that C/EBPα phosphorylation serves as a key downstream transcriptional signal for 

the RESV-stimulated CAMP production (Fig. 5).

Our prior studies showed that p38 mitogen-activated protein (MAP) kinases, which 

phosphorylates C/EBPα, also is required for the activation of C/EBPα in response to ER 

stress (Park et al., 2011). Accordingly, a p38MAP kinase-specific inhibitor, SB201290, 

significantly diminished the expected RESV-induced increase in CAMP mRNA expression 

(Fig. 3F). In contrast, an inhibitor of ERK (extracellular-signal regulated kinase) (U0126) 

did not attenuate the RESV-induced increase in CAMP expression. Together, these results 

show that not only C/EBPα phosphorylation, but also MAP kinase are required for RESV-

stimulated increase in CAMP production.

RESV treatment increases epithelial defense against S. aureus

Finally, we assessed the functional relevance of these mechanistic studies by asking whether 

RESV-induced stimulation of CAMP production in vitro enhances antimicrobial defense 

against a virulent microbial pathogen, i.e., S. aureus (ΔmprF strain). Conditioned media, 

collected from KC previously treated with RESV, but neither media alone, nor media treated 

with vehicle, suppressed S. aureus growth (Fig. 4A). Pertinently, the potency of RESV was 

comparable to the levels of growth inhibition achieved with exogenous synthetic LL-37 

(0.05 mM [250 pmole/cm2]), which served as a positive control in this experiments (Fig. 

4C).

Finally, we investigated whether murine skin, pretreated with topical RESV, blocks the 

invasion of virulent S. aureus. Since normal epidermis, with its competent permeability and 

antimicrobial barrier, prevents S. aureus invasion, we also assessed invasions into skin 

where barrier had been compromised by topical oxazolone. Again topical RESV 

significantly increased mCAMP mRNA expression, and this induction was blocked by 

coapplications of a specific sphingosine kinase inhibitor, SKI (Fig. 4B). Gram staining 

showed that S. aureus invaded deeply into vehicle and SKI-treated skin (indicated by arrows 

in Fig. 4C). In contrast, as in our prior that showed increased epidermal S1P production by 

topical C2Cer (Park et al., 2012), murine skin that had been treated with topical RESV 

resisted S. aureus invasion, while conversely, S. aureus invasion become evident in skin 

cotreated with RESV plus SKI (Fig. 4C). Together, these results indicate that the RESV-

stimulated increase in CAMP production and secretion generates sufficient mCAMP to 

interdict highly-virulent bacterial pathogen.
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DISCUSSION

The plant stilbenoid, RESV, has multiple, potentially-beneficial biological activities, not 

only as an antioxidant due to its stilbene structure (Sadruddin and Arora, 2009; Sundaresan 

et al., 2011), but also as an; i) activator of SIRT 1 coding of the NAD-dependent 

deacetylase, sirtuin-1; ii) inhibitor of proinflammatory cell adhesion molecule expression; 

iii) stimulator of endolethelial nitric oxide synthase (eNOS) activity; and iv) inhibitor of 

platelet aggregation. Because RESV can modulate multiple cellular functions, its activity is 

being explored in multiple clinical settings, including as an anti-inflammatory agent, 

immune modulator, for treatment of metabolic syndrome, and to prevent cellular senescence 

(Baile et al., 2011; Mercken et al., 2012; Szkudelski and Szkudelska, 2011). Our studies 

demonstrate an additional potential clinical niche for RESV; i.e., as a potent modulator of 

innate immunity through stimulation of CAMP production. While high levels of ER stress 

stimulates induced apoptosis, at lower, subtoxic levels, Cer is effectively metabolized to 

S1P, a mechanism that rescues KC from cell death (Uchida et al., 2010), while 

simultaneously stimulating CAMP production (Park et al., 2012). Since apoptosis was not 

evident in our present studies, a similar S1P-mediated rescue mechanism likely accounts for 

the stimulation of CAMP production by RESV.

Our prior studies demonstrated that non-toxic levels of external perturbation; i.e, subtoxic 

UVB irradiation, as well as ER stress itself increase Cer production, followed by the 

metabolic conversion of Cer to S1P leading to stimulation of CAMP production (Park et al., 

2012; Uchida et al., 2010). In these studies, we show that RESV exploits this pathway by 

directly increasing cellular Cer levels. Pertinently, RESV increases catalytic activity, but not 

mRNA expression of serine palmitoyl transferase (SPT) (Scarlatti et al., 2003), the enzyme 

that catalyzes the initial step in de novo Cer synthesis. Since in the present study we also 

found that RESV did not stimulate mRNA levels for either SPT1 or SPT2 (not shown), 

RESV likely stimulates catalytic activity of SPT. Increased Cer then is followed by 

accelerated production of S1P with SPHK1, but not SPHK2, accounting for the enhanced 

metabolic conversion of sphingosine to S1P production by RESV. RESV like ER stressors 

appears to increase S1P production by stimulation of SPHK1 mRNA expression (Park et al., 

2012). Finally, we demonstrated further that RESV upregulates CAMP production through 

the same S1P→NF-κB→C/EBPα mechanism that we recently characterized in epithelial 

cells, including both human and murine KC (Park et al., 2012) (Fig. 5).

To assess the potential relevance of these findings, we then showed that the RESV-induced 

increase CAMP production enhances antimicrobial defense both (in cultured KC) and 

murine skin exposed to exogenous S. aureus. Yet, stilbene derivatives, including RESV, 

display direct antimicrobial activity against pathogens, such as S. aureus, Enterococcus 

faecalis, and Psedomonas aeruginosa (Chan, 2002). Moreover, the sphingoid base itself is a 

potent antimicrobial cationic lipid (Bibel et al., 1992). However, we showed that inhibition 

of S1P production attenuates antimicrobial activity against S. aureus (Fig. 4). Hence, 

increased CAMP by RESV stimulation of S1P production likely accounts for enhanced 

antimicrobial defense in KC.
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As noted above, RESV is a potent activator of sirtuin (Sirt) 1, a nicotinamide adenine 

dinucleotide (NAD+)-dependent deacetylase (a class III histone deacetylase [HDAC]). 

Although histone 4 acetylation is required for induction of CAMP expression by the VDR-

dependent mechanism (Schauber et al., 2008), Sirt1 does not preferentially catalyze histone 

4, suggesting that RESV unlikely attenuates the VDR pathway. Moreover, Sirt1 deacetylase 

transcription factors, including forkhead box O1 (FoxO1), stimulated by RESV leads to an 

increase in transcription of target gene(s) by recruitment and formation of a complex with C/

EBPα (Qiao and Shao, 2006). Hence, while C/EBPα is responsible for downstream 

stimulation of S1Pmediated CAMP production, RESV-induced Sirt activation could 

additively stimulate CAMP expression.

In summary, we demonstrate that previously unidentified important biological role of 

RESV, i.e., RESV enhances antimicrobial defense through an innate immune element, 

CAMP via stimulation of S1P-mediated NF-κB→C/EBPα mechanism, in epidermis.

MATERIALS AND METHODS

Cell culture

Immortalized, nontransformed (HaCaT) KC, derived from human epidermis (a gift from Dr. 

N. Fusenig [Heidelberg, Germany]) were grown as described previously (Uchida et al., 

2002). Culture medium was switched to serum-free KC growth medium containing 0.07 

mM calcium chloride and growth supplements (Invitrogen, Carlsbad, CA) one day prior to 

resveratrol (RESV) treatment. Cell toxicities, including apoptosis were assessed by 

poly(ADP-ribose) polymerase (PARP) cleavage as well as a viability assay kit (CCK-8) 

(Dojindo, Rockville, MD) based on WST-8 formazan dye (Uchida et al., 2010, Fuda, 2007).

Animal experiments

Female hairless (hr/hr) mice, aged 6–8 weeks old, were purchased from Charles River 

laboratories (Wilmington, MA, USA) and maintained in a temperature- and humidity-

controlled room, and given standard laboratory food and tab water ad libitum (under an 

Institutional Animal Care and Use Committee [San Francisco Veterans Administration 

Medical Center]-approved protocol). Mice were treated topically on the flanks with RESV 

(0.5–50 mM [2.5–250 nmole /cm2]) or vehicle (ethanol) alone twice dailies for 3 days. The 

Change in the overall morphology was assessed by Hematoxylin & Eosin (H&E) staining, 

as reported (Park et al., 2011).

Measurement of intercellular levels of sphingolipids

The levels of cellular Cer, sphingosine, and S1P were quantitated using an HPLC system 

equipped with a fluorometrical detector system (JASCO, Tokyo, Japan), as described 

previously (Park et al., 2011). Sphingolipids are expressed as pmol per mg protein.

Quantitative real-time polymerase chain reaction analysis

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using cDNA 

prepared from mRNA fractions of cell lysates, as described previously (Park et al., 2011; 

Uchida et al., 2010) mRNA expression was normalized to levels of GAPDH.
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Western immunoblot analysis

Western immunoblot analysis was performed as described previously (Park et al., 2011). 

The following antibodies were used: Anti-human or -mouse β-actin (Abcam, Cambrige, 

MA) antibody, anti-Cathelicidin (CAMP) (LifeSpan Biosciences, Seattle, WA), anti-

phospho NF-κB1 (p50) or anti-NF-κB1 p65 (Santa Cruz Biotech, Santa Cruz, CA), anti-

Histone H3, antiphosphoSer-21 or -phosphoThr-222/226 C/EBPα (Cell Signaling, Boston, 

MA), or anti-PARP (Sciences, Franklin Lakes, NJ).

ELISA for LL-37 quantification

LL-37 content of cell lysates and conditioned medium of KC incubated RESV was 

determined by ELISA kit (Hycult Biotech Inc., Plymouth Meeting, PA) in accordance with 

the manufacture’s instructions.

siRNA transfections and immunohistochemistry

HaCaT KC were transfected with 20 nM siRNA for SPHK1 (Invitrogen), as previously 

(Park et al., 2011). Cells were treated with RESV or vehicle for 60 min. NF-κB is 

distributed using anti-NF-κB p65 (Santa Cruz Biotech.) and anti-rabbit IgG conjugated with 

fluorescein isothiocyanate (Invitrogen). Cells were counterstained with the nuclear marker 

4′,6-diaminido-2-phenylindole (DAPI) (Vector Laboratories, Burlingame, CA).

Dual-luciferase reporter assay for NF-κB transcriptional activity

Transcriptional activities of NF-κB was assessed using a Reporter Kits (SABiosciences, 

Frederick, MD), as described previously (Park et al., 2011).

Antimicrobial assay

Antimicrobial activity of conditioned medium collected from KC against Staphylococcus 

(S.) aureus (ΔmprF strain) was assessed as described previously (Bernard and Gallo, 2010).

S. aureus invasion assay

S. aureus invasion assay was performed, as we reported previously (Park et al., 2011). 

Briefly, full-thickness pieces of murine skin treated with RESV, SKI, and/or vehicle 

(propylene glycol: ethanol, 7:3) were harvested from hairless mice (24 week-old, female, 

hr/hr, n=5) under an Institutional Animal Care and Use Committee (San Francisco Veterans 

Affairs Medical Center)-approved protocol. Epidermal permeability barrier was attenuated 

by topical application of topical oxazolone (1%) once every other day for five times. Mice 

were treated with resveratrol twice dailies for the last three days, during the last three 

oxazolone treatments, prior to harvesting skin. Skin was placed on filter paper dermis side 

down, and maintained at the airmedium interface in KC growth medium (as above). S. 

aureus (ISP479C) (Siboo et al., 2001) in PBS or PBS was epicutaneously applied (20 

µl/cm2), followed by incubation for 24 h at 37°C in 5% CO2 in air. Gram staining was 

performed to assess S. aureus invasion (Park et al., 2011).

Statistical Analyses

Statistical comparisons were performed using an unpaired Student t Test.
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Figure 1. 
RESV-mediated increase in S1P is responsible for stimulation of CAMP expression. HaCaT 

KC pretreated with or without ceramidase (NOE, 25 µM) or SPHK (DMS, 2.5 µM; SKI, 1 

µM) inhibitors for 30 mins were incubated exogenous RESV (50 µM or as indicated) for 24 

h. Cell viability (A) or PARP cleavage as a measure of apoptosis (B). CAMP mRNA 

expression assessed by qRT-PCR (C and D). CAMP and LL-37 (an active form of CAMP) 

protein/peptide levels quantified by Western immunoblot analysis (E) and ELISA, 

respectively (F and G). Similar results were obtained when the experiment was repeated 

(triplicate) using different cell preparations.
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Figure 2. 
Topical RESV increases mCAMP expression in normal murine skin. The flanks of mice 

were treated with topical applications of RESV or vehicle (ethanol) alone. H&E staining 

(A). Epidermal thickness (B). mCAMP mRNA (C) and protein expression (D), respectively. 

Similar results were obtained when the experiment was repeated (in duplicate) using 

different skin preparations. Scare bar = 20 µm.
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Figure 3. 
NF-κB-C/EBPα activation is required for RESV-induced upregulation of CAMP 

expression. HaCaT KC were pretreated or transfected with/without a specific inhibitor of 

SPHK1, SKI (1 µM), NF-κB inhibitor (BAY11-7082, 2 µM), MAP kinase inhibitors 

([U0126, ERK inhibitor], SB [SB201290, p38MAP kinase inhibitor]) or SPHK1-siRNA 

followed incubating with RESV (50 µM). Phosphorylated forms of NF-κB or C/EBPα 

(either Ser-21 or Thr-222/226) in nuclear fractions were assessed by Western immunoblot 

analysis (A and E). RESV-induced nuclear translocation of NF-κB was determined by 

immunohistochemistry (B). NF-κB transactivation was assessed using a luciferase reporter 

assay (C). CAMP mRNA (D and F). Similar results were obtained when the experiment was 

repeated (duplicate) using different cell preparations. Scare bar = 30 µm.
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Figure 4. 
RESV enhanced antimicrobial defense through increased CAMP production: Growth 

inhibition of S. aureus. S. aureus were incubated for the indicated times with LL-37 or 

conditioned medium of HaCaT KC treated with RESV (50 µM) (A). Bacterial invasion 

studies (ex vivo) (B and C): S. aureus were epicutaneously applied to a full-thickness pieces 

of murine skin (n=2) treated with RESV (50 mM [250 nmole/cm2]), SKI (1 µM), LL-37 

RESV (50 µM [250 pmole/cm2]) and/or vehicle twice daily for 3 days, followed by 

incubation for 24 h at 37°C. CAMP mRNA expression in skin was assessed by qRT-PCR 

(B). Bacterial invasion/growth into murine skin was assessed by gram staining (counter 

staining with H&E) (C). Scare bar = 50 µm.
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Figure 5. 
Proposed mechanism of RESV-mediated stimulation of CAMP production in KC. RESV 

stimulates cellular Cer production and also increases Cer metabolic conversion to sphigosine 

and then SIP by SPHKI (but not SPHK2). SIP activates NF-κB-phosphorylation, leading to 

translocation of phospho-NF-κB to nucleus. NF-κB increases p38MAP kinase activation 

that stimulates C/EBPα by its phosphorylation of Thr 222/226, rather than Ser-21 sites. C/

EBPα binds to the 5'-upstream promoter region of CAMP to upregulate CAMP expression. 

RESV also stimulates CAMP/LL-37 secretion from cells, resulting in enhanced 

antimicrobial defense in epidermis.
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Table 1

Sphingolipid content in human KC exposed to ER stress

Lipid Content (pmol/mg protein ± SD)

Treatment Cer Sphingosine S1P

Vehicle 736.3 ± 41.2 19.3 ± 3.2 5.7 ± 0.3

RESV 818.7 ± 41.9a 83.4 ± 3.8a 9.3 ± 0.3a

Mean + SD.

a
p<0.01 (n=3) vs. vehicle.
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