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Abstract: Molecular modeling approaches are an indispensable part of the drug design process.
They not only support the process of searching for new ligands of a given receptor, but they also
play an important role in explaining particular activity pathways of a compound. In this study,
a comprehensive molecular modeling protocol was developed to explain the observed activity profiles
of selected µ opioid receptor agents: two G protein-biased µ opioid receptor agonists (PZM21 and
SR-17018), unbiased morphine, and the β-arrestin-2-biased agonist, fentanyl. The study involved
docking and molecular dynamics simulations carried out for three crystal structures of the target at a
microsecond scale, followed by the statistical analysis of ligand–protein contacts. The interaction
frequency between the modeled compounds and the subsequent residues of a protein during the
simulation was also correlated with the output of in vitro and in vivo tests, resulting in the set of
amino acids with the highest Pearson correlation coefficient values. Such indicated positions may
serve as a guide for designing new G protein-biased ligands of the µ opioid receptor.

Keywords: µ opioid receptor; molecular dynamics; docking; interaction fingerprints; biased agonists;
SR-17018; PZM21; morphine; fentanyl

1. Introduction

Opioids are effective analgesics widely used for severe pain treatment. However, the majority
of them, including morphine, produce side effects limiting their use, such as respiratory depression,
constipation, and addiction. An epidemic in both western and developing countries of opioid use
disorder and overdose deaths from prescription opioids has led recently to the search for new painkillers
deprived of this action or with limited effects—in particular, respiratory depression. One of the most
interesting approaches is based on the observation that an opioid acting via the µ opioid receptor
may activate intracellular signal pathways with varying strength. These ideas of so-called biased
signaling or functional selectivity suggest that some opioids may activate the G protein signal pathway
and mediate the analgesic effect via the µ opioid receptor and avoid stimulation of the β-arrestin-2
pathway (which seems to be involved in the observed side effects [1]) at the same time. Therefore,
the main interest in the case of the µ opioid receptor ligands is focused on the synthesis of opioid
G protein-biased agonists that preferentially activate the G protein but not the β-arrestin-2 pathway.
Identification of the crystal structure of µ opioid receptors has opened up, on the one hand, a better
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understanding of the structure of opioid receptors and, on the other, the development of new computer
modeling technologies that have enabled the identification and synthesis of new biased opioids. One of
them was PZM21, selected by molecular docking after virtual testing for selective bias activation of the
µ opioid receptor [2]. This substance is in fact characterized by functional selectivity because it activates
the G protein but not β-arrestins. In preclinical studies, PZM21 has been shown to be analgesic, with no
conditioned place preference (CPP) production or locomotor stimulation observed [2,3]; on the other
hand, it led to the development of rapid analgesic tolerance in the hot plate and tail-flick tests in
mice [3,4] and caused respiratory depression [4]. Bohn’s group [5] recently identified a series of biased
µ opioid receptor agonists. Among them, SR-17018 appears to be of great interest because it displays
the highest bias towards G protein signaling compared to β-arrestin-2 recruitment [5] and shows
antinociceptive activity and a very little respiratory suppression in mice [6]. In addition, long-term oral
administration of SR-17018 did not lead to antinociceptive tolerance, prevented morphine withdrawal,
and restored morphine antinociception in morphine-tolerant animals [6].

The emergence of new G protein-biased ligands has stimulated studies aimed at developing
new ligands of this type, as well as research on the detailed mode of action of the already developed
biased compounds. This research involves both experimental and computational studies of various
types. In silico methods support the design and development of new drugs at different levels, starting
from searching for drug candidates, via optimization of their activity and physicochemical properties,
to support in the analysis of their efficiency after introduction to the market [7–9]. Computational
approaches also help in understanding the mechanisms of compound action and simulate processes
occurring during receptor activation [10–12].

Molecular modeling approaches use various data types to derive predictions of compound
activity. Ligand-based methods use information only on the structure of compounds [13–16], whereas
structure-based tools rely on the spatial orientation of atoms of the target protein and use docking to
predict ligand fitting in the respective binding site [17,18]. One ligand–receptor complex returned by
a docking program captures just one moment of the mutual orientation of a compound and protein.
More computationally demanding but also much more informative method is molecular dynamics
(MD), which enables simulation of the behavior of the modeled system (e.g., ligand–protein complex)
in time [19,20].

In this study, we apply docking and MD simulations to explain the activity profiles of selected µ

opioid receptor agents. We compare and analyze using molecular modeling methods, docking and
MD simulations, four selected opioids targeting the µ opioid receptor: novel G protein-biased µ opioid
receptor agonists, PZM21 and SR-17018 [2,5], unbiased morphine, and the β-arrestin-2-biased agonist,
fentanyl. Extensive in silico examination of these ligands with reference to their µ opioid receptor
activity involved docking to three µ opioid receptor crystal structures, MD simulations carried out at a
microsecond scale (2 µs), and the statistical analysis of ligand–protein contacts during simulations.
The interaction frequencies of a compound with the subsequent amino acids were confronted with
the outcome of the selected in vitro and in vivo tests and positions with the highest correlation were
identified. The set of such selected residues should be of particular interest when designing new G
protein-biased µ opioid receptor agents. In addition, the orientation of W2936x48 (residue important for
µ opioid receptor activation) during simulation was examined and confronted with the ligand activity
profiles. The residue numbering provided in superscripts follows the GPCRdb [21] numbering scheme.

2. Results and Discussion

2.1. Comparison of Modeled Ligands and µ Opioid Receptor Crystal Structures

The modeled compounds were compared in terms of their structures and selected physicochemical
properties, which were determined using InstantJChem [22] (Table 1).
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Table 1. Structure and properties of the µ opioid receptor ligands examined in the study.

Compound Symbol Compound Structure µ Opioid
Receptor Activity Molecular Weight * LogP ** # H Bond

Acceptors
# H Bond
Donors

# Rotatable
Bonds

PZM21
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The data gathered in Table 1 draw attention to the relatively high logP value of SR-17018 (4.75)
and as many as eight rotatable bonds in PZM21 and six in fentanyl. The high number of possible bond
rotations can lead to difficulties in obtaining stable conformation in the binding site (for comparison,
there are no rotatable bonds in the morphine structure), whereas logP values affect the ability of
a compound to penetrate the blood–brain barrier. Morphine, despite the rigid structure, is also
characterized by very low logP (0.90) and the highest number of hydrogen bond acceptors: four.

In this study, we used three µ opioid receptor crystal structures—records with the following
PDB codes were used: 4DKL [23], 5C1M [24], and 6DDF [25] (Table 2). The last two crystals refer to
the active conformation of the µ opioid receptor, whereas 4DKL is co-crystallized with BF0, which
acts as a µ opioid receptor antagonist and keeps the protein in its inactive form. Despite preserved
protein activation occurring in 5C1M and 6DDF crystals, these two structures also differ from each
other, as the former is activated via a small-molecule agonist, whereas 6DDF activation occurs via the
highly selective peptide agonist for the µ opioid receptor, DAMGO. The peptide-like-based activation
reflects the naturally occurring process of µ opioid receptor activation; however, the resolution (a very
important factor in terms of the application of a particular structure in molecular modeling tasks) of
6DDF (3.5 Å) is significantly worse than the resolution of 5C1M (2.1 Å).

Table 2. Summary of characteristics of crystal structures used in the study.

PDB ID Receptor State Resolution (Å) Co-Crystallized Ligand

4DKL inactive 2.8 BF0 (Antagonist)
5C1M active 2.1 BU72 (Agonist)
6DDF active 3.5 DAMGO (Peptide agonist)

Due to high variation in the residue positions, resolution, and structure of co-crystallized ligands
(also influencing the shape of the binding pockets, Figure 1), all calculations conducted within the
study were carried out for all three µ opioid receptor crystals.
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Figure 1. Small molecule ligands co-crystallized with µ opioid receptor crystal structures used in
the study.

A comparison of the compound structures presented in Table 1 and Figure 1 indicates that the
ligands co-crystallized with µ opioid receptor (BF0 and BU72) are significantly different from the
analyzed compounds: PZM21, SR-17018, morphine and fentanyl. To describe these structure variations
more formally, the Tanimoto coefficient [26] was calculated for each compound pair using InstantJChem
at default settings (detailed numerical values are provided in Table 3). Its highest values were obtained
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for morphine, and they were equal to 0.764 and 0.595 for BF0 and BU72, respectively. Such high
variation between modeled compounds and the co-crystallized ones might lead to changes in the
protein structure during simulation with PZM21, SR-17018, morphine and fentanyl to adjust the protein
binding site and form energetically favorable ligand–protein complexes.

Table 3. Tanimoto coefficient values between the co-crystallized ligands and the examined compounds.

Modeled Ligand BF0 BU72

PZM21 0.306 0.318
SR-17018 0.297 0.331
morphine 0.764 0.595
fentanyl 0.289 0.322

2.2. Docking

Before docking the modeled compounds, the validity of the methodology was verified via
redocking of BF0 and BU72 to their respective crystal structures. The comparison of the obtained
docking poses with crystallized compound conformations is presented in Figure 2. As docking enabled
us to obtain orientations similar to the co-crystallized compound fitting (RMSD values between the
co-crystallized and docked pose were equal to 1.36 Å and 0.34 Å for BF0, and BU72, respectively),
the analogous approach was used for modeling of PZM21, SR-17018, morphine and fentanyl.
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depicted in Figure 3 and a more detailed analysis of ligand–protein contacts in the form of the interaction
matrix is presented in Figure 4.
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Figure 4. Ligand–protein contacts occurring within complexes obtained in docking to various µ opioid
receptor crystal structures. For comparison, interactions of co-crystallized BF0 and BU72 with respective
crystal structures are included.

Figure 3 clearly indicates that all the compounds occupy the same region of the binding site,
although, due to the structural differences, much less space is taken up by morphine than the other
ligands considered. As shown in Figure 4, all ligands consistently make contact with D1473x32 and the
sixth transmembrane helix (TM6) of the µ opioid receptor for the 4DKL and 5C1M crystal structures.
These observations are consistent with the very recent work of Zhao et al. [27], where docking and
MD simulations were carried out for PZM21, TRV130 (oliceridine), and morphine using one crystal
structure (5C1M) to explain the differences in their functional profiles. On the other hand, the docking
poses obtained for 6DDF did not make such frequent contact with TM6—fentanyl made contact with
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three residues from this protein region, and PZM21 and SR-17018 interacted only with W2936×48 and
I2966×51. However, morphine lacked any contact with TM6. Instead, morphine made contact with five
amino acids from TM3 when docked to 6DDF, whereas for 4DKL and 5C1M, it interacted only with
D1473×32, Y1483×33, and M1513×36 from TM3. For 6DDF-based docking, all the ligands also interacted
with Q1242×60, which is unique for this crystal structure (for 4DKL and 5C1M, contact with this residue
is missing for morphine). PZM21 and SR-17018 also interacted with more amino acids from TM2 (in
comparison to morphine) for 4DKL- and 5C1M-based dockings.

The studied compounds shared interaction patterns presented by Zhao et al., especially in terms
of contacts with the set of key residues: D1473×32, Y1483×33, and H2976×52. However, although the
compounds occupied the same region of the binding site and were oriented similarly in the binding
pockets both in our study and in Zhao’s research, there were also some contacts that we did not
observe in our poses. For example, morphine lacked contacts with Q1242×60 and I1443×29, K3036×58

and W3187×34, and PZM21 did not interact with W133 or Y1483×33.
The obtained interaction patterns were also confronted with the contact networks formed by the

co-crystallized ligands. Antagonist BF0, present in the 4DKL crystal, similarly to modeled compounds,
interacted with D1473×32, M1513×36, and a collection of amino acids from TM6. In contrast, BF0 did not
come into contact with any residue from TM2 but made interactions with several residues from TM5
(unlike morphine, PZM21, SR-17018, and fentanyl). Contact patterns of the co-crystallized agonist
BU72 are more similar to the modeled compounds. BU72 interacted with H54, S55, and Q1242×60 (as
for all examined compounds, except morphine), and it possessed the same interaction network with
TM3 and TM5 as morphine and with TM7 as PZM21. BU72 also contacted H2976x52, and V3006×55

from TM6, but it did not form an interaction with W2936×48.
The variations in the results obtained in different studies and for different crystal structures

indicate the necessity of extending the number of protein structures (either crystal structures or
homology models) used in molecular modeling tasks, e.g., during virtual screening. The co-crystallized
ligand implies the conformation of the binding site; therefore, the output of docking studies
performed for the rigid protein is biased due to the protein adjustment to a co-crystallized agent.
The recommendation of using more than one receptor conformation for docking studies was also
indicated by Mordalski et al. [28] in the case study of beta-adrenergic receptor type 2.

2.3. Molecular Dynamics and Correlation Studies

As docking captures only one particular moment of interaction between a ligand and protein,
it cannot fully explain dependencies between compound behavior towards a given target in relation to
its docking pose. The more poses considered, the higher the amount of information provided. To ensure
study comprehensiveness, extensive MD simulations with a length of 2000 ns were carried out for
each compound–crystal structure combination (12 simulations were run in total). The relative total
number of 1000 frames was produced from each simulation, giving a picture of 1000 ligand–protein
mutual orientations.

The MD results were analyzed from two perspectives: the stability of compound orientations in
the binding site (Figure 5) and changes in ligand–protein contacts that occurred in time (Figure 6).
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Figure 5 indicates that all of the compounds were most stable when simulated with the 5C1M
crystal structure. PZM21 simulated in 5C1M slightly changed its initial position at the beginning
and then remained in the adopted conformation. PZM21 in 4DKL was oscillating around its initial
pose; however, when 6DDF was taken for simulation, the PZM21 pose varied a lot during the whole
simulation time, and the PZM21–6DDF combination resulted in the least stable compound conformation
out of all analyzed setups. The highest variation in the compound pose in the binding site was observed
for morphine in the 6DDF-based simulation, which changed its initial position and left the binding
cavity during the simulation course (after approximately 1000 ns). Fentanyl simulated with 4DKL
and 6DDF moved at the beginning of the simulation from its initial position; then, it kept its pose for
at least 1500 ns, to slightly change again the conformation when the simulation length approached
2000 ns. In 5C1M-based MDs, fentanyl did not move from the initially occupied region of the binding
pocket and the mass center of the compound remained in the same area, with its conformation varying
during the whole simulation.

Analyzing the contact patterns presented in Figure 6, one can see that the characteristic MD
simulation output is the very strong interaction of PZM21 with D1473×32, even during the simulation
with 6DDF, where the compound orientation was in general very unstable (analogous observation also
reported by Zhao et al. [27]). Many research studies have indicated this residue as very important for
activity towards the µ opioid receptor [29,30]. PZM21 also made consequent contact with Y1483x33,
although when simulated with 4DKL, the interaction was formed after approximately 750 ns of
simulation. PZM21 changed its orientation very frequently during simulation with 6DDF; however,
with D1473×32 and Y1483×33, contact was present during the whole simulation. There was also a set of
residues with which it interacted periodically, such as F221, W2936×48, W3187×34, and Y3267×42 (the
most frequent contacts between 1000 and 1500 ns of the simulation).

The orientation of PZM21 within the 5C1M binding site was very stable; nevertheless, even in the
case of this setup, short contact (occurring only between 250 and 500 ns) with I2966×51 and H2976×52

was observed. Within this period, the intensity of interaction with W3187×34 also strongly increased.
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Figure 6. Ligand–protein contacts occurring during molecular dynamics simulations with (a) 4DKL,
(b) 5C1M, and (c) 6DDF µ opioid receptor crystal structure. Positions for which the highest correlation
between the output of the tail flick experiment and interaction frequency were indicated are shaded.

Consistent contact with D1473×32 is also visible for fentanyl (for all crystal structures), although the
interaction is not so strong, as it is in the case of PZM21. This compound also gains interaction with
W2936×48 in the simulation with 6DDF, despite its initial lack (the contact occurs constantly during
the whole simulation). Fentanyl–W2936×48 contact is also present in MDs with 4DKL and 5C1M,
although in the former case, the interactions are relatively sparse.

The last 500 ns of simulation of SR-17018 with 4DKL resulted in the formation of ligand contact
with D1142×50, W2936×48, Y3267×42, and an increase in the contact frequency with D1473×32. At the
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same time, it stopped making contact with V2365×43, I2966×51, H2976×52, V3006×55, and I3227×38. On the
other hand, the simulation of SR-17018 with 5C1M and 6DDF resulted in a very consistent and stable
interaction pattern over time. Only for 6DDF, an increase in contact intensity with Y1483×33 after 500 ns
of simulation and loss of contact with D216 and C217 during the last 500 ns of the simulation were
observed. Interestingly, morphine displayed a very unstable conformation when simulated with 6DDF;
despite the strong interaction with D1473×32, the contact was lost halfway through the simulation
course. In the simulations with 4DKL and 5C1M crystal structures, the contact with D1473×32 occurred
during the whole simulation time; however, it was not as frequent and strong as it was in the case of
PZM21 and SR-17018.

Strong interaction of the modeled compounds with D1473×32 was also reported by Zhao et al. [27].
This finding is consistent for simulations carried out for all crystal structures. However, there is another
observation indicated by Zhao et al., which led to different conclusions when various crystals were
considered. Zhao et al. indicated the formation of a strong interaction of morphine with H2976×52,
related to its shift deeper into the pocket during the simulation (this effect was not observed for PZM21).
Similarly, in our simulations with 5C1M (crystal structure used by Zhao et al.), morphine made contact
with H2976×52 after ~200 ns of simulation, which was maintained consistently until the end of the
simulation by ~1800 ns. On the other hand, PZM21 also came into short contact with this residue
(~300–500 ns), but then the interaction was lost and the compound did not interact with H2976×52,
as reported by Zhao et al. [27].

However, similar to the docking studies, MD simulation output also varied depending on the
crystal structure, as already discussed. Taking into account the described above interaction with
H2976×52, the contact formation with this residue by morphine and its lack for PZM21 was observed
only for simulations with 5C1M. For 6DDF-based studies, the situation is reversed, as morphine
did not make contact with H2976×52 during the whole simulation, but PZM21 started to interact
with this position after ~50 ns of simulation, and the contact was very intense up to ~1000 ns; then,
although the interaction was not so strong, it continued until 2000 ns, when the simulation finished.
In contrast, in the 4DKL-based studies, both morphine and PZM21 came into contact with H2976×52.
For comparison, SR-17018 did not interact with H2976×52 at all for 6DDF; with 5C1M, it continuously
came into contact with this residue (although the contact intensity was not very strong), and for 4DKL,
the interaction was quite strong at the beginning of the simulation, but after ~1500 ns, the compound
changed its conformation and the contact was lost.

These variations in the interaction patterns obtained for different crystal structures, as well as
the changes in compound poses after relatively long simulation times (e.g., SR-17018 in 4DKL, which
adopted a new pose after 1500 ns), confirm the necessity of applying more protein conformations in
structure-based studies and indicate that the simulations should be as long as allowed by computational
resources, as some events might not be observed in shorter dynamics.

The interaction schemes obtained in each MD simulation were confronted with selected
experimental data produced on examined compounds (see [3,5,31] data gathered in Supporting
Information Table S1) to indicate positions that should attract particular attention when developing
new ligands of particular activity profiles. This was done by encoding the interactions occurring in
each frame from the MD simulation in the form of interaction fingerprints (IFPs) [32] and calculating
the Pearson correlation coefficient [33]. The correlation was calculated between the total number of
contacts by the particular ligand with a given residue and the experimental parameter value, i.e.,
the activation of Galphai2 protein (Gai2 activation), activation of G protein-coupled inwardly rectifying
(GIRK) potassium channels, recruitment of β-arrestin-2 (bArr2 recruitment), and G protein-activated
inward rectifier potassium channel 2 (GIRK2 recruitment). In addition, Galphai-mediated cAMP
inhibition value (cAMP inhibition) and efficacy of trafficking of µ opioid receptor to Rab-5 positive
endosomes (Rab5 trafficking) were utilized.

The outcome of the studies investigating the correlation between the contact frequency between
ligand and a particular amino acid and the outcome of experimental tests is presented in Figure 7
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and in Table 4. Cases with the highest values of the Pearson coefficient are presented in the figure,
and the remaining highly correlated cases are included in Table 4 (respective charts are presented in the
Supporting Information, Figure S1). Frames around each separate chart indicate the crystal structure
for which the particular correlation was examined.
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blue: 6DDF; (b) indication of residues with the highest correlation presented in (a), (c) ligand–protein
interaction diagrams obtained during MD simulations for residues presented in (a).



Molecules 2020, 25, 4636 12 of 16

Table 4. Amino acids with the highest values of the Pearson correlation coefficient (above 0.94) between
the ligand–residue contact frequency and experimental value (data produced on the basis of the pEC50

values of selected agonists for some of the pathways measured at the µ opioid receptor gathered in
Gillis et al. [31]).

Crystal
Structure/Parameter.

Gai2
Activation

cAMP
Inhibition bArr2 Recruitment Rab5

Trafficking
GIRK

Activation
GRK2

Recruitment

4DKL T1202×56,
I3227×38

T1202×56,
V2365×43 F1523×37, R211

5C1M I2966×51 L1212×57, I3227×38 Y1483×33 I3227×38

6DDF W3187×34 W3187×34
L1212×57, W133,

I1443×29, C3217×37,
G3257×41

W133 W133, I1443×29

Out of the six presented charts with the highest experiment–contact pattern correlations, three
were related to simulations with 6DDF, and in the case of three of them, high correlations were found
for the β-arrestin-2 recruitment assay. The list of highly correlated amino acids was composed of just
one residue for 5C1M and 4DKL (I3227×38). For the former crystal, it was obtained in the β-arrestin-2
recruitment experiment, which led to a Pearson correlation coefficient above 0.98 (it was equal to 0.985),
whereas for 4DKL, it was cAMP inhibition and Gai2 activation experiments, which were highly related
to the interaction frequency of compounds with I3227×38 during MD simulations (Pearson correlation
coefficients were equal to 0.997 and 0.998, respectively). Moreover, 6DDF-based correlations indicated
amino acids from different regions of the protein, W133 and I1443×29, with the former related to the
β-arrestin-2 recruitment assay and experiments based on GRK2 recruitment.

The results indicate that despite extensive simulation time (2 µs) enabling significant changes
in the protein structure, the initial conformation forced by the co-crystallized ligand influenced the
results during the whole simulation time. The correlation coefficients between the ligand–contact
frequency and the outcome of experimental studies vary significantly for a particular crystal structure.
The highest number of experiments with any “highly correlated” residue occurred for 6DDF.

The positions of residues gathered in Table 4 are visualized in the respective crystal structures in
Figure 8.
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output obtained for (a) 4DKL, (b) 5C1M, and (c) 6DDF. PZM21 visualized for reference.

When the unbiased morphine is confronted with biased agonists examined in the study, it appears
that, in general, morphine interacts less intensively with D1473×32, which is consistently observed
for all crystal structures, but this is most visible for 5C1M-based simulations. On the other hand,
in 5C1M-based simulations, morphine interacted more frequently with K3335×40, V2365×43, and I3016×56.
Simulations with 4DKL revealed more intense interaction of morphine with W2936×48 in comparison
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to biased ligands, whereas with 6DDF-based studies, PZM21 and SR-17018 interacted more frequently
with I2966×54, I3227×38, and Y3267×42. These abovementioned residues should be monitored; however,
their discrimination potency between biased and unbiased ligands should be verified for a higher
number of compounds, with each activity profile considered.

Zhao et al. indicated W2936×48, W3187×35, Y3267×42, and Y3367×53 as residues that affect the
receptor function [27]. These positions were not indicated in our statistical analyses; however, it should
be pointed out that the method of residue indication in our study differed from Zhao’s approach.
We focus on the compound contacts with the protein and analyze its behavior in the binding site,
whereas Zhao et al. examined relative positions of particular amino acids and on this basis discussed
the role of particular amino acids with reference to the activity profile of examined compounds.
Therefore, the conclusions drawn from MD simulations in our study and those obtained by Zhao et al.
should be compared cautiously and considering the above-described methodological differences.

To examine the influence of the modeled ligand, as well as to correlate results obtained in the MD
simulations with functional activity of the µ opioid receptor, an analysis of the position of W2936×48

(residue important for the activation of opioid receptors [27]) for various setups was carried out
(Figure 9). Its conformational changes imply the arrangement of the fifth and sixth transmembrane
helices (TM5 and TM6), transmitting a signal to another protein region (intracellular loop).
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The results show that the W2936×48 position changed during the simulations in the majority
of cases. When the µ opioid receptor was in its inactive conformation (4DKL crystal), the protein
simulation with the agonistic agents resulted in changes in its orientation. Interestingly, the direction
of changes varies depending on the ligand. For morphine, W2936×48 moved lower, towards the inner
part of the receptor, whereas for fentanyl and SR-17018, it shifted towards the extracellular part of
the protein. These events took place at the beginning of the simulations and the residue orientation
remained the same until the end of the simulation. PZM21 initially induced a similar change in
W2936×48 position as morphine; however, in the middle of the simulation, the residue adopted a
similar orientation for a while as in the case of SR-17018 and fentanyl. The activated form of the
receptor present in the 5C1M crystal structure also led to variation of the W2936×48 position during
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simulation: in this case, morphine and SR-17018 led to similar changes in the residue position, and for
PZM21, variation in the W2936×48 position occurred which was similar to its simulation with 4DKL.
Interestingly, the W2936×48 position did not change during simulation with fentanyl. In simulations
fentanyl–6DDF and SR-17018–6DDF, a consistent position of W2936×48 was also observed. Morphine
simulated with 6DDF slightly changed its orientation at the beginning of the simulation towards the
extracellular part of the receptor, and the PZM21–6DDF simulation resulted only in a minimal change
in W2936×48 orientation.

3. Materials and Methods

The compounds were prepared for docking using LigPrep [34] from the Schrödinger Suite:
protonation states were generated at pH 7.4+/−0.0, and all possible stereoisomers were enumerated;
other settings remained at default. The crystal structures used in the study were fetched from
the PDB database [35] and prepared for docking using the Protein Preparation Wizard from the
Schrödinger Suite. Mass center of the co-crystallized ligand constituted the grid center in each case,
and the grid size was set to 23 Å. The docking was carried out in Glide [36] in extra precision mode.
The obtained ligand–receptor complexes with the best docking score constituted an input for MD
simulations. They were carried out in Desmond [37], using the TIP3P solvent model [38], POPC
(palmitoyl-oleil-phosphatidylcoline) as a membrane model, the OPLS3e force-field under the pressure
of 1.01325 bar, and a temperature of 300 K. The box shape was orthorhombic, with a size of +10 Å ×
+10 Å × +10 Å. In each case, the system was neutralized by addition of the appropriate number
of Cl- ions and relaxed before simulation; the duration of each simulation was equal to 2000 ns.
The interactions between ligands and the respective proteins during MD simulations were analyzed
using Simulation Interaction Diagram from the Schrödinger Suite. Interactions occurring in each
frame of the performed simulations were encoded in the form of interaction fingerprints (IFPs) [29].
Then, for each nonzero column, the Pearson correlation coefficient between the total number of
contacts formed with a particular ligand by a given residue with the experimental parameter value
was determined.

4. Conclusions

In this study, in silico examination of the activity profiles of selected µ opioid receptor agents
(PZM21, SR-17018, morphine, and fentanyl) was carried out. Three crystal structures of the target
were used for docking and MD simulations and the obtained ligand–protein interaction patterns were
confronted with the outcome of selected experimental tests. The variation in the obtained results clearly
indicates the necessity of using as much structural data as possible in structure-based studies and not
focusing on one receptor conformation. Each computational setup provided new insight into the given
problem and indicated a new set of amino acids that should be taken into account when examining
compound interaction profiles in silico. Moreover, the study enabled the indication of amino acids
that should attract special attention when designing new ligands with particular properties: W133,
I1443×29, I3227×38. Apart from these residues, there were over a dozen positions correlated with other
experimental output, for single crystal structures, which also should be taken into account during µ

opioid receptor ligand modeling.

Supplementary Materials: The following are available online. Table S1. In vitro and in vivo data used in the
study (expressed in the form of pEC50 values). Figure S1. Correlation charts between the interaction frequency
with a particular residue and outcome of experimental tests.
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