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Abstract

The objective of this study is to investigate and to simulate the gaze deployment of observ-

ers on paintings. For that purpose, we built a large eye tracking dataset composed of 150

paintings belonging to 5 art movements. We observed that the gaze deployment over the

proposed paintings was very similar to the gaze deployment over natural scenes. Therefore,

we evaluate existing saliency models and propose a new one which significantly outper-

forms the most recent deep-based saliency models. Thanks to this new saliency model, we

can predict very accurately what are the salient areas of a painting. This opens new avenues

for many image-based applications such as animation of paintings or transformation of a still

painting into a video clip.

Introduction

In the human brain, the processing of visual information requires up to 30% percent of the

cortex, which is by far the most important when compared with other senses, such as touch

and hearing. However, we are not able to process, at once, all visual information within our

visual field. To deal with our limited visual processing resources, we have developed an active

and highly dynamic process allowing us to sample our visual field. This process is called the

visual attention [1].

Visual attention is composed of two different kinds of attention, namely overt and covert

attention. The former is extremely interesting in the context of this study since this form of

attention involves eye-movements. Therefore, the overt attention can be easily monitored

thanks to the use of eye-tracking devices. The later form of attention, namely the covert atten-

tion, is more subtle since it does not involve eye-movements. The covert attention requires a

volitional effort to direct our attention to a specific area of the visual field. This is clearly the

case when we glance at something out of the corner of our eyes. This manifestation is not easily

observable and would require to use event-related potentials or electroencephalography [2]. In

this paper, we are then interested in the overt attention. It is also important to distinguish

between bottom-up and top-down influences which account for our gaze deployment. The

bottom-up attention is unconscious and does not require any conscious effort to move our

gaze. This means that our gaze is effortlessly drawn by some parts of our visual field, which are

salient. The definition of top-down is more tricky. Indeed, we can first consider that the top-
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down influences are related to the task at hand, as perfectly illustrated by the seminal study of

Yarbus [3]. Depending on the task observers have to perform, the gaze deployment is signifi-

cantly altered. Beyond the task at hand, top-down influences are also related to observers’

experience as well as their own characteristics such as age [4, 5] and their cultural experiences

[6].

The computational modelling of visual attention mainly consists in determining in an auto-

matic manner where an observer looks at [7]. This aims to simulate the overt bottom-up visual

attention and therefore to explain the contributions of the visual features to the gaze deploy-

ment [8–10] Since the first models of visual attention [11, 12], a number of progress has been

made. The performances of such models have significantly increased. This comes with the def-

inition of new eye-tracking experiments allowing us to collect large scale eye-tracking dataset.

New and efficient similarity metrics have been also defined to compare actual eye-tracking

data with predicted one [13–15] More recently, a new generation of models, relying on deep

networks, has brought a new momentum in this field of research, boosting our ability to pre-

dict salient areas [16–18]. Most of deep saliency models are trained with eye-tracking data col-

lected over natural scenes. Such models perform best over this kind of visual scenes whereas

their performances are significantly reduced when the input stimulus does not belong to such

a category, such as webpages, UAV (Unmanned Aerial Vehicles) imagery [19], comics [20] to

name a few. To cope with the lack of generalisation of visual attention models, it is common to

fine-tune deep saliency models with eye-tracking data collected over the target visual scenes,

such as comics [20] or webpages [21].

In this paper, we are interested in the design of a new deep saliency model to predict the

overt bottom-up visual attention over paintings. For that purpose, we built a new eye-tracking

dataset composed of 150 paintings stemming from five art periods, going from romanticism to

fauvism periods. We first analyze the main characteristics of the visual deployment of observ-

ers while they freely viewed these paintings.

During the last decade, some studies investigated how the visual salience of paintings influ-

ences our gaze deployment. In [22], the authors investigated the influence of visual salience on

abstract and depictive paintings. Two experiments were conducted, one in free-viewing and

the other in target-search. The salience was estimated thanks to low-level visual features, such

as color, luminance and orientation. The authors demonstrated that the low-level visual

salience has a significant effect in attracting observers’ gaze in all conditions. In 2012, Massaro

and his colleagues [23] went further by investigating both the influences of bottom-up and

top-down processes on visual behavior. They observed that top-down processes prevailed over

low-level visual bottom-up processes when paintings illustrate a human subject. Koide et al.

[24] compared the visual deployment of novice and expert in art, while viewing paintings.

They found significant differences between both populations. More specifically, fixations of

experts are less driven by low-level features than those of novices, indicating that the visual

deployment of experts in art relies more on high-level features than novice observers. In 2017,

the authors [25] studied eye movements of children and adults looking at five Van Gogh paint-

ings. As in the previous studies, authors tried to disentangle the bottom-up influences from

the top-down ones. As expected, they found differences between children and adults [4, 5, 26].

Their results suggest that the bottom-up processes did not play a major role when adults

viewed the paintings. The top-down processing is more important for adults than for children.

As for the aforementioned studies, we also investigate the ability of existing saliency models

to predict where an observer look at. We expect that deep learning saliency models signifi-

cantly outperform traditional (i.e. non-supervised and non-deep) saliency models, even if they

have been trained on natural scenes. However, because of the poor generalization of existing

saliency models when exposed to new kinds of stimuli, we believe we can go further. We then
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fine-tune an existing deep model to test whether or not we can improve its ability to predict

where we look at.

The paper is organized as follows. First, we present the proposed eye tracking experiments

conducted on 150 paintings. The second part presents the main gaze-based characteristics. We

discuss whether or not they are similar to gaze-based characteristics computed on natural

scenes. The third part evaluates the ability of computational models of visual attention to pre-

dict where we look at. We put to the test existing saliency models that are based either on

handcrafted features or on deep networks. We also fine-tune a deep learning-based saliency

model and we demonstrate an increase of the performance. We conclude the paper in the last

section.

To sum up, our contributions are:

• the design of a new eye-tracking dataset over 150 paintings, belonging to five art periods;

• the analysis of gaze deployment over the proposed set of paintings;

• a benchmark of existing saliency models;

• a new and dedicated deep model for predicting saliency over paintings.

Eye tracking experiment

In this section, we present the details of our eye tracking experiment.

Stimuli

In painting history, there are many periods and movements. The 18th century and early 19th

century are usually seen as a crucial period in which artists move from figurative realism to

new ways for depicting the daily life. Indeed, during this short period, paint tubes made possi-

ble to directly paint en plein air, i.e. painting outside. Painting en plein air significantly changed

the painting conditions [27] (e.g. limited set of materials, amount of details in the scene,

changing environment, changing light, etc). The Romanticism [28] and Realism movements

[29] emerged. The famous artists of Barbizon school are major actors of this period. Soon

thereafter, photography appeared and caused concerns about painting and realism. If a painter

skill is limited to copy details of a scene, photography tended to overcome this limitation. The

ability to paint outside (en plein air) and the emergence of photography encouraged painters

to go beyond photographic reality. Thereby Impressionism movement [30] focused more on

visual feeling, while Pointillism [31] tried to produce more vibrant color. Finally, Fauvism

movement [32] explored a non-naturalistic use of color. Nevertheless, these movements still

belong to figurative painting in which the subject is still recognizable.

In this paper, we choose five art movements, namely realism, impressionism, pointillism,

and fauvism. In addition to this, we also selected paintings from the romanticism period, not

only for historical reasons but due to the willingness of romanticism painters to sublimate the

beauty of nature in a realistic manner. Fig 1 presents a chronological view of the chosen art

periods as well as famous painters for each of these periods.

The proposed dataset is composed of 150 paintings. Each of the 5 categories consists of 30

paintings. The titles of paintings used in this study are given in S1 File.

During the experiments, it was required to show paintings in a similar way. For that pur-

pose, we used a grey image with a 16/9 ratio in which the painting is centered without any

deformations. Left and right grey stripes are more or less important according the aspect ratio

PLOS ONE Looking at paintings

PLOS ONE | https://doi.org/10.1371/journal.pone.0239980 October 9, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0239980


of paintings. Several examples are given in Fig 2. In addition, all paintings are in a landscape

format.

We do not normalize the stimuli in luminance and contrast. The rationale of this choice is

to be as close as the original paintings downloaded on Internet. However, for the sake of com-

pleteness, we report below the statistics concerning the Michelson contrast and average lumi-

nance and chrominance. We observe a significant difference in the average luminance for the

five art movements, one-way ANOVA F(4, 140) = 8.00, p�0.05. Post hoc comparisons using

the Tukey HSD test indicated that the average luminance for Impressionism period (M = 0.44,

SD = 0.08) was significantly different from the average luminance for Romanticism period

(M = 0.36, SD = 0.11). This is also the case between Realism and Pointillism, between Romanti-

cism (M = 0.36, SD = 0.11) and Fauvism (M = 0.45, SD = 0.06), and between Romanticism

(M = 0.36, SD = 0.11) and Pointillism (M = 0.48, SD = 0.07). Regarding the average chromi-

nance (i.e. Blue and Red), we do not observe a significant difference between art movements,

one-way ANOVA F(4, 140) = 0.28, p = 0.88, F(4, 140) = 1.04, p = 0.38, respectively. Regarding

the contrast in luminance, we do not observe a significant difference between art movements,

one-way ANOVA F(4, 140) = 1.21, p = 0.30.

Apparatus and procedure

To perform the eye-tracking experiment, observers sit down in front of the screen. After a

9-point calibration session, paintings are displayed onscreen in a random manner both

between subjects and stimuli. Stimuli are displayed for 4 seconds. Before each stimulus, a grey

background is displayed for 2 seconds in-between. Any marker was used prior the onset of the

stimulus in order both to guarantee a variety of starting points among obervers and to reduce

Fig 1. Main painting movements of 18th and early 19th century. The duration of each movement is approximately given. For each

movement, we also give the name of some famous painters.

https://doi.org/10.1371/journal.pone.0239980.g001

Fig 2. Examples of 4 scanpaths overlaid on paintings. The circles indicate the visual fixations. The number is the

visual fixation index. From left to right: Vasilyev, After a rain country road, 1869; Sorolla, Bacchante, 1886; Pechstein,

Bank of a lake, 1910; Fantin-Latour, Bowl of fruits, 1857; Sisley, Chestnut avenue in la celle Saint Cloud, 1865; Dubois-

Pillet, The Banks of the Seine at Neuilly, 1886.

https://doi.org/10.1371/journal.pone.0239980.g002
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the central bias [33] In order to limit the visual fatigue, the experiment is decomposed into 6

sessions during which 25 paintings are shown. Each session is preceded by a calibration phase.

A fixed-head SMI RED eye-tracker with a sampling frequency of 60Hz was used. Although

this sampling frequency is low, it does not hinder the fixation-based analysis we aim to carry

out in this study. However, it prevents us to make a saccade-based analysis. We recorded the

guiding eye. The viewing distance was 87 cm and the diagonal of the screen was 56 cm. The

screen subtended about 32˚ horizontally and 16˚ vertically. The screen resolution was

1600 × 800. The stimuli which were displayed in full-screen mode have a 1600 × 900 resolu-

tion. The number of pixel per degree of visual angle is then 49. A chin-rest was used in order

to avoid any head movements and to increase the overall accuracy of collected data.

Participants

Twenty one participants, 16 men and 5 women, took part in the experiments. Except one par-

ticipant aged 50, all participants were aged between 20 and 30 year old. Participants were

asked to look at paintings in a free-viewing task. The instruction given to participants was then

to look at the paintings as naturally as possible.

In total, we collected in average 2100 fixations per participant, and overall more than 44000

fixations were collected.

The experiment has been conducted according to the principles expressed in the Declara-

tion of Helsinki. Participants were properly instructed of the experiment goal and gave a verbal

consent to participate in the experiment. Participant’s names were never recorded and eye

tracking data were fully analyzed anonymously. For all these reasons, the approval of ethic

committee was not required.

Human saliency map

A common practice to infer human saliency map from eye tracking data is to compute first a

fixation map. This map represents the collected fixations located on the definition space of the

image, called in the following O. More formally, the fixation map f : O � R2
! Rþ

, where O

= [1. . .N] × [1. . .M] with N and M the resolution of the input stimulus [34], is defined as

below:

f ðxÞ ¼
XK

i¼1

dðx � xiÞ � tðxiÞ ð1Þ

where, xi represents the 2D spatial position of the ith fixation, K is the total number of fixations,

δ is the Kronecker delta, such that δ(a) is 1 if a = 0, 0 otherwise. τ(xi) is a positive weight

applied to the current fixated location. In the classical approach, we consider that all fixations

have the same weight, i.e. τ(xi) = 1, 8i.
The fixation map is then convolved with a 2D isotropic Gaussian function Gσ [13, 34] to

produce a continuous saliency map S (S : O � R2 ! ½0; 1� (or [0, 255] for the sake of the visu-

alization)):

SðxÞ ¼ N ðf ðxÞ � GsðxÞÞ ð2Þ

where, N is a peak-to-peak normalization operator. Gσ is an isotropic 2D Gaussian kernel.

The standard deviation σ, expressed in pixel, shall represent the number of pixels falling into

the fovea; in this case, σ represents one degree of visual angle, i.e. 49 pixels.

PLOS ONE Looking at paintings

PLOS ONE | https://doi.org/10.1371/journal.pone.0239980 October 9, 2020 5 / 20

https://doi.org/10.1371/journal.pone.0239980


Results and analysis

In this section, we present the analysis of the eye tracking data we collected.

Scanpath and heat map visualization

Fig 2 illustrates four scanpaths overlaid on six paintings. The scanpaths are composed of fixa-

tions, illustrated thanks to circles, and saccades, represented by the straight line joining two

fixation points. In the following, we analyze the distribution of fixation durations as well as

saccade amplitudes.

Fig 3 illustrates some heat maps. These maps are color representation of saliency maps.

They are very convenient to quickly determine where observers look at. The reddish parts cor-

respond to the most visually salient areas.

Gaze-based characteristics

Fig 4 illustrates the distribution of fixation durations (on the left), the average fixation time per

painting (on the middle) and the distribution of saccade amplitudes (on the right).

We observe that the distribution of visual fixation durations follows a long-tailed asymmet-

ric distribution. The median fixation duration is equal to 238 ms. These observations are simi-

lar to what researchers are used to observe on natural scenes [35]. We also examine the total

fixation time, which is the sum of fixation durations over the paintings divided by the number

of observers. On Fig 4, we sort in ascending order the fixation time. The painting which has

the highest fixation time, equal to 3550 ms, is Morning in a pine forest, Ivan Shishkin, 1889.

Fig 3. Examples of heat maps for 3 paintings. From left to right: Delacroix, Odalisque, 1825; Georges Braque, Still life
with jugs and pipe, 1906; Girtin Kirkstall, Abbey Yorkshire, 1801.

https://doi.org/10.1371/journal.pone.0239980.g003

Fig 4. (Top) Fixation durations (left), average fixation time per paintings, sorted in ascending order (middlle) and the

distribution of saccade amplitudes (right). (Bottom) Highest fixation time for Morning in a pine forest, Ivan Shishkin,

1889 (left) and shortest fixation time for Paysage avec du betail au limousin, Jules Dupre, 1837. (right)

https://doi.org/10.1371/journal.pone.0239980.g004
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The painting with the shortest fixation time, equal to 1896 ms, is Paysage avec du betail au lim-
ousin, Jules Dupre, 1837. These paintings are illustrated on the bottom of Fig 4 One obvious

difference between these 2 paintings concerns the number and the size of the visually impor-

tant areas. In the former, there are 4 regions of interest, i.e. the four bears. They are in close

proximity to each other and located on the bottom center of the paintings. Regarding the latter

painting, the number of visually important areas is much higher than for the previous painting.

In addition, except the two central big trees, these visually important areas are small and occu-

pied a large space horizontally. These previous observations could explain why the viewing

time is so small for the paintings Paysage avec du betail au limousin, Jules Dupre, 1837. In

order to get the maximum information during the 4 seconds of viewing, observers may jump

quickly from one area to another. This strategy would reduce the fixation duration and would

allow observers to scan the whole painting. A one-way ANOVA was conducted to compare

the effect of art movements on fixation time. Result indicates that there is no significant effect

of art movements on the fixation time F(4, 140) = 0.69, p = 0.59.

The distribution of saccade amplitudes is a long-tailed asymmetric distribution, as classi-

cally reported in the literature, which could be easily simulated by a Gamma distribution [36].

The median saccade amplitude is equal to 4.6 degrees of visual angle.

Fig 5 presents the polar plot of the joint distribution of saccade amplitudes and orientations.

The radial axis gives the saccade amplitude in degrees whereas the angular coordinate repre-

sents the saccade orientation. We observe a strong horizontal bias, indicating that observers

preferably moves their eyes along the horizontal axis. There are much more horizontal sac-

cades than vertical ones. We compare the observed joint distribution with distributions com-

puted over natural scenes, conversational videos and webpages as proposed in [37, 38]. These

Fig 5. Joint distribution of saccade amplitudes and orientations (Top-left). Horizontal and vertical cross sections of

the probability distribution for horizontal saccades (red plot) and vertical saccades (blue plot) in function of the

saccade amplitudes, respectively (top-right). On the bottom, the joint distributions for natural scenes, conversational

videos and webpages are illustrated (adapted from [37, 38]).

https://doi.org/10.1371/journal.pone.0239980.g005
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distributions are illustrated on the bottom of Fig 5. Qualitatively speaking, the joint distribu-

tion of saccade amplitudes and orientations observed on paintings is close to the distribution

computed over natural scenes. To objectively assess the similarity between distributions, we

compute the correlation coefficient as well as the Kullback-Leibler divergence between the

paintings joint distribution and distributions computed over natural scenes, conversational

videos and webpages. The correlation coefficients are all positive and highly significant

(p�0.05); they are equal to 0.93, 0.67 and 0.62, respectively. The Kullback-Leibler scores are

equal to 0.07, 0.31 and 0.29, respectively. These scores support the observation that the gaze

deployment over the proposed paintings is very similar to the gaze deployment over natural

scenes.

Fig 6 illustrates the joint distributions of saccade amplitudes and orientations for the five

art movements independently. We observe a strong horizontal bias for the five art movements.

There was a positive correlation between the different art movements (see Table 1); all correla-

tion values are highly significant, p� 0.05.

Table 2 presents fixation durations and saccade amplitudes per art movement. The average

fixation duration for the 5 paintings categories is equal to 285, 286, 283 and 279 ms for Roman-

ticism, Realism, Impressionism, Pointillism and Fauvism, respectively. A one-way ANOVA

was conducted to compare the effect of art movements on fixation durations. There was no

significant effect of art movements on fixation durations for the five art movements F(4,

33230) = 1.98, p = 0.09.

Concerning the average saccade amplitudes, they vary between 5.1 and 5.4 degrees of visual

angle, as indicated in Table 2. A one-way ANOVA was conducted to compare the effect of art

movements on saccade amplitudes. There was a significant effect of art movements on saccade

amplitudes for the five art movements F(4, 30188) = 4.05, p = 0.002. Post hoc comparisons

using the Tukey HSD test indicated that the mean saccade amplitudes for Realism period

(M = 5.14, SD = 3.94) was significantly different than the saccade amplitudes for Impression-

ism period (M = 5.41, SD = 4.09). A significant difference is also observed between saccade

Fig 6. Joint distribution of saccade amplitudes and orientations for the five periods, e.g. Romanticism, Realism, Impressionism, Pointillism and

Fauvism, are illustrated.

https://doi.org/10.1371/journal.pone.0239980.g006

Table 1. Correlation coefficient between joint distributions of saccade amplitudes and orientations.

Romanticism Realism Impressionism Pointillism Fauvism

Romanticism 1.00 0.96 0.95 0.96 0.94

Realism 0.96 1.00 0.97 0.95 0.94

Impressionism 0.95 0.97 1.00 0.96 0.95

Pointillism 0.96 0.95 0.96 1.00 0.94

Fauvism 0.94 0.94 0.95 0.94 1.00

https://doi.org/10.1371/journal.pone.0239980.t001
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amplitudes of Impressionism period (M = 5.41, SD = 4.09) and saccade amplitudes of Pointil-

lism period (M = 5.19, SD = 3.85).

Saliency distribution in paintings

Fig 7 presents the average saliency distribution of salience (on the left) and two examples on

two paintings (on the right).

When we aggregate all human saliency maps, we observe that there is a strong center bias.

This observation was common on natural scenes, for which observers tend to look towards the

screen center, whatever the salience [33, 39]. For paintings, a similar trend is observed. The

marginal vertical and horizontal saliency distributions, on the bottom and the left-hand side

respectively, present a strong peak near the center of the image. This observation is not so sur-

prising since the painting category and the scene layout are rather similar to what we observe

on natural scenes.

Inter-Observers Congruency (IOC)

In this section, we evaluate the congruency between obervers. The IOC score reflects the con-

gruence or the variability among different observers looking at the same stimulus. We follow

the procedure described in [40] and in [41].

The computation process of IOC consists of several steps. First the saliency map of all

observers except one is computed in a leave-one-out fashion. This saliency map is then

binary thresholded to keep the top 25% most salient pixels. Then the percentage of the

excluded observer’s fixations that fall into the thresholded salient areas is determined. For a

given stimulus, the final IOC score is the harmonic mean of the scores of all observers. This

score is in the range [0, 1], where 0 indicates the lowest congruency (or the highest

Table 2. Fixation durations and saccade amplitudes per art movement. The average, standard deviation and number of fixations/saccades are reported.

Romanticism Realism Impressionism Pointillism Fauvism

Fixation

Duration 285±164 286±161 281±166 283±166 279±165

Number 6676 6698 6496 6713 6652

Saccade

Amplitude 5.27±4.12 5.14±3.94 5.41±4.09 5.19±3.85 5.25±3.73

https://doi.org/10.1371/journal.pone.0239980.t002

Fig 7. Saliency distribution on paintings. On the left, the average saliency computed over all paintings. On the right,

two examples of saliency distribution for the paintings (Landseer, A highland landscape, 1830; Vasilyev, After a rain
country road, 1869).

https://doi.org/10.1371/journal.pone.0239980.g007
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dispersion) and 1 indicates the highest congruence (or the lowest dispersion). In the latter

case, it would mean that all observers have exactly looked at the same areas, but not necessar-

ily in the same order.

Fig 8 gives the average IOC per painting, sorted in ascending order. The median value is

0.683. The lowest is equal to 0.433, for the painting The Orchard, Vlaminck, 1905 (Fauvism

period). The highest value is 0.844, for the painting Bodegon con salmon, Goya, 1812 (Romanti-

cism period). Scanpaths for these two paintings are illustrated on the right hand side of Fig 8.

As expected, the lowest agreement between observers is observed for a painting containing a

number of visual information, very rich, colorful and quite complex to analyze in a glance (Fig

8, top (right-hand side)). This painting invites observers to explore and to find out details. At

the opposite the painting having the highest IOC is rather simple and contains an unique

object standing from the background. Observers, except one who looked in the background,

focused on the object in the foreground (Fig 8, top (right-hand side)).

We also perform the IOC analysis per art movement. The average IOC scores and their

standard deviations are 0.67±0.07, 0.68±0.05, 0.61±0.14, 0.58±0.14 and 0.62±0.14, for

Romanticism, Realism, Impressionism, Pointillism and Fauvism, respectively. A one-way

ANOVA was therefore conducted to compare the effect of art movements on the IOC scores.

There was a significant effect of art movements on the inter-observers congruency for the

five art movements F(4, 140) = 3.47, p = 0.009. Post hoc comparisons using the Tukey HSD

test (p< 0.05) indicated that the IOC scores for Romanticism period (M = 0.67, SD = 0.07)

was significantly different than the IOC scores for Pointillism period (M = 0.58, SD = 0.14). A

similar observation is made between Realism (M = 0.68, SD = 0.05) and Pointillism periods

(M = 0.58, SD = 0.14). In addition, the lowest average IOC score is observed for the Pointil-

lism period. These results underline that the Pointillism painting style, which consists in plac-

ing small and distinct colors next to each other to form an image, affects the visual gaze

deployment. It could be due to the visual complexity of this style, which could alter our ability

to interpret the visual scene. For a good understanding of such paintings, more visual infor-

mation might be required to get the whole meaning of the scene. However, deeper analysis

would be required to draw a definitive conclusion regarding this observation. From these

results, we can also assume that it would be more difficult to predict the salient areas on

paintings belonging to the Pointillism period. In the next section, we verify this assumption

by evaluating saliency models.

Fig 8. On the left: Inter-Observers Congruency (IOC) per paintings. On the right: the painting (The Orchard,

Vlaminck, 1905) having the lowest (top) and the highest IOC (Bodegon con salmon, Goya, 1812) (bottom).

https://doi.org/10.1371/journal.pone.0239980.g008
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Do computational models of visual attention predict well the

salience of paintings?

In this section, we evaluate the ability of existing saliency models to predict where observers

look at when they freely-view paintings displayed onscreen. We also tailor an existing model

to predict the salience of paintings.

Method

To carry out the evaluation, we use quality metrics used in the MIT benchmark [14]:

• Correlation Coefficient, CC 2 [−1, 1], evaluates the degree of linearity between two saliency

maps. CC = 1 indicates that there is a perfect linear relationship between the two maps;

• SIM, SIM 2 [0, 1], represents the similarity between two saliency map distributions, evalu-

ated through the intersection between histograms of saliency. SIM = 1 indicates the highest

similarity;

• AUC, AUC 2 [0, 1], is the area under the Receiver Operating Characteristics (ROC) curve.

We classically use two implementations of AUC, namely AUC-J and AUC-B. Both metrics

measure how well the predicted saliency map of an image predicts the ground truth human

fixations on the image. The AUC is determined by plotting the ROC curve thanks to binary

thresholdings. The difference between AUC-J and AUC-B relies on how true and false posi-

tives are calculated.

• KL, KL 2 [0, +1[, is the Kullback Leibler divergence between the predicted and the human

saliency maps. KL = 0 indicates a perfect similarity between the two maps.

More details about these metrics can be found in [13, 14, 42].

We evaluated 4 non-supervised handcrafted-based and 4 deep learning-based saliency

models. The 4 non-supervised models are GBVS [43], RARE2012 [44], AIM [45] and AWS

[46]. The 4 deep learning-based models are MLNET [47], deepGAZEII [16], SALICON [17],

SAM-VGG and SAM-ResNet [18]. Table 3 presents the main characteristics of the four tested

deep models. All of them rely on a deep network dedicated for object recognition, such as

VGG-16/19 [48] and ResNet [49]. The main idea behind the proposed architectures is to lever-

age these CNN in order to extract deep features; these features are then used to determine the

salient part of an image. For this purposed, different architectures have been proposed. They

could be multiscale, such as SALICON, or involve a shallow network such as MLNET and

DeepGazeII. SAM models leverage attentive Convolutional LSTM (Long Short-Term Mem-

ory) to enhance saliency features. Regarding the loss function, MLNET used a weighted

Euclidean distance in order to give more importance to errors on salient areas. SAM models

used a combination of saliency-based losses, which turns out to be very efficient [50]. The data-

sets used to train these models are all composed of natural scenes. Note that SALICON dataset

does not consist of eye-tracking data but of mouse tracking data. Another interesting point to

underline is the number of trainable parameters. As given by Table 3, SAM-ResNet model has

the highest number of trainable parameters (� 70 Millions) whereas MLNET has the lowest

number of trainable parameters (� 15 Millions).

Qualitative analysis

Fig 9 presents a subjective comparison between human and predicted saliency maps. On the

first row, the original image and the human saliency map are shown. The second row presents
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saliency maps computed with the four non-supervised saliency models. The last row illustrates

the saliency maps predicted by deep models.

It is noticeable that deep saliency maps are much more focussed than non deep saliency

maps. They, in addition, seem much more similar to the human saliency map than non deep

saliency maps. To make this point clear, we proceed in the next section to a quantitative analy-

sis of the similarity degree between human and predicted saliency maps.

Table 3. Main characteristics of the tested deep models.

Model Year Architecture Training

SALICON 2015 Based on CNN for object recognition MIT1003 eye dataset

Two streams (coarse/fine) OSIE eye dataset

� 29 Mill. of parameters NUSEF / FIFA

PASCAL-S / Toronto

MLNET 2016 Based on VGG-16 SALICON dataset (Mouse)

Shallow CNN MIT300 eye dataset

1280 VGG feature maps Weighted loss function

Learned prior

� 15 Mill. of parameters

DeepGazeII 2016 Based on VGG-16 SALICON dataset (Mouse)

Shallow CNN MIT1003 eye dataset

2560 VGG feature maps

Gaussian bias

� 20 Mill. of parameters

SAM

(VGG/ResNet)

2018 Based on VGG-16/ResNet50 SALICON dataset (Mouse)

LSTM network MIT300/1003

Learned priors CAT2000

SAM-VGG, � 50 Mill. of parameters Saliency-based loss

SAM-ResNet,� 70 Mill. of parameters

https://doi.org/10.1371/journal.pone.0239980.t003

Fig 9. Saliency maps from non deep (second row) and deep models (third row). The first row illustrates the original

stimulus (Bilders, Cows at a pond, 1856) and its human saliency map.

https://doi.org/10.1371/journal.pone.0239980.g009
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Quantitative analysis

Table 4 presents the performances of the tested saliency models. Several conclusions can be

drawn.

We first observe that the performances of the 4 deep learning-based saliency models are, as

expected, much better than the 4 non-supervised handcrafted-based models. The deep models

perform on average at 0.583 in terms of correlation coefficient whereas the handcrafted models

perform at 0.422. This observation holds true for all metrics except the AUC-B metrics. When

dealing with natural scenes, the clear advantage of deep models over non-supervised has been

reported in many studies, such as [51]. In this study, we observe similar conclusions but for

paintings.

The best non deep model is GBVS whereas the best deep model is SAM-ResNet. The differ-

ence in CC scores, CC = 0.506 and CC = 0.700 for GBVS and SAM-ResNet respectively, is sta-

tistically significant (paired t-test, t(149) = −17.28, p�0.05).

Regarding more specifically deep models, the best model is clearly SAM-ResNet [18], for

which the correlation coefficient is equal on average to 0.7. The best prediction gets a correla-

tion of 0.905 whereas the worst prediction gets a correlation of 0.275. SAM-ResNet outper-

forms significantly MLNET (paired t-test, t(149) = 9.68, p�0.05), DeepGazeII (paired t-test,

t(149) = 15.06, p�0.05), SALICON (paired t-test, t(149) = 10.73, p�0.05), SAM-VGG

(paired t-test, t(149) = 10.23, p�0.05) models. The good performance of SAM-ResNet can be

explained by its high number of trainable parameters, its learned priors and its loss function

which leverages a combination of saliency metrics. All these points could provide to SAM-Res-

Net a better generalization than other tested models.

As mentioned earlier, deep saliency models perform quite well on average on the proposed

paintings dataset. This is eventually not that surprising since the chosen paintings do not vio-

late ecological visual principles. Those paintings aim at representing casual objects, natural

scenes and characters with more or less visual fidelity. It suggests that deep models, that has

been trained over natural scenes, are not impeded by neither the painting style nor the limita-

tions imposed by painting materials [22]. The deep models then generalize well and signifi-

cantly outperform non-supervised handcrafted-based models by successfully leveraging low-

level features and semantics (or higher-level features) ones [52]. This is consistent with find-

ings in [22], supporting the bottom-up hypothesis of salience-driven attention for the tested

paintings.

Table 4. Performances of saliency models on paintings dataset.

Model CC " KL # SIM " NSS " AUC-B " AUC-J "

GBVS 0.506 0.962 0.446 1.256 0.809 0.817

RARE2012 0.443 1.020 0.438 1.103 0.777 0.786

AIM 0.315 1.245 0.371 0.772 0.723 0.735

AWS 0.427 1.045 0.430 1.083 0.762 0.769

Mean 0.422 1.068 0.421 1.053 0.774 0.776

MLNET 0.576 0.832 0.513 1.524 0.770 0.818

DeepGazeII 0.485 0.896 0.488 1.394 0.679 0.804

SALICON 0.538 0.880 0.517 1.445 0.708 0.827

SAM-ResNet 0.700 0.984 0.613 1.834 0.782 0.862

SAM-VGG 0.617 0.970 0.561 1.603 0.752 0.846

Mean 0.583 0.912 0.551 1.560 0.738 0.831

https://doi.org/10.1371/journal.pone.0239980.t004
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However, this observation needs to be tone down. Indeed, performances of deep models

are not that high compared to those we are used to observe on natural scenes. For instance, the

model SAM-ResNet performs, in terms of CC, at 0.78 on MIT300 [14], and at 0.89 on

CAT2000 dataset [53] (these scores have been taken from the MIT benchmark website https://

saliency.mit.edu/). On the proposed dataset, the performance of this model decreases to 0.7.

Similarly, MLNET performs at 0.67 on MIT300, whereas it performs at 0.576 on the proposed

dataset. This suggest that there is room for improvement and that we can go further by

improving the ability of such models to predict the salience over paintings.

To go deeper into the analysis, we also evaluate the performances for the five styles, namely

Fauvism, Impressionism, Pointillism, Realism, and Romanticism. For this test, the previous

five deep models are evaluated. Table 5 presents the results for CC, NSS and AUC-J.

Overall, deep saliency models perform rather well on the 5 art movements. The highest cor-

relation coefficient is 0.723 (SAM-ResNet for the Fauvism period) whereas the lowest is 0.460

(DeepGazeII for the Impressionism period). Still in terms of correlation coefficient, the best

deep model, over the five periods, is SAM-ResNet. It performs well over Fauvism, Pointillism,

Realism and Romanticism. The lowest performances are observed on Impressionism.

It is also interesting to emphasize that the performances of MLNET and SALICON, and to

a lesser extent SAM-ResNet and SAM-VGG, are the highest for paintings of the Realism and

Romanticism periods. Realism artistic movement aims to portray real and typical contempo-

rary people and situations by taking care to be as close as possible to truth and accuracy. Such

Table 5. Performances of deep models on the 5 art periods.

Model Style CC " NSS " AUC-J "

MLNET Fauvism 0.600 1.553 0.825

Impressionism 0.533 1.367 0.798

Pointillism 0.536 1.306 0.802

Realism 0.601 1.709 0.828

Romanticism 0.564 1.564 0.824

DeepGazeII Fauvism 0.485 1.394 0.804

Impressionism 0.460 1.305 0.796

Pointillism 0.452 1.206 0.782

Realism 0.492 1.609 0.823

Romanticism 0.462 1.444 0.807

SALICON Fauvism 0.498 1.271 0.820

Impressionism 0.523 1.362 0.809

Pointillism 0.497 1.234 0.809

Realism 0.577 1.693 0.842

Romanticism 0.576 1.572 0.842

SAM-ResNet Fauvism 0.723 1.834 0.867

Impressionism 0.648 1.659 0.845

Pointillism 0.704 1.663 0.856

Realism 0.701 2.015 0.862

Romanticism 0.705 1.949 0.874

SAM-VGG Fauvism 0.647 1.635 0.849

Impressionism 0.571 1.446 0.831

Pointillism 0.620 1.464 0.837

Realism 0.623 1.757 0.848

Romanticism 0.621 1.707 0.857

https://doi.org/10.1371/journal.pone.0239980.t005
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paintings depicted everyday subjects and situations in contemporary settings, and attempted

to depict individuals of all social classes in a similar manner [54]. Romanticism period empha-

sized intense emotion as an authentic source of aesthetic experience, placing new emphasis on

such emotions as apprehension, horror and terror, and awe [55]. The performance of deep-

based models on these two art movements could be explained by the fact that deep models

have been trained over natural scenes, depicting the daily life. For instance, MLNET model has

been trained over SALICON dataset [56] and MIT300 dataset [57], whereas SAM-ResNet and

SAM-VGG have been trained over 4 datasets, i.e. SALICON dataset [56], MIT1003 dataset

[58], CAT2000 dataset [53] and MIT300 dataset [57], as given in Table 3.

The art movements for which deep models perform least are the Pointillism and Impres-

sionism movements. This observation could be explained by the art history. Indeed, one key

factor that usually explains the emergence of Impressionism, is the arrival of photography that

questions artists about their own works. In a kind of opposition to photography mechanical
realism, the impressionist painters do not try to copy reality; they rather try to create images

that depict their own visual perception and feeling. Less importance is then given to realism

and details whereas the focus is set on visual feeling. Pointillism, that belongs to neo-impres-

sionism, also proposes an approach to differentiate painting from photography realism. Rather

than focusing on impression, pointillism painters use small dots of pure colors to produce a

more vibrant color than legacy painting and photography. This observation is however to tone

down since we do not observe a significant influence of the art movement on the correlation

coefficient for SAM-ResNet model (one-way ANOVA F(4, 140) = 1.45, p = 0.22).

Can we go further?

To test whether or not we can improve the performance of prediction, we fine-tune the best

performing model on the paintings dataset, namely SAM-ResNet. We have chosen SAM-Res-

Net for several reasons. First, this is the model that performs the best over the proposed paint-

ings dataset as presented in the previous section. As it already performs rather well, the

challenge to improve it is then more difficult. Second, we believe that SAM-ResNet architec-

ture has some advantages compared to other deep models, such as the priors that are learned,

and the loss function which leverages both saliency maps and fixation maps. Obviously, its

high number of trainable parameters is also interesting to tailor the model to paintings. For

fine-tuning SAM-ResNet, we split the paintings dataset into a training set, composed of 90

paintings randomly chosen, a validation set of 20 paintings, and a test set composed of 40

paintings.

Table 6 presents the performances of SAM-ResNet model after fine-tuning. Performances

are evaluated over the test dataset. We then recompute SAM-ResNet performance on the test

dataset (first line of Table 6). Results indicate that SAM-ResNet model fine-tuned with paint-

ings dataset performs much better than the original version; for the correlation coefficient, the

difference is significant, paired t-test, t(39) = −3.17, p�0.005.

Fig 10 illustrates saliency maps predicted from the original and the fine-tuned deep model.

We observe that the fine-tuned model provides less focused maps and tends to detect more

salient areas compared to the original one. The fact that saliency maps are less focused allows

to be closer to human maps. On the top, for Renoir paintings, the correlation increases from

0.574 to 0.807. For the Landseer paintings (second row), the gain in correlation is also signifi-

cant; the CC score increases from 0.529 to 0.804. For Degas painting (third row), we also

observe a significant increase of the CC score, from 0.54 to 0.749. Over the 40 tested paintings,

the correlation increases for 28 paintings and decreases for 12 paintings. The average increase

(resp. decrease) is equal to 0.135 and 0.09. The most important gain equal to 0.29 is observed
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for Sisley painting (Chestnut avenue in la celle Saint-Cloud, 1865). The most important regres-

sion is equal to 0.14 and observed for Sorolla painting, (Resting Bacchante, 1887). The coeffi-

cient of correlation decreases in this case from 0.759 to 0.612. The corresponding saliency

maps are illustrated at the bottom of Fig 10. The original version of SAM-ResNet succeeds in

better detecting the women face compared to the fine-tuned version of SAM-ResNet. This is

likely the reason explaining why SAM-ResNet model outperforms the fine-tuned one. Beyond

the correlation coefficient, we also observe a similar trend in gain performance for the other

tested metrics.

Data accessibility

The list of paintings (title, artist, year, art movement and link) is given in S1 File. The year is

either the year the painting has been made or the date of birth and death of the artist, when the

exact year the painting has been made is not known. All the paintings can be downloaded

from internet. The internet links to download the different paintings are provided.

We provide the following link http://www-percept.irisa.fr/art_paintings/ which allows

readers to get all supporting information of this study:

• All eye-tracking data are released for the sake of reproducible research. This consists of the

spatial coordinates of visual fixation as well as the fixation durations for each observer. We

also provide human saliency maps and fixation maps.

Table 6. Performances of SAM-ResNet after fine-tuning on the test dataset.

Model CC " KL # SIM " NSS " AUC-B " AUC-J "

SAM-ResNet 0.69 1.08 0.60 1.79 0.78 0.85

SAM-ResNet fine-tuned 0.75 0.83 0.68 1.92 0.84 0.88

Min. 0.58 0.33 0.56 1.30 0.76 0.81

Max. 0.89 3.00 0.77 2.72 0.89 0.92

Gain (%) +9.7% -23% +11.8% +7.2% +7.5% +2.9%

https://doi.org/10.1371/journal.pone.0239980.t006

Fig 10. From left to right: original painting, human saliency map, SAM-ResNet prediction, and fine-tuned

SAM-ResNet prediction. First row: Renoir, La ferme des Collettes, 1908. Second row: Landseer, A highland landscape,
1830. Third row: Degas, Woman at her toilette, 1877. Fourth row: Sorolla, Resting bacchante, 1887.

https://doi.org/10.1371/journal.pone.0239980.g010
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• A Python script is provided in order to fit the downloaded paintings to the desired resolu-

tion, i.e. 1600 × 900. By maintaining the aspect ratio of the painting, we first added grey

stripes (RGB = (100, 100, 100)) on the top/bottom or on the left/right side and then we

resized the paintings to get the final resolution, 1600 × 900.

• The predicted saliency maps for the 8 tested models are provided. Results of the fine-tuned

SAM-ResNet model are also available.

• The new weights for SAM-ResNet model are also provided as well as the source code of

SAM-ResNet model to reproduce all our results.

Note that most of the paintings used in this study are in the public domain under the CC

BY 4.0 licence. However, we only provide the link to download paintings to avoid copyright

infringement.

Conclusion

In this paper, we performed an eye tracking experiment on 150 paintings belonging to 5 art

movements, namely Fauvism, Impressionism, Pointillism, Realism and Romanticism. We

found out that the gaze deployment over these paintings is very similar to the gaze deployment

on natural scenes we are used to observe. As the chosen art movements illustrate daily life, this

result was not so surprising. We then evaluated the performance of existing saliency models to

predict where an observer would look at. Performances are rather good for deep-based models,

and rather low for handcrafted models. We went further by fine-tuning an existing deep

saliency model and succeeded in improving in a significant manner the prediction

performance.

This new model, specialized for paintings, would allows us to design new and automatic

image-based applications, such as transformation of a painting into a video sequence; it would

consist in showing sequentially the most interesting part of the painting.

In future work, we would like to study the less figurative periods. It will be worth including

Cubism, Expressionism, and Abstraction periods. In the same way, we could include painting

movements before Italian Renaissance, such as the Early Netherlandish painting school.

Supporting information

S1 File. Paintings used in this study (in alphabetical order). In the following Tables 7, 8 and

9, we provide information regarding the paintings used in this study. It consists of the painting

tittle, its author, the year, the art period and the internet link where the painting has been

downloaded.
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