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Abstract
Background Cognitive models of mood disorders emphasize a causal role of negative affective biases in depression. Com-
putational work suggests that these biases may stem from a belief that negative events have a higher information content 
than positive events, resulting in preferential processing of and learning from negative outcomes. Learning biases therefore 
represent a promising target for therapeutic interventions. In this proof-of-concept study in healthy volunteers, we assessed 
the malleability of biased reinforcement learning using a novel cognitive training paradigm and concurrent transcranial 
direct current stimulation (tDCS).
Methods In two studies, young healthy adults completed two sessions of negative (n = 20) or positive (n = 20) training 
designed to selectively increase learning from loss or win outcomes, respectively. During training active or sham tDCS 
was applied bilaterally to dorsolateral prefrontal cortex. Analyses tested for changes both in learning rates and win- and 
loss-driven behaviour. Potential positive/negative emotional transfer of win/loss learning was assessed by a facial emotion 
recognition task and mood questionnaires.
Results Negative and positive training increased learning rates for losses and wins, respectively. With negative training, 
there was also a trend for win (but not loss) learning rates to decrease over successive task blocks. After negative training, 
there was evidence for near transfer in the form of an increase in loss-driven choices when participants performed a similar 
(untrained) task. There was no change in far transfer measures of emotional face processing or mood. tDCS had no effect 
on any aspect of behaviour.
Discussion and Conclusions Negative training induced a mild negative bias in healthy adults as reflected in loss-driven choice 
behaviour. Prefrontal tDCS had no effect. Further research is needed to assess if this training procedure can be adapted to 
enhance learning from positive outcomes and whether effects translate to affective disorders.

Keywords Depression · Anxiety · Computational psychiatry · tDCS · Transcranial direct current stimulation · Non-invasive 
brain stimulation · Affective disorders · Volatility · Reinforcement learning · Reward · dlPFC · Dorsolateral prefrontal 
cortex · Cognitive training

Introduction

Cognitive models of mood disorders emphasise a causal 
role of negative affective biases in depression and anxi-
ety (Beck 1967; Clark and Beck 2010). Negative biases 
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are expressed as an increase in attention to, encoding of, 
and memory retrieval for adverse information relative to 
positive information, which can result in low mood and 
related depressive symptoms (Dalgleish and Watts 1990; 
Peckham et al. 2010). Due to their fundamental contribu-
tion to depressive symptomatology, there has been increas-
ing interest in the development of interventions aiming to 
alter affective biases. An influential approach is the use 
of cognitive training paradigms to modify biased emo-
tional processing directly. The most prominent example is 
Attentional Bias Modification (ABM), in which patients 
are asked to respond to a visual probe placed behind either 
a positive or a negative stimulus. By positioning the probe 
consistently behind the positive stimulus, people learn to 
focus on positive rather than negative information. How-
ever, evidence for the efficacy of ABM is mixed (Jones 
and Sharpe 2017; Mogg et al. 2017), with some studies 
reporting no changes in cognitive bias in multiple ver-
sions of ABM (Everaert et al. 2015), small or null effects 
on depressive symptomatology (Hallion and Ruscio 
2011; Mogoaşe et al. 2014), or limited generalization to 
untrained stimuli (Kruijt et al. 2013). Research on alterna-
tive and possibly more efficacious ways to modify affec-
tive biases is therefore warranted. In the present study, 
we investigated the potential of a novel cognitive training 
paradigm, combined with non-invasive brain stimulation, 
to induce negative or positive affective biases.

Computational Mechanisms of Biased Information 
Processing

A potentially powerful approach to improving symptoms 
of depression is to target the underlying processes that 
lead to the development of affective biases. Computational 
models suggest that healthy individuals preferentially 
process events or outcomes that they estimate to have a 
high information content (Behrens et al. 2007; Browning 
et al. 2015; Nassar et al. 2012). Estimated information 
content can be defined as the extent to which an individ-
ual believes that knowledge of a particular outcome will 
improve their predictions of future outcomes. Crucially, 
it has been proposed that in depression and anxiety peo-
ple may over-estimate the information content of negative 
outcomes, which may underpin negative bias and contrib-
ute towards symptoms (Pulcu and Browning 2017, 2019). 
People’s estimates of the information content of events can 
be inferred from their learning rates. Outcomes that are 
believed to be highly informative lead to greater updating 
of expectations and therefore faster learning. Importantly, 
it has been demonstrated that higher learning rates facili-
tate memory consolidation and retention across various 
domains (Abend et al. 2013; Zerr et al. 2018). Targeting 

learning rates, by designing reinforcement learning para-
digms that aim to reduce learning from negative events 
and/or increase learning from positive events, could there-
fore represent a promising novel approach to manipulate 
information processing biases thought to causally maintain 
symptoms of anxiety and depression.

Volatility Modulates Learning Rates

One approach to altering people’s estimates of the infor-
mation content of events, as reflected by learning rates, is 
to modify the stability versus volatility of the association 
between a choice and an outcome (Behrens et al. 2007; 
Browning et al. 2015; Pulcu and Browning 2017). Volatil-
ity is a measure of how changeable probabilistic choice-
outcome associations are over time (Yu and Dayan 2005). 
In highly stable conditions, one unexpected outcome is 
more likely to reflect noise than to signal a change in 
the underlying choice-outcome probability structure. In 
this scenario, after such an improbable outcome, indi-
viduals should be slow to adjust their expectations and 
adopt a low learning rate in order to predict future out-
comes accurately. In volatile environments, on the other 
hand, one surprising outcome could indicate a change 
in the underlying probabilities. Therefore, individuals 
should rapidly update their expectations and employ a 
high learning rate to successfully predict future events 
(Pulcu and Browning 2019). In line with this hypothesis, 
it has been demonstrated that people tend to have higher 
learning rates in volatile versus stable conditions (Beh-
rens et al. 2007). Importantly, Pulcu and Browning (2017) 
have shown that healthy adults can adjust their learning 
rates for positive and negative events independently in 
response to volatility variations using the Information 
Bias Learning Task (IBLT). In the IBLT, participants are 
asked to choose one of two visual stimuli, each of which 
is probabilistically associated with a monetary win and 
loss outcome. Across task blocks, the volatility of these 
associations is varied to manipulate the relative informa-
tion content of the win and loss outcomes. Here, we modi-
fied the IBLT to develop a novel training paradigm. Spe-
cifically, we selected those blocks from the IBLT which 
either encouraged learning from negative outcomes (i.e., 
volatile losses) or learning from positive outcomes (i.e., 
volatile wins). We hypothesised that repeated exposure 
to one of these block types would selectively increase 
healthy individuals’ estimates of the information content 
of negative or positive events, respectively. The goal was 
to test whether this novel training approach could indeed 
induce affective bias in healthy adults.
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Augmenting Cognitive Training with tDCS

In addition, we aimed to test whether this novel cogni-
tive training procedure could potentially be enhanced 
further by concurrently stimulating brain regions causally 
implicated in negative affective bias (Ironside et al. 2019; 
Ironside et al. 2016). Transcranial direct current stimula-
tion (tDCS) is a neuromodulatory technique under clini-
cal investigation as a potential treatment for depression 
(Moffa et al. 2019; Shiozawa et al. 2014). During tDCS 
a weak electric current of 1–2 mA is delivered through 
electrodes placed on the scalp. During stimulation, tDCS 
changes cortical excitability by altering resting membrane 
potentials, with anodal increasing and cathodal decreasing 
spontaneous neuronal firing (Nitsche et al. 2003; Nitsche 
and Paulus 2000; Stagg and Nitsche 2011). Excitability 
changes outlast the stimulation period, an NMDA receptor 
dependent effect that reflects stimulation-induced changes 
in synaptic efficacy (Liebetanz et al. 2002; Nitsche et al. 
2003). Evidence from animal and human studies indi-
cates that anodal (excitatory) tDCS can enhance activ-
ity-dependent synaptic plasticity (Fritsch et  al. 2010). 
Behaviourally, this has been shown to stabilize learning 
effects, leading to long-term retention of what is learned 
(Reis et al. 2009). This suggests that applying tDCS dur-
ing cognitive training could potentially augment learning 
effects, which would transfer into therapeutic benefits in 
clinical populations (O’Shea et al. 2017). At present, the 
majority of evidence supporting this hypothesis has stimu-
lated the motor system and used tasks of motor function 
(Buch et al. 2017). Evidence from cognitive studies is 
more mixed (Dedoncker et al. 2016). A number of studies 
indicate that tDCS may have synergistic effects on cog-
nitive tasks and depressive symptoms. For example, in 
healthy adults concurrent anodal tDCS of the left dorso-
lateral prefrontal cortex (DLPFC) and ABM training was 
associated with greater changes in the trained direction 
(either towards or away from threatening stimuli) com-
pared to sham stimulation (Clarke et al. 2014). Similarly, 
in Major Depressive Disorder tDCS targeting the DLPFC 
boosted the effects of cognitive control training on mood 
symptoms (Brunoni et al. 2014) and resulted in greater 
maintenance of improvements of depressive symptoms 
post-intervention (Segrave et al. 2014). Applying tDCS 
concurrent with cognitive training may therefore improve 
the extent and durability of behavioural outcomes related 
to affective disorders. Hence we aimed to test this by com-
bining tDCS with our novel cognitive training paradigm.

Neural Substrates of Learning Rates

The potential efficacy of concurrent tDCS-training para-
digms depends heavily on the identification and effective 

engagement of a suitable neural target for stimulation. Neu-
roimaging research suggests that negative information pro-
cessing biases and depression are associated with hypoactiv-
ity of the left DLPFC and, often, concurrent hyperactivity 
of the right DLPFC (Disner et al. 2011; Grimm et al. 2008). 
Clinical trials have demonstrated that rebalancing DLPFC 
activity with tDCS, by placing the anode over the left 
DLPFC and positioning the cathode over the right DLPFC, 
can improve cognitive functioning and depressive symptoms 
(Brunoni et al. 2011; Brunoni et al. 2016; Ferrucci et al. 
2009). Bilateral DLPFC is therefore a logical stimulation 
target to combine with cognitive bias modification training. 
Moreover, the DLPFC is part of distributed brain circuitry 
critical for reward processing (Haber and Knutson 2010) and 
reinforcement learning (Lee et al. 2012; Massi et al. 2018). 
It has been suggested that engagement of the DLPFC dur-
ing reward learning tasks varies according to the volatility 
of the association being learned. For example, in a study of 
probabilistic reward learning in rhesus monkeys, signals in 
the DLPFC relating to the value of a stimulus were stronger 
in volatile than non-volatile blocks. Furthermore, in volatile 
conditions, neurons were found to exhibit a stronger rep-
resentation of the stimulus chosen on the previous trial if 
that choice had resulted in a reward compared to no reward 
(Massi et al. 2018). In addition, it has been shown that the 
encoding strength of reward magnitude in the DLPFC is 
greater in volatile than stable conditions in both monkeys 
and humans, leading to increased weighting of reward mag-
nitude relative to reward probability (Farashahi et al. 2019). 
Together, these studies provide evidence for a key role of 
the DLPFC in flexible adaptation of learning to environmen-
tal volatility changes. It can therefore be hypothesised that 
stimulation of the DLPFC could enhance the behavioural 
effects resulting from volatility shifts in the Information Bias 
Learning Task.

Current Study

In the present proof-of-concept study, we tested the effects 
of cognitive training combined with tDCS on learning rates 
for positive and negative information in healthy adults. The 
choice for a healthy participant group was motivated by 
our primary aim to investigate the malleability of learning 
rates with training and/or tDCS. The presence of a nega-
tive bias at baseline, as would be expected in mood dis-
orders, would make direct comparisons of positive and 
negative training effects challenging. From an ethical and 
pragmatic perspective, this initial assessment in healthy 
volunteers is valuable for exploring the parameter space of 
both training and tDCS protocols relatively quickly, which 
can then be narrowed down and optimised for future stud-
ies in more vulnerable clinical populations. In this study, 
effects of negative and positive cognitive training were 
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examined in two independent groups, with active versus 
sham tDCS being compared within-participants in a double-
blind design. In the negative training, to increase learning 
from negative outcomes, IBLT blocks were manipulated 
such that loss outcomes were volatile (i.e., informative) 
whereas win outcomes were stable (i.e. uninformative). 
In the positive training paradigm, the volatility of the win 

and loss outcomes was reversed to encourage learning from 
rewards. From a clinical perspective, the rationale and 
ultimate goal of training and/or tDCS interventions is for 
positive effects to transfer and improve negative affect. We 
therefore also examined potential far transfer effects with 
the Facial Expression Recognition Task (FERT; Harmer 
et al. 2001), which measures response times and accuracy 
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in identifying ambiguous positive and negative facial expres-
sions. Aberrant performance on the FERT has consistently 
been observed in depression, with patients presenting with 
difficulties in accurately identifying emotions (Anderson 
et al. 2011), with slower responses to sad faces (Gollan et al. 
2008), and with less frequent interpretation of neutral faces 
as being happy compared to healthy controls (Douglas and 
Porter 2010; Gollan et al. 2008; Surguladze et al. 2004). The 
FERT has been used extensively to characterise the effects 

of pharmacotherapeutic interventions on affective biases in 
both healthy adults and people with depression (Bhagwa-
gar et al. 2004; Browning et al. 2007; Harmer et al. 2003; 
Tranter et al. 2009). We therefore chose the FERT to test 
for potential negative/positive emotional transfer after IBLT 
training because it is a well-validated instrument used in 
experimental medicine studies with healthy and depressed 
volunteers. If negative and/or positive training induces 
valenced information processing biases that generalize 
beyond the IBLT task, this would be reflected in an increased 
rate of negative/positive classifications of ambiguous facial 
expressions, respectively. Overall, we tested the following 
hypotheses: (1) negative and positive training versions of 
the IBLT would increase learning rates for losses and wins, 
respectively; (2) tDCS targeting dorsolateral prefrontal cor-
tex would enhance the effects of the training; (3) alterations 
to learning rates following combined tDCS/training would 
transfer to a test of affective processing (the FERT); and (4) 
behavioural effects of training alone, or training combined 
with neurostimulation, might generalize to influence acute 
mood in the training-congruent direction.

Methods

Participants

Participants were recruited from the community through fly-
ers posted on local news boards and online advertisements, 
including university newsletters. Twenty healthy volunteers 
(4 female, mean age = 23.05, SD ± 6.05) participated in 
Study 1 (‘loss-volatile’ training). Twenty healthy volun-
teers (8 female, mean age = 24.45, SD ± 5.06) participated 
in Study 2 (‘win-volatile’ training). Exclusion criteria were 
a history of psychiatric disorders, neurological illness, use 
of psychoactive medication, personal or family history of 
epileptic fits or seizures, and any contraindications to tDCS. 
Written informed consent was obtained from all volunteers 
and study procedures were approved by the local ethics 
committee (CUREC; R48995/RE003) and performed in 
accordance with the 1964 Helsinki declaration and its later 
amendments.

Study Procedure

In both Study 1 and Study 2, participants were invited to two 
cognitive training sessions which were carried out at least 
one week apart (see Fig. 1a). In one session participants 
received sham tDCS, whereas in the other session they were 
given active tDCS of bilateral DLPFC. The order of tDCS 
conditions was counterbalanced and double-blinded in both 
studies.

Fig. 1  Schematic overview of the training sessions. a Timeline study 
procedure. b Example of a trial on the Information Bias Learning 
Task (IBLT). At the beginning of the task, participants are provided 
with a start amount of £1.50. In each trial, a fixation cross flanked 
by two abstract stimuli is presented and the participant has to choose 
one of the stimuli via a button press. Once a stimulus is chosen, a 
win and a loss outcome are presented consecutively, with the order of 
their appearance (win first versus loss first) being randomised across 
trials. If the chosen stimulus is associated with a win the participant 
gains 10p, and if the chosen stimulus is associated with a loss the par-
ticipant loses 10p. If the win and loss outcome both appear over the 
same stimulus, the participant does not win or lose any money irre-
spective of their choice. The win and loss outcomes are independent, 
meaning that the location of the win does not provide any information 
about the location of the loss. In this task, participants have to learn 
through experience which stimulus to choose in order to maximise 
total winnings. c Structure of the IBLT for negative training in Study 
1. The task consisted of 5 blocks comprised of 80 trials each (vertical, 
dashed black lines separate the individual blocks). The x-axis repre-
sents the number of trials, with the y-axis indicating the probability 
p of an outcome appearing over stimulus ‘A’. The probability of the 
outcome appearing over stimulus ‘B’ can be calculated as 1 − p. The 
win outcomes are represented as continuous green lines, with the loss 
outcomes corresponding to the dashed red lines. The volatility of the 
win and loss outcomes is manipulated across the task blocks, with 
higher volatility being associated with a higher information content. 
In the first block, both the wins and losses are volatile (‘Both-volatile’ 
block), with the probability of an outcome appearing over stimulus 
‘A’ switching between 20 and 80%. Here, both outcomes have a high 
information content, such that if the win/loss appears over shape ‘A’, 
it is more likely to be associated with shape ‘A’ than shape ‘B’ in the 
subsequent trials. In this block, participants are therefore expected 
to have high learning rates for both wins and losses. In blocks 2–4, 
on the other hand, volatility is manipulated so that losses are highly 
informative and wins are uninformative (‘Training’ blocks). Whereas 
the loss outcomes remain volatile, the association of shape ‘A’ 
with the win outcome is stable at 50%. Thus, the chance of the win 
appearing over either of the shapes remains equal across the trials, 
with its location on one trial providing no information about future 
trials. In these ‘Training’ blocks, it is expected that participants will 
have higher learning rates for loss than win outcomes. Finally, block 
5 consists of another ‘Both-volatile’ block, in which both wins and 
losses are volatile. By comparing learning rates in block 5 with block 
1, it is possible to quantify potential shifts in learning from win and 
loss outcomes following the ‘Training’ blocks. d Structure of the 
IBLT for positive training in Study 2. Similar to Study 1, the IBLT 
is comprised of a ‘Both-volatile’ block, three ‘Training’ blocks, and 
a final ‘Both-volatile block. However, volatility of the win and loss 
outcomes in the ‘Training’ blocks is reversed, such that win outcomes 
are highly informative (volatile) and loss outcomes are uninformative 
(stable). Therefore, contrary to Study 1, participants are expected to 
demonstrate higher learning rates for win than loss outcomes in the 
‘Training’ blocks of Study 2 (Color figure online)

◂
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IBLT Training

The computerised Information Bias Learning Task (IBLT) 
training paradigm was adapted from reinforcement learning 
tasks previously used to investigate effects of volatility on 
win and loss learning rates (Behrens et al. 2007; Browning 
et al. 2015; Pulcu and Browning 2017). The IBLT training 
consisted of 5 blocks of 80 trials each, with a brief 30 s rest 
between each of the blocks. On every trial, participants were 
presented with a fixation cross in the centre of the screen 
flanked by two abstract shapes (letters selected from the 
Agathodaimon font) offset by approximately 7° visual angle. 
Participants were instructed to press a button to choose 
between the two visual stimuli, which were probabilistically 
associated with a win and a loss outcome. Details of the for-
mat and stimuli utilised in the training task are provided in 
Fig. 1b. The win and loss outcomes were independent, such 
that the association of a win outcome with a stimulus did 
not determine the association of the loss outcome and vice 
versa. Predicted stimulus-outcome associations were learned 
over time through experience on previous trials. The volatil-
ity of stimulus-outcome contingencies of wins and losses 
was modulated across the task blocks. In a volatile state, 
the association of stimulus ‘A’ and a win (or loss) outcome 
switched between 20 and 80% in runs of 14–30 trials. In 
stable conditions, the association between stimulus ‘A’ and 
a win (or loss) outcome remained constant at 50%. Within 
each of the five task blocks the same two shapes were used 
for all trials, with different shapes being used between the 
task blocks.

In Study 1, participants completed three negative ‘Train-
ing’ blocks, in which loss outcomes were volatile while win 
outcomes were stable (see Fig. 1c). In Study 2, participants 
carried out three positive ‘Training’ blocks where the win 
outcomes were volatile and loss outcomes were stable (see 
Fig. 1d). The ‘Training’ blocks took approximately 21 min 
to complete in each study, just outlasting the duration of con-
current tDCS (20 min). In both Study 1 and Study 2, partici-
pants also completed a ‘Both-volatile’ block directly before 
and after the three ‘Training’ blocks. In ‘Both-volatile’ 
blocks, both the win and loss associations were volatile (i.e. 
informative), which was expected to lead to high learning 
rates for both outcome types. The first ‘Both-volatile’ block, 
which took place before the ‘Training’ blocks, was used as 
a measure of baseline learning rates for informative wins 
and losses. The final ‘Both-volatile’ block, which was com-
pleted after the ‘Training’ blocks, was included to compare 
learning rates before and after training. A shift in learning 
rates in ‘Both-volatile’ blocks after training could be inter-
preted as a near transfer effect of the training. For instance, 
negative training in Study 1 was designed to induce higher 
learning rates from losses and/or lower learning rates from 
wins. Near transfer of this learning would be reflected in a 

corresponding increase in loss learning rates in the ‘Both-
volatile’ block after training compared to before training. 
Similarly, near transfer from the positive training in Study 2 
was expected to lead to higher learning rates from wins and/
or lower learning rates from losses, with transfer reflected in 
an increase in win learning rates in the ‘Both-volatile’ block 
after training compared to before training.

tDCS Protocol

Stimulation was delivered during the three IBLT train-
ing blocks using a battery-powered device (Eldith DC-
Stimulator Plus, Neuroconn, Germany). The electrodes 
(5 × 5  cm) were placed in saline-soaked sponges and 
attached to the scalp using rubber bands. The anodal elec-
trode was placed on the left DLPFC, while the cathodal 
electrode was placed over the right DLPFC (F3 and F4, 
respectively, according to the 10/20 system of electrode 
placement). In the active tDCS condition, stimulation was 
delivered at 2 mA for 20 min, with 10 s ramping-up and 
ramping-down. In the sham tDCS condition, participants 
received 30 s of direct current followed by impedance 
control with a small current pulse being produced every 
550 ms (110 µA over 15 ms), resulting in an instantaneous 
current of no more than 2 µA.

Facial Expression Recognition Task

Following the cognitive training and tDCS, participants 
completed the Facial Expression Recognition Task (FERT). 
In the FERT, participants are asked to identify positive and 
negative emotions in ambiguous facial expression stimuli. 
All emotions are morphed between 0% intensity (neutral 
expression) and 100% intensity (full negative or positive 
expression) in 10% increments (see Online Resource 1 for 
further task details). Due to the ambiguous nature of the 
stimuli the task can detect potential biases in processing 
and interpretation of positive and negative facial expres-
sions. The purpose of this task was to assess whether the 
predicted negative versus positive information processing 
biases induced by the training/tDCS would transfer to an 
untrained emotional processing task. The main outcomes of 
interest were response time, accuracy (correct identification 
of emotions), and misclassifications (incorrect identification 
of emotions) for each expression. Far transfer effects would 
be reflected in a change in reaction times and/or accuracy 
in identifying facial expressions congruent with the training 
valence.
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Questionnaire Measures

In order to gain quantitative measures of participants’ trait and 
state mood and anxiety levels, questionnaires were completed 
throughout the training sessions. At the beginning of the first 
session, participants completed Beck’s Depression Inventory II 
(BDI-II) (Beck et al. 1996) and the Trait subscale of the State-
Trait Anxiety Inventory (STAI-Trait) (Spielberger et al. 1983). 
In addition, participants filled out the State version of the State-
Trait Anxiety Inventory (STAI-State) (Spielberger et al. 1983) 
and the Positive and Negative Affect Scales (PANAS) (Watson 
et al. 1988) before the IBLT task, after the IBLT task, and after 
completion of the FERT (see Fig. 1a).

Computational Modelling

To estimate learning parameters on the IBLT blocks, a com-
putational model identical to that previously applied by Pulcu 
et al. (2019) was developed using MATLAB (R2016B, The 
Mathworks Inc, Natick, MA). In this model, separate learning 
rates were estimated for the loss and win outcome to assess 
learning from negative versus positive information. In addi-
tion, values were estimated for the ‘inverse temperature’, a 
parameter which represents the randomness or stochasticity 
of participants’ choices (i.e., how closely do participants’ 
choices correspond with the estimated value of the stimuli?). 
That is, individuals with a high inverse temperature value tend 
to choose the option that they believe is most likely to result in 
the best possible outcome. In contrast, an inverse temperature 
of 0 indicates that the participant is equally likely to choose 
any of the available options, independent of their likelihood 
of resulting in a positive outcome. Model selection was based 
on a comparison of six different computational models using 
Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC) values. The AIC and BIC quantify the 
relative performance of different models by comparing their 
goodness of fit to the data and parsimony, favouring models 
with fewer parameters (Vrieze 2012). Out of the six models 
assessed, the model used here was found to have the lowest 
AIC and BIC scores, indicating best performance. A descrip-
tion of each model and corresponding AIC/BIC values is pro-
vided in Online Resource 1.

First, the model calculates the probability estimates that the 
win and loss outcomes would be associated with shape “A” 
using a Rescorla–Wagner learning rule (Rescorla and Wagner 
1972):

in which rwin(i+1) is the estimated win outcome probability 
for the i + 1st trial, rwin(i) is the estimated outcome for the 

(1)rwin(i+1) = rwin(i) + �win ∗ �
win(i)

rloss(i+1) = rloss(i) + �loss ∗ �
loss(i)

ith trial, αwin represents the learning rate for win outcomes, 
and εwin(i) indicates the prediction error on the ith trial. Pre-
diction error is calculated as the predicted outcome value 
minus the actual outcome value. At the start of each block, 
rwin was initialised at 0.5 because participants could not 
have prior expectations about which shape was most likely 
to be associated with a win outcome. rloss(i+1), rloss(i), aloss 
and εloss(i) indicate the same variables for the loss outcome. 
Next, estimated outcome probabilities were transformed into 
a single choice probability using a softmax function:

Here, P(choice=A(i)) is the probability of choosing shape A in 
trial i, with β representing the inverse decision temperature 
and t reflecting an added parameter used to estimate a gen-
eral tendency to select one of the options over the other. 
The inverse temperature indicates the degree to which the 
expected values are used to determine choice for a par-
ticular shape. Learning rates and β-values were calculated 
separately for each task block and participant. This was 
achieved by calculating the full joint posterior probability 
of the parameters given participants’ choices, deriving the 
expected value of each parameter from their marginalised 
probability distributions (Behrens et al. 2007; Browning 
et al. 2015). As the purpose of this model was to measure 
change in learning rates between blocks rather than describe 
the mechanism by which estimated information content is 
calculated, it was fit separately to each of the task blocks. 
The first 10 trials of each block were omitted when fitting the 
model parameters to participants’ choices, as initial learn-
ing rates are generally inflated due to estimation uncertainty 
during new tasks.

Win‑ and Loss‑Driven Behaviour

To complement the model-based analyses, non-compu-
tational analyses were conducted to examine win- and 
loss-driven behaviour following trials where a shape was 
associated with both a win and a loss (Pulcu et al. 2019). 
The reason for including trials of this type was to obtain a 
measure of which outcome had a greater influence on par-
ticipants’ future choices that did not depend on the assump-
tions of a particular model. If one stimulus was associated 
with both a win and a loss on trial i, the participant would 
be expected to select this stimulus in the next trial (i + 1) if 
they are influenced more by the win outcome. Conversely, 
if they are more influenced by the fact that a loss outcome is 
associated with a stimulus in trial i, then they should select 
the stimulus that had neither a win nor a loss on the next 
trial (i + 1). The stimulus chosen by the participant on trial 
i + 1 therefore provides a measure of participants’ beliefs 

(2)P(choice=A(i)) =
1

1 + exp(−�∗(rwin(i)+t−rloss(i)))
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about the relative informativeness of positive versus nega-
tive outcomes, indicated by which has a stronger impact on 
their subsequent choice behaviour (see Fig. 2). Win-driven 
choice behaviour was quantified as the sum of the following 
choices:

(a) If the stimulus on trial i had both a win and a loss, 
participants selected this stimulus on trial i + 1

(b) If the chosen stimulus on trial i had neither a win nor 
a loss, participants selected the other stimulus on trial 
i + 1

The proportion of win-driven choices was then calculated 
by dividing the number of win-driven choices by the total 
amount of trials on which a stimulus was associated with 
both a win and a loss (40 per block). The proportion of loss-
driven choices in turn can be derived from the win-driven 
choice behaviour (i.e. 1 − proportion win-driven choices).

Statistical Analyses

All statistical analyses were carried out in R software 
(R Version 3.6.0.). Data and analysis scripts are avail-
able on Open Science Framework: https ://osf.io/k36h4 /, 
DOI: https ://doi.org/10.17605 /OSF.IO/K36H4 . Changes 
in learning rates and inverse temperature were examined 
using repeated-measures ANOVAs using the ‘ezANOVA’ 
function from the ‘ez’ R package. For all IBLT blocks, 
within-subject variables were Outcome valence (win vs. 
loss), and tDCS condition (active vs. sham). In addition, a 
within-subject variable for Block (1, 2, or 3) was included 
for ‘Training’ blocks and Time (before or after training) 
for ‘Both-volatile’ blocks. tDCS order (sham first vs. 
active first) was included as a between-subject variable. 
Inverse temperature values were similarly investigated 
using Block/Time, tDCS condition, and tDCS order as 
predictor variables. Parameters were transformed onto the 
infinite real line using a logit transformation for learning 

rates and a log transformation for the inverse temperature 
values, in line with previously published work by Pulcu 
and Browning (2017). Figures and reported values repre-
sent raw parameter values to facilitate interpretation of the 
results. To account for individual differences in baseline 
learning parameters, all analyses were also run including 
baseline learning rates from the first ‘Both-volatile’ block 
of the first testing session as covariates. All results were 
unchanged when baseline learning rates were included in 
the analyses.

Accuracy, Reaction time, and Misclassifications on the 
FERT were investigated in repeated-measures ANOVAs. 
The predictor variables were Emotion (Anger, Disgust, 
Fear, Happiness, Sadness, and Surprise), tDCS condition, 
and tDCS order. For direct comparison of task performance 
between the two studies, Study (1 vs. 2) was added as a 
between-subject factor.

Alterations in acute mood and anxiety were investigated 
based on responses on the PANAS and STAI-State ques-
tionnaires. Effects of stimulation and training were exam-
ined with Time (before IBLT, after IBLT, or after FERT 
completion), tDCS condition, and tDCS order as predictor 
variables for changes in PANAS Positive, PANAS Negative, 
and STAI-State scores.

Results

Baseline Questionnaire Measures

Baseline scores on the mood questionnaires for Study 1 
and Study 2 are provided in Table 1. Scores on the BDI-II 
and STAI-Trait suggest that participants in both studies had 
few symptoms of depression or trait anxiety. Prior to tDCS/
training, there were no significant differences in state mood 
questionnaire scores (PANAS Positive, PANAS Negative, 
and STAI-State) between the active and tDCS sessions in 

Fig. 2  Schematic illustration of win-driven behaviour on the IBLT. a 
If the participant had chosen a stimulus associated with both a win 
and a loss on trial i, choosing the same stimulus on the next trial i + 1 
suggested a stronger impact of win than loss outcomes on behaviour. 

b Conversely, if the participant had chosen a stimulus with neither a 
win nor a loss on trial i, selecting the alternative stimulus on the next 
trial i + 1 indicated a greater influence of win than loss outcomes on 
choice behaviour

https://osf.io/k36h4/
https://doi.org/10.17605/OSF.IO/K36H4
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either Study 1 or Study 2 (all p > 0.05), indicating that there 
was no systematic difference in baseline mood between the 
study sessions.

Study 1: Effects of Negative IBLT Training 
and Concurrent tDCS on Reward Learning

Computational Learning Parameters

The aim of the negative IBLT training paradigm was to 
induce an affective bias towards learning from negative 
(‘loss’) outcomes. In the ‘Training’ blocks, it was expected 
that participants would adopt higher learning rates for the 
volatile loss outcomes than for the stable win outcomes. 
Confirming the effectiveness of the training manipula-
tion, participants had a higher learning rate for losses than 
wins in the ‘Training’ blocks (F(1,18) = 24.22, p < 0.001, 
η2 = 0.112). It was also predicted that, through gaining expe-
rience on the task, learning rates for loss outcomes would 
increase over time. Contrary to this hypothesis, however, 
there was neither a main effect of Block (F(2,36) = 0.30, 
p = 0.746) nor an interaction of Block and Outcome valence 
(F(2,36) = 1.62, p = 0.211). As shown in Fig. 3a, a negative 

Table 1  Mean (SE) baseline questionnaire scores for participants 
completing negative IBLT training (Study 1) and positive IBLT train-
ing (Study 2)

BDI-II Beck’s Depression Inventory II, PANAS Positive and Negative 
Affect Scale, STAI State-Trait Anxiety Inventory

Study 1
Negative IBLT 
training

Study 2
Positive IBLT training

BDI-II 3.70 (1.33) 4.00 (33.15)
STAI-Trait 34.35 (2.08) 33.15 (1.22)
PANAS Positive
 Sham tDCS session 33.40 (1.39) 32.35 (1.70)
 Bifrontal tDCS 

session
33.45 (1.26) 33.60 (1.87)

PANAS Negative
 Sham tDCS session 11.55 (0.62) 11.35 (0.43)
 Bifrontal tDCS 

session
10.50 (0.18) 11.80 (0.63)

STAI-State
 Sham tDCS session 27.40 (1.52) 26.15 (1.29)
 Bifrontal tDCS 

session
26.35 (1.36) 26.60 (1.15)

Fig. 3  Effects of negative IBLT training and tDCS on learning rates. 
a Across the three ‘Training’ blocks, participants demonstrated sig-
nificantly higher learning rates for negative (loss) than positive (win) 
outcomes. Learning rates were pooled over tDCS condition. b Learn-
ing rates for both win and loss outcomes decreased over time in the 
‘Both-volatile’ blocks carried out before (‘Pre’) and after (‘Post’) 
the training. Learning rates were pooled over tDCS condition. c 
Active tDCS did not alter learning rates for either wins or losses in 

the ‘Training’ blocks compared to sham tDCS. Learning rates are 
averaged across the three ‘Training’ blocks. d In the ‘Both-volatile’ 
blocks there were no significant effects of tDCS (p > 0.05) on learn-
ing rates for either wins or losses over time when contrasting blocks 
completed before (‘Pre’) and after (‘Post’) training. This suggests that 
tDCS did not influence the near-transfer of training effects on speed 
of learning. *p < 0.05, ***p < 0.001
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learning bias was rapidly induced in ‘Training’ block 1 and 
persisted in the subsequent two blocks.

The key hypothesis was that negative training would 
transfer to the ‘Both-volatile’ blocks, reflected in a shift to 
faster learning from losses than wins after training compared 
to before. We observed a decrease in learning rates over 
time (F(1,18) = 5.78, p = 0.027, η2 = 0.022), with learning 
rates being higher (for both wins and losses) before than 
after IBLT training. Importantly, however, there was also a 
numerical trend towards an interaction of Time with Out-
come valence (F(1,18) = 3.51, p = 0.077, η2 = 0.008), with 
average learning rates decreasing more for win (t(39) = 2.79, 
p = 0.008) than loss outcomes (t(39) = 0.64, p = 0.525) over 
time (see Fig. 3b). This trend is consistent with the aim of 
the training procedure to encourage faster learning from 
negative relative to positive outcomes.

The purpose of applying active tDCS was to test if this 
would enhance the expected effects of IBLT training, poten-
tially causing a greater increase in loss learning rates in the 
‘Training’ blocks compared to sham stimulation, which 
could also manifest in enhanced transfer. However, in the 
‘Training’ blocks (see Fig. 3c) there was neither a main 
effect of tDCS (F(1,18) = 0.01, p = 0.916) and no interac-
tion with Outcome valence (F(1,18) = 0.03, p = 0.873). Simi-
larly, in the ‘Both-volatile’ blocks (see Fig. 3d) there was 
neither an interaction of tDCS with Time (F(1,18) = 0.02, 
p = 0.903) nor a 3-way interaction with Time and Outcome 
valence (F(1,18) = 1.04, p = 0.321). Overall, there was thus 
no evidence that tDCS of the DLPFC altered learning rates 
or transfer in this study.

Finally, it was expected that the IBLT training/tDCS 
manipulation would be specific to learning rates and would 
not affect other computational parameters. Consistent with 
this, there was no change in the randomness of participants’ 
choices as a function of Block/Time, tDCS or Outcome 
valence (inverse temperature values all p > 0.05). This shows 
that IBLT training specifically altered participants’ learning 
rates without altering other aspects of their behaviour (e.g. 
choice stochasticity).

Win‑ and Loss‑Driven Choice Behaviour

As the negative IBLT training fostered learning from loss 
outcomes, it was expected that the overall number of loss-
driven choices would be greater than the number of win-
driven choices in the ‘Training’ blocks. Demonstrating that 
negative IBLT training successfully induced a bias towards 
basing choices on losses, the loss-driven option was selected 
over the win-driven option in 66.73% of the trials across the 
‘Training’ blocks (see Fig. 4a).

Our key prediction for the ‘Both-volatile’ blocks was 
that IBLT training would result in an increase in loss-
driven choices, such that participants would choose the 

loss-driven option more frequently after than before training. 
A repeated-measures ANOVA confirmed that participants 
made a significantly greater number of loss-driven choices 
after completing the ‘Training’ blocks compared to base-
line performance (F(1,18) = 10.06, p = 0.005, η2 = 0.090) as 
shown in Fig. 4b. This increase in loss-driven choices after 
negative IBLT training is consistent with the trend towards 
near-transfer for loss learning rates.

Finally, tDCS of the DLPFC was expected to further 
increase the number of loss-driven choices compared to 
sham stimulation. However, there was again no evidence for 
modification of IBLT performance with tDCS (see Fig. 4c, 
d). Specifically, there was no significant main effect of stim-
ulation in the ‘Training’ blocks (F(1,18) = 0.00, p = 0.987) 
nor an interaction of tDCS with Time in the ‘Both-volatile’ 
blocks (F(1,18) = 1.79, p = 0.198).

Emotional Face Recognition

We predicted that combined negative IBLT training/tDCS 
would result in improved recognition of negative facial 
expressions on the FERT. In contrast to this hypothesis, 
however, there was no evidence that either training or tDCS 
significantly affected recognition of emotional face stimuli 
(see Online Resource 1).

Mood and Anxiety Measures

Finally, we tested whether training towards learning from 
negative outcomes resulted in acute declines in mood and 
increased anxiety. Whilst there were no changes in STAI-
State scores (F(2,38) = 1.38, p = 0.265) or PANAS Nega-
tive affect scores (F(2,38) = 0.12, p = 0.884) over time, there 
was a significant decrease in PANAS Positive affect scores 
(F(2,38) = 9.23, p < 0.001, η2 = 0.056). Potentially, this 
change in positive mood could be attributed to the negative 
IBLT training. Alternatively, it is possible that there may be 
other non-specific factors (e.g. fatigue, loss of motivation) 
which contribute to reduced positive affect over time.

Finally, we assessed the effects of tDCS on mood and 
anxiety when combined with negative IBLT training. There 
were no main or interaction effects of tDCS for STAI-S, 
PANAS Positive, or PANAS Negative scores (all p > 0.05).

Study 2: Effects of Positive IBLT Training 
and Concurrent tDCS on Reward Learning

The positive IBLT training protocol aimed to induce a bias 
towards learning from positive (‘win’) outcomes. It was 
expected that the effects of training would be the reverse of 
the negative IBLT training in Study 1, with training leading 
to faster learning from win than loss outcomes. Consistent 
with this, participants demonstrated significantly higher 
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learning rates for positive than negative outcomes on the 
‘Training’ blocks (F(1,18) = 135.39, p < 0.001, η2 = 0.452). 
In addition, non-computational analyses indicated that par-
ticipants chose the win-driven option over the loss-driven 
option on 62.8% of the trials. These findings demonstrate 
that the positive IBLT training effectively induced a congru-
ent learning bias in the ‘Training’ blocks (see Fig. 5). How-
ever, we found no evidence of near transfer with positive 
IBLT training/tDCS for learning rates, win-driven behav-
iour, FERT performance, or mood (see Online Resource 1).

Discussion

In the two studies presented here, we investigated the effects 
of a novel cognitive training paradigm with concurrent 
bifrontal tDCS on affective learning processes. Our results 
suggest that training with informative (volatile) wins did not 
produce a positive affective bias beyond the training blocks. 
However, we found several lines of evidence supporting 

the hypothesis that training towards informative (volatile) 
losses can induce a negative affective bias in healthy adults. 
First of all, participants demonstrated higher learning rates 
for loss than win outcomes across the training blocks, high-
lighting the efficacy of the volatility manipulation in train-
ing. Secondly, non-computational analyses demonstrated 
an increase in loss-driven choices in ‘Both-volatile’ blocks 
for trials where the win and loss outcome were associated 
with the same shape. This shows that there was near transfer 
of learning from losses in the negative IBLT training para-
digm. Finally, there was a non-significant trend towards near 
transfer of changes in learning from training, with a greater 
decrease in win than loss learning rates being observed in 
the ‘Both-volatile’ blocks completed after training. This 
again suggests a relative increase in reliance on loss com-
pared to win outcomes after carrying out the negative IBLT 
training. Together, these findings indicate that the negative 
training protocol introduced here was able to influence affec-
tive cognition in the intended direction. Contrary to hypoth-
esis, the application of brain stimulation to the DLPFC did 

Fig. 4  Proportion (p) of win-driven choices  during negative IBLT 
training by tDCS condition. The proportion of loss-driven choices 
can be calculated as 1  −  p. a In the ‘Training’ blocks, participants 
tended to make more loss- than win-driven choices across the three 
blocks. b There was a significant decrease in win-driven choices (i.e. 

an increase in loss-driven choices) over time in the ‘Both-volatile’ 
blocks completed before (‘Pre’) and after (‘Post’) training. There was 
no evidence for an effect of tDCS in either the c ‘Training’ blocks or 
the d ‘Both-volatile’ blocks. **p < 0.01
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not modulate the impact of either negative or positive cogni-
tive training. We discuss the implications of these outcomes 
and potential research directions for further development of 
this simultaneous training-tDCS approach.

Increasing Learning from Negative Outcomes

A key finding of the present research was that training 
towards negative outcomes resulted in a greater number of 
loss-driven choices in ‘Both-volatile’ blocks following the 
training. This increase in loss-driven behaviour was accom-
panied by a trend towards increased learning from losses 
relative to wins in the computationally derived learning 
rates. A possible explanation for the significant effect being 
observed for loss-driven choices but not learning rates is that 
analyses of win- and loss-driven choices focused only on a 
subset of trials—those following immediately after both the 
win and loss outcome were associated with the same stimu-
lus. The ‘both’ outcome on these trials does not provide 
objective information about which stimulus would be the 
optimal choice on the subsequent trial. Hence, these trials 
provide an indirect measure of participants’ subjective esti-
mates of the relative informativeness of the win versus loss 
outcome information. Participants who believe the win out-
come better predicts future success are more likely to select 
the stimulus which was associated with both outcomes on 
the subsequent trial. Participants who believe the loss out-
come better predicts the future are more likely to select the 
stimulus which was not associated with either outcome on 
the next trial. After negative training, participants showed an 
increase in loss-driven choices, suggesting that the negative 
training had the desired effect, i.e. it increased participants’ 
use of negative outcome information to guide their future 

choices, although this effect was specific to ambiguous situa-
tions (i.e. ‘both’ outcome trials). However, it should be noted 
that the effect size was small, and there was no evidence that 
changes in negative IBLT training influenced affective bias 
as measured on a task of recognition of emotional facial 
expressions. In addition, although there was a reduction in 
positive affect after negative training, a similar change in 
mood was observed with positive training which may be 
due to reduced interest and motivation with time on task. 
It is therefore unclear whether a single session of negative 
training can specifically affect mood in healthy volunteers. 
The significance of this isolated finding as confirmation that 
our novel training paradigm is an effective form of cognitive 
bias modification should therefore be interpreted with care. 
More positively, if this training effect can be replicated, and 
the general approach modified to also increase positive (and 
not just negative) resolution of ambiguity, this could have 
potential application for targeting cognitive symptoms of 
depression.

The present findings were observed in healthy volunteers. 
Although there was a main effect of training, with nega-
tive training associated with overall greater learning rates 
for losses versus wins, and positive training associated with 
overall greater learning rates for wins versus losses, there 
was no progressive increase in learning rates across succes-
sive ‘Training’ blocks 1–3, as might be expected a priori. 
This suggests a possible ceiling effect in this training para-
digm in healthy volunteers, such that learning rates were 
already maximal in the first exposure block. Notably, the 
healthy adults taking part in this study had a high learning 
rate for rewarding outcomes at baseline. This is in line with 
previous research indicating that healthy individuals tend 
to have an optimism bias (Sharot 2011), which is associated 

Fig. 5  Effects of positive IBLT training on learning rates and win-
driven choice behaviour. a Across the three ‘Training’ blocks, par-
ticipants demonstrated significantly higher learning rates for positive 

(win) than negative (loss) outcomes. b On average, the proportion of 
win-driven choices (p) was greater than the proportion of loss-driven 
choices (1 − p) across the ‘Training’ blocks. ***p < 0.001
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with greater attention to positive and rewarding stimuli com-
pared with negative or neutral stimuli (Kress et al. 2018; 
Pool et al. 2016). Given this baseline bias for learning from 
positive outcomes, there may have been relatively little 
scope for further enhancing learning from rewards in this 
group. We speculate that such a positive bias and ceiling 
effect with positive training is less likely to be present in 
depressed volunteers, who may therefore have more room 
for training to change learning rates. Further testing of this 
paradigm in clinical populations will therefore be essential 
to determine mood state-dependent effects of the training on 
learning processes.

We are currently testing this approach in analogue sam-
ples of community volunteers with subclinical depression to 
assess potential effects on learning rates and on ambiguous 
‘both-outcomes’ trials. It is well-established that depression 
is associated with a negative interpretation bias for ambigu-
ous information (Cowden Hindash and Amir 2012; Lawson 
et al. 2002). For instance, when asked to write down orally 
presented words that could have a negative, positive, or neu-
tral meaning (e.g. die/dye), people with depression tend to 
use the spelling of the negative word (Mogg et al. 2006). It 
has been suggested that this interpretation bias is a result of 
negative attention biases that in turn can cause congruent 
bias in memory (Everaert et al. 2014). It can therefore be 
hypothesised that cognitive training that modifies attention 
to negative versus positive information in ambiguous con-
texts could impact on related cognitive biases (e.g. memory). 
If future work indicates that IBLT training can increase 
learning from positive outcomes in depressed individuals, a 
key test of clinical potential will be whether this effect gen-
eralizes to other negatively biased cognitive domains such 
as attention and memory.

Absence of tDCS Effects on Learning

Several previous studies have reported that tDCS can 
increase the effects of cognitive training (Brunoni et al. 
2014; Clarke et al. 2014; Segrave et al. 2014). However, we 
did not find a synergistic effect of prefrontal neurostimula-
tion on IBLT training. This was unexpected, as previous 
studies using the same tDCS parameters have reported sig-
nificant decreases in affective bias (Ironside et al. 2016) 
and reduced symptoms of depression (Brunoni et al. 2016). 
There are several possible explanations. A first possibility 
is that, as indicated previously, there may be a ceiling effect 
such that healthy participants rapidly adopt high learning 
rates for volatile stimuli, which cannot be increased further.

Alternatively, it has been suggested that positive and 
negative outcomes have different value functions and cor-
respondingly different underlying neural bases (Chen et al. 
2015). It is thus possible that modification of loss learning 
mechanisms requires a different tDCS protocol compared 

with reward learning. To date, most studies investigating the 
neural bases of learning with volatile outcomes have focused 
on reward rather than loss outcomes (Behrens et al. 2007; 
Massi et al. 2018). Consequently, it is at present unclear 
whether volatility of loss outcomes is encoded in similar 
brain circuits as win outcomes. Additional research contrast-
ing responses to reward and loss outcomes in volatile con-
ditions is needed to clarify the neural mechanisms of these 
affective learning processes.

Limitations and Future Directions

Our study has several limitations which we plan to address 
in ongoing and future studies to investigate the potential of 
IBLT training and tDCS in modifying depression-related 
biases. First, similar to previous tDCS research, our studies 
used a relatively small sample size. Since our prime moti-
vation was the potential future clinical utility of training 
and/or tDCS, our interest was in detecting medium to large 
effects. Our chosen sample size was informed by prior work 
(in preparation) using the same task and tDCS protocol but 
without a training element. There we found a medium effect 
(d = 0.41) of tDCS on the task, which we replicated, with 
each experiment involving a sample of 20 participants. It 
therefore seemed reasonable to choose the same sample 
size for this proof-of-principle training study. However, we 
note that relying on prior significant results can inflate the 
predicted effect size, and thereby hamper estimation of the 
appropriate sample size for replication studies (see Button 
et al. 2013). The lack of power to detect small effects in the 
present work could be addressed in larger replication studies 
employing formal power calculations.

In addition, interpretations of the present work are limited 
by the absence of a control condition for cognitive training. 
First, a ‘sham’ training condition would be useful to disam-
biguate learning effects from a time or task familiarity effect. 
Second, the lack of a control training paradigm meant that 
we were unable to examine the effects of tDCS in isolation. 
Therefore, our data do not address whether modulation of 
DLPFC activity in itself can induce affective learning biases 
or alter participants’ mood. However, previous studies have 
demonstrated that the effects of tDCS tend to be more pro-
nounced when coupled with a task which engages the rel-
evant brain regions (Brunoni et al. 2014; Clarke et al. 2014; 
Segrave et al. 2014). Furthermore, a systematic review of 
non-invasive brain stimulation studies targeting the prefron-
tal cortex indicated that a single session of tDCS does not 
impact on mood in healthy adults (Remue et al. 2016). It is 
therefore unlikely that inclusion of a tDCS with sham train-
ing condition would have resulted in learning biases or acute 
changes in mood in this sample. However, we note that a 
recent meta-analysis reported weak but significant beneficial 
effects of anodal prefrontal tDCS on stress-related emotional 
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reactivity (Smits et al. 2020). It is thus possible that pre-
frontal stimulation affected specific aspects of emotional 
processing which were not measured in the present work.

A further limitation is that the facial expression recog-
nition task (FERT) was not carried out prior to but only 
after training in order to reduce session duration and thus 
limit potential fatigue. This design enabled us to com-
pare affective biases after sham versus after active tDCS 
for both training manipulations, but did not allow for an 
assessment of any within-session pre-post training changes 
from baseline that might have been caused by the training 
itself.

Effects of single cognitive modification training ses-
sions tend to be mild, particularly in healthy participants 
(Hallion and Ruscio 2011). We can therefore not exclude 
the possibility that stronger effects of training or tDCS 
would be observed following multiple sessions. From a 
therapeutic point of view, it is also worth considering 
whether future training modifications should include a 
specific learning criterion in place of a fixed number of 
trials. This manipulation may enhance specification of 
the required dosage for behavioural changes and optimise 
training effects for individuals.

Conclusion

In summary, the present study provided preliminary evi-
dence that a novel training paradigm could induce a negative 
cognitive bias in healthy adults. This effect was particularly 
pronounced in trials in which ambiguous outcomes were 
used to guide future choices. We found no evidence for an 
augmenting effect of tDCS over the prefrontal cortex on this 
form of training. Overall, the findings provide some support 
for the hypothesis that training with an Information Bias 
Learning Task can modulate cognitive mechanisms that have 
been associated with attention and memory biases in depres-
sion. An outstanding question, with important implications 
for depressive symptoms, is whether the training proce-
dure can be adapted to also enhance learning from positive 
events. Additional research is warranted to investigate the 
robustness of the effects reported here and assess whether 
they can be extended to clinical populations.
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