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Abstract

Background: The transcription of developmental regulatory genes is often controlled by multiple cis-regulatory
elements. The identification and functional characterization of distal regulatory elements remains challenging, even
in tractable model organisms like sea urchins.

Results: We evaluate the use of chromatin accessibility, transcription and RNA Polymerase Il for their ability to
predict enhancer activity of genomic regions in sea urchin embryos. ATAC-seq, PRO-seq, and Pol Il ChIP-seq from
early and late blastula embryos are manually contrasted with experimental cis-regulatory analyses available in sea
urchin embryos, with particular attention to common developmental regulatory elements known to have enhancer
and silencer functions differentially deployed among embryonic territories. Using the three functional genomic data
types, machine learning models are trained and tested to classify and quantitatively predict the enhancer activity of
several hundred genomic regions previously validated with reporter constructs in vivo.

Conclusions: Overall, chromatin accessibility and transcription have substantial power for predicting enhancer
activity. For promoter-overlapping cis-regulatory elements in particular, the distribution of Pol Il is the best predictor
of enhancer activity in blastula embryos. Furthermore, ATAC- and PRO-seq predictive value is stage dependent for
the promoter-overlapping subset. This suggests that the sequence of regulatory mechanisms leading to
transcriptional activation have distinct relevance at different levels of the developmental gene regulatory hierarchy
deployed during embryogenesis.
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Background

Transcriptional regulatory elements (TREs) [1] are the
primary drivers of differential gene expression during
metazoan development [2—4]. Whereas promoters are
TREs easily found by association with the transcription
start sites (TSSs) of genes, the identification and
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functional characterization of TREs distal to TSSs (en-
hancers and silencers) remains challenging. Tradition-
ally, enhancers have been considered the modulators of
distal transcription at core promoters (promoters there-
after), which integrate inputs from enhancers and ‘prox-
imal promoters’ to initiate local transcription [5].
However, this exclusive functional distinction has been
blurred by recent evidence that reveals local transcrip-
tion initiation at enhancers and promoters that modulate
the transcription of some other promoters [1, 2, 5].
Nevertheless, distinct sequences and chromatin features
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associate with the prevalence of enhancer and promoter
activities among TREs [6]. The expression of inducible
genes in unicellular organisms is oftentimes driven by
regulatory sequences proximal to the core promoter [2,
5]. In contrast, the oftentimes complex expression of de-
velopmental regulatory genes (that is, transcription and
signaling factors) is primarily controlled by distal regula-
tory elements [2, 7]. Despite their relevance, only a few
cis-regulatory modules (CRMs) that constitute the essen-
tial transcriptional nodes of developmental gene regula-
tory networks are functionally understood [8]. Various
high-throughput reporter assay with particular advan-
tages and limitations [9] allow genome-wide testing of
enhancer activity [10], and, despite recent progress, most
TREs remain largely uncharted [6, 11]. Histone marks
such as H3K27ac [12, 13], chromatin accessibility [14] or
transcription initiation [15] facilitate the identification of
active enhancers. However, the systematic evaluation of
the predictive power and redundancy of these genomic
marks remains limited [13, 16]. Enhancer transcription
may facilitate enhancer activity prediction because it
represents the end product, possibly subsequent in most
cases to chromatin accessibility set in part by H3K27
acetylation, and because it correlates between enhancers
and their target promoters [17-19]. In particular, we are
interested in the predictive value of enhancer transcrip-
tion estimated by the analysis of the transcription run-
on assay PRO-seq [20], which detects the differential lo-
cation of paused and elongating RNA Pol II associated
with distinct transcriptional regulatory states [17].

Several experimental advantages have facilitated the
exhaustive reconstruction of developmental gene regula-
tory networks (GRNSs) in sea urchin embryos [21-23].
The analysis of topological GRN models reveals an un-
even distribution of regulatory sub-circuit motifs along
the GRN hierarchy sequentially deployed during sea ur-
chin embryogenesis [4]. Accordingly, the structure and
Boolean logic of the TREs serving the nodes of these
sub-circuits changes during development too [22]. In sea
urchins, enhancer and silencer activities of TREs can be
tested by lack of function in bacterial artificial chromo-
some (BAC) reporter constructs microinjected into zy-
gotes [24, 25], or by gain of function in much smaller
plasmid reporters, which oftentimes use heterologous
promoters [26]. These exogenous reporters replicate
along with the genome [27, 28], with the much larger
than plasmids BACs providing a closer approximation to
the natural genomic context and more faithfully repro-
ducing the endogenous expression. In addition, BACs
maintain endogenous promoters in the context of gene-
reporter translational fusions. Despite these advantages,
the identification and testing of developmental TREs re-
mains challenging due to the low throughput of existing
experimental approaches.
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Evolutionary sequence conservation has been routinely
used for the identification of potential TREs in sea ur-
chins [4], although conservation is not informative about
the stage of regulatory activity, and the obscure cause of
diverse evolutionary rates for regulatory sequences [29,
30] raises great uncertainty regarding false positive and
negative rates. As in other model systems, chromatin ac-
cessibility also facilitates the identification of candidate
enhancers in sea urchin embryos [25, 31]. In addition, a
parallel reporter method enabled the enhancer activity
test of several hundred CRMs associated with 37 devel-
opmental regulatory genes during sea urchin develop-
ment [32, 33]. We used this functional quantification to
train and test machine learning model predictors of de-
velopmental enhancer activity from various genomic
profiles: chromatin accessibility estimated by ATAC-seq
[34], RNA Polymerase II (Pol II) distribution, which has
been also associated with active enhancers [35], was de-
tected by ChIP-seq, and transcription initiation by PRO-
seq (Fig. 1A). Our analysis reveals that chromatin acces-
sibility and transcription both enable enhancer activity
prediction, and that the predictive power of these gen-
omic profiles declines during development for the subset
of promoter proximal TREs, suggesting a sequence of
regulatory shifts at different levels of the gene regulatory
hierarchy that is deployed during development.

Results

Genomic distribution of chromatin accessibility, pol 1l and
transcription

Chromatin accessibility, transcription and the distribu-
tion of RNA Pol II using ChIP-seq were used for the
identification of candidate developmental enhancers in
20 h sea urchin embryos (Fig. 1A), and the best perform-
ing predictors, ATAC- and PRO-seq, see later, were also
characterized in 12 h embryos. The genomic profile of 3’
end transcripts identified by PRO-seq was analyzed with
dREG (Fig. 1A), a support vector regression tool trained
to identify TREs associated with active chromatin marks
using the shape of transcription [15]. In 12 and 20 h em-
bryos, dREG identified 43,912 and 56,753 TRE predic-
tions or “peaks”, respectively, while a total of 238,838
and 258,515 ATAC-seq peaks, respectively, were called
by MACS (QC reports in supplementary information).
In 20h embryos, 554,846 Pol II ChIP-seq peaks were
called.

The dynamic range of the read distribution at peak
calls expands several orders of magnitude for the three
functional genomic data types (Fig. 2B and D). The Pear-
son correlation of total PRO-seq reads at dREG peak
calls of biological replicates is higher for 12 h embryos
(R = 0.88, p-value < 2.2 x 10~ *®, Spearman = 0.71, Fig. 2A)
than for 20h embryos (R =0.35, p-value <2.2x 10",
Spearman = 0.75, Fig. 2C). Similarly, higher correlation
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Fig. 1 ATAC-seq, PRO-seq and Pol Il ChIP-seq are used for the identification of TREs. A Experimental outlines of the 3 genomic profiles used. B
IGV browser snapshot of replicate genomic profiles at the H2A.Z locus, a highly expressed gene [36], left, which also includes a gene expressed at
lower levels, right side. Number of 3" end reads per million of PRO-seq run-on transcripts are shown for the plus and minus strands. PRO-seq
peaks mark transcriptional pause sites. MACS peak and dREG TRE predictions for the combined data sets are shown underscoring each genomic
profile. The CRM panel underscores a genomic region with enhancer activity tested by deletion in large reporter constructs [25]. PRO-seq and
ATAC-seq profiles are set to the same scale between 12 and 20 h stages, with the range indicated between brackets at the beginning of
each track

for ATAC-seq profiles at MACS peak calls is found for
12h embryos (R=0.91, p-value <22x10 '®, Spear-
man = 0.79, Fig. 2A) relative to 20 h embryos (R =0.62,
p-value < 2.2 x 10~ '®, Spearman = 0.46, Fig. 2C). The low
correlation of PRO-seq biological replicates may be due
in part to inherent batch heterogeneity associated with
seasonal and genetic variability in the wild populations
from which the embryos where obtained. This natural
variation may shift the relative timing of major tran-
scriptional regulatory changes during and prior to the
20 h embryo stage, as previously reported [36, 37], along
with the associated histone modification and chromatin
accessibility signals (Fig. 2).

Interestingly, there is less variability among Pol II
ChIP-seq biological replicates (R =0.96 to 0.94, with p-
values < 2.2 x 10™'¢, Fig. 2C). Nevertheless, the biological
or technical source of the variation among the different
marks could not be resolved in this study, because differ-
ent embryo batches, sometimes from different seasons,
were used. In addition, for the 20h ATAC-seq data, a
distinct nuclear extraction protocol for one of the repli-
cates [25] may have contributed to some technical vari-
ability. Given these caveats no quantitative genome-wide
comparison of the different genomic profiles between
stages is performed, but only primarily qualitative com-
parisons among stages based in peak calls (Fig. 2F and
Fig. S1 F). However, despite the higher variability of the
PRO-seq and ATAC-seq 20 h data sets, generally similar
signal profiles are seen among biological replicates in

both developmental stages, as illustrated at the H2A.Z
locus [25] (Fig. 1B). Similar reproducibility trends are
observed at promoters and CRMs (Fig. S1 A-D), with
much higher replicate correlations for the subset of
CRMs that are the primary target of this study (CRMs
hereafter) (Fig. S1 B and D).

Genome-wide, most dREG peaks overlap Pol II peaks
(Fig. 2E), as expected. However, because much of Pol II
is found in the body of transcribed genes, the majority of
pol II peak calls did not overlap with dREG predictions.
About 40% of ATAC-seq peaks do not overlap Pol II
peaks, and about 90% of ATAC-seq peaks do not over-
lap dREG predictions, revealing that a substantial frac-
tion of chromatin-accessible regions do not associate
with RNA Pol II or transcription initiation detected
using dREG, which depends on local transcription initi-
ation profiles. Similar overlapping trends are observed in
the CRMs target of this study, with a much larger frac-
tion of ATAC peaks overlapping Pol II peaks, dREG pre-
dictions and both (Fig. S1 E), possibly in association
with a transcriptional regulatory enrichment in the CRM
data set, which is strongly biased for evolutionary se-
quence conservation [33].

The distinct peak numbers and particular overlaps
among the three genomic assays anticipate distinct con-
tributions and/or the requirement of combinatorial ana-
lysis for the prediction of distal TREs. Globally, about 42
and 50% of the 12 and 20 h dREG peaks are stage spe-
cific, respectively (Fig. 2F), while 36 and 38% of the 12
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Fig. 2 Genome-wide PRO-, ATAC- and ChlIP-seq analysis. A Distribution of signal intensity and reproducibility estimation between distinct
biological replicates for the different data sets in 12 h embryos. Overlap of points indicated by the color gradient. B Histograms of the number of
reads per peak call for the different data sets in A. C Distribution of signal and reproducibility in 20 h embryos. D Histograms of the number of
reads per peak call for the different data sets in C. E Venn diagrams of the overlap between ATAC and Pol Il ChIP peak calls, and dREG predicted
TREs in 20 h embryos. F Venn diagrams of the overlap of ATAC and dREG peak calls between stages

and 20h ATAC peaks are stage specific, respectively
(Fig. 2F) . However, for peaks overlapping CRMs (Fig. S1
F), the majority of ATAC and dREG peaks present in
the 12 h stage remain in the 20 h stage, but a much lar-
ger proportion of dREG peaks than ATAC peaks are 20
h specific, 60% versus 30%. This reveals that during the
12 to 20 h transition there is a general increase of tran-
scription initiation and pause at developmental TREs
while accessibility, estimated by peak calls, is more con-
stant. This suggests that increased accessibility of devel-
opmental enhancers generally precedes transcriptional
output of developmental TREs.

Validation and evaluation of functional genomic marks
for the identification of developmental TREs

We manually contrasted our functional genomic data
sets with previous experimental cis-regulatory analyses
in order to explore how they could facilitate the identifi-
cation of active developmental TREs. TRE necessity for

the control of endomesoderm transcription factor
SpHox11/13b developmental expression has been char-
acterized by deletion from BAC reporters, and TRE suf-
ficiency by plasmid reporter constructs testing an
overlapping array of genomic regions that scan the en-
tire locus [24]. ATAC-seq peaks underscore regulatory
element ME in 12 and 20h embryos but only dREG
highlights ME in 20h embryos (Fig. 3), which corre-
sponds to the stage of higher ME reporter activity [24].
This pattern of 20 h specific dREG activity follows the
general ATAC and dREG stage prevalence trend in the
proximity of regulatory elements, a generally constant
number of ATAC peaks and increased number of dREG
peaks during the later blastula stage (Fig. S1 F). Module
ME has been demonstrated to be both necessary by de-
letion in BAC reporters and sufficient in plasmid re-
porters [24] to drive the embryonic SpHox11/13b
expression profile, which is spatially dynamic and in-
creases during the 12 to 20 h transition [38]. Like many
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for enhancer activity by overlapping 3-5 Kb reporter constructs [24], only active CRMs are indicated, in green those active in both stages, and in
gray those inactive or with unknown activity in these stages as indicated in the text
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other early embryo TREs, ME has distinct enhancer and
silencer functions in different embryonic territories. In
12 and 20 h embryos, module ME responds to spatially
restricted vegetal wnt signaling by enhancing transcrip-
tion in the endomesoderm and endoderm territories,
and by silencing transcription in the ectoderm and the
mesoderm, where the wnt pathway remains and be-
comes inactive, respectively [24]. Therefore, the whole
embryo genomic profiles derive from both enhancer and
silencer activities from different territories.

DNA binding sites for transcription factor TCF are re-
quired for the wnt signal dependent enhancer and silen-
cer functions of element ME. There is an increase in the
transcriptional pause at the 20h embryo SpHox11/13b
promoter relative to the 12 h stage (Fig. 3), which could
correspond with its ME transcriptional silencing in the
ectoderm and mesoderm [24]. Interestingly, the cofactor
of TCF, groucho, implements silencing by pause in
Drosophila embryos [39], which may represent an evolu-
tionarily conserved function in sea urchins. Module D,
in isolation, drives unrestricted reporter expression in 15
and 18 h embryos that can be dominantly silenced by
module ME when placed in the same reporter construct
[24]. Module D is inactive in 6 and 21 h embryos, leaving
uncertain its activity in 12 h embryos. There are ATAC-
seq peak calls with relatively low signal within Module D
in both stages, but no dREG peaks (Fig. 3). Thus, mod-
ule D lacks silencing functions and dREG peak calls.

Module D was not deleted in BACs and therefore its
endogenous function remains uncertain [24]. Finally,
element L, which drives reporter activity at later stages,
was undetectable with reporter constructs in 15 and 24
h embryos [24], dREG marks regulatory element L in 20
h embryos but not in 12 h embryos, while ATAC detects
this regulatory element in both stages. In this case, the
dREG peak calls and associated pausing in module L of
20 h embryo may correspond with its priming for subse-
quent activation during later embryonic and larval
stages.

Similar unbiased tiling array reporter scan was per-
formed for the regulatory elements controlling the ex-
pression of transcription factor omecut [40]. During
pregastrular stages, onecut zygotic transcript levels reach
a minimum soon after the 12 h stage and peak at 20 h,
around the time when its restricted oral-aboral boundary
expression is stablished [40]. Analogous to SpHox11/13b
module ME, distal regulatory module Intron-D of onecut
integrates enhancer and silencer functions that are ne-
cessary and sufficient to recapitulate the expression of
this transcription factor [40]. Likewise, ATAC-seq peak
calls underscore Intron-D in both stages, but only 20 h
dREG peak calls highlight Intron-D, coincident with an
augment of pause at the omecut promoter (Fig. S2).
Thus, both in SpHox11/13b ME and onecut Intron-D
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PRO-seq signals may correspond to a blend of transcrip-
tional activation and silencing functions in different em-
bryo regions. Only ATAC-seq peaks intersect omecut
Intron-C module, which is inactive in 20 h embryos (Fig.
S2). Thus, similar to module L of SpHox11/13b, the
ATAC-seq peak call does not correspond with enhancer
activity.

There are far more ATAC-seq peak calls than dREG
predictions at both loci (Fig. 3 and Fig. S2), along with
the general genomic trend (Fig. 2E). Both loci were
scanned by a comprehensive reporter tiling scheme to
test the entire regions for enhancer activity in an un-
biased manner [24, 40]. Remarkably, dREG TRE predic-
tions correspond closely with regulatory elements
experimentally mapped to their minimum range (Fig. 3
and Fig. S2). However, most dREG predictions do not
match CRM enhancer reporter activity (Fig. 3 and Fig.
S2), and even a higher proportion of ATAC peaks do
not correspond with enhancer-active CRMs. The distri-
bution of Pol II ChIP peaks is even broader, particularly
at introns, which are prone to contain TREs (Fig. 3 and
Fig. S2), and, therefore, Pol II ChIP signal seems poorly
suited for TRE predictions on its own. Manual analysis
of other experimentally characterized transcriptional
regulatory elements [41-43] generally confirms the
trends outlined above (Fig. S2). Additional regions of the
genome can be analyzed with the data sets deposited at
the NCBI Gene Expression Omnibus [44], which include
ATAC-, Pol II ChIP- and PRO-seq genomic profiles
along with their associated peak calls. In summary, our
manual analysis suggest that accessibility may have a
looser correspondence with enhancer activity. In
addition, although increased pause does not necessarily
correspond with silencing, as it may be associated with
increased release and elongation, the dual report of tran-
scriptional elongation and pause by PRO-seq may cor-
respond to enhancer and silencer activities differentially
deployed in space, which is very common among early
embryo regional specification TREs [4].

Prediction of enhancer activity from chromatin
accessibility and pol Il

We decided to systematically test if machine learning
models using chromatin accessibility, Pol II distribution
and transcription initiation could predict the previously
quantified enhancer activity of 389 CRMs (Supplemen-
tary Table 1) primarily selected for their evolutionarily
sequence conservation [33]. We first tested a subset of
reporters quantified at high temporal resolution using
nanoString technology [32], but the very small number
of inactive reporters was unsuitable for model training
(results not shown). We therefore settled for a previous
data set that measured reporter enhancer activity by
qPCR and included 12 and 24h time points [33].
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Although this generated a mismatch with the 20 h stage
examined in our genomic data, no major regulatory
transitions have been identified for the majority of the
genes involved during this 4 h period [45]. The average
size of the 389 CRMs (2839 bp) is about one order of
magnitude larger than the average of ATAC peaks (316
bp) Pol II peaks (338 bp), and dREG TRE predictions
(373 bp) (Fig. 4A). Thus, in order to reduce confounding
inputs to the CRMS that may not relate to TRE func-
tion, such as background transcription at introns, or
background accessibility along the CRM span, the
ATAC-, Pol II ChIP- and PRO-seq signals were com-
puted at CRM regions overlapping peak calls and dREG
predictions. CRMs were defined as active if they drove
reporter expression twice above the basal promoter
(Fig. 4B and C). CRM activity cannot be explained by
CRM size because there is no significant size difference
between active and inactive enhancers (Fig. 4A, inset,
Wilconox p-value = 0.11). However, active CRMs in 12
and 24h embryos have significatively higher PRO-,
ATAC-, and Pol II ChIP-seq signals (Fig. 4D, p-values <
1.8 e-06).

Logistic regression classifiers trained and tested by 5
fold cross-validation repeated 200 times resulted in pre-
dictions significatively above random guess in both em-
bryo stages (Fig. 4E and F). The performance of models
using ATAC, dREG (PRO-seq reads at TRE dREG pre-
dictions), their combination (ATAC + dREG), and Pol II
ChIP was slightly higher for ATAC + dREG models
when evaluated by the Area Under the Receiver Operat-
ing Characteristic (AUROC) plot (Fig. 4E and F), which
graphs the relation between true and false positive rates
at different model prediction thresholds. However, the
CRM expression data set is highly unbalanced, with
about 10 times more CRMs reporting inactive than ac-
tive enhancer activity (Fig. 4B and C), and, in these
cases, Precision-Recall Curves (PRCs), which plot preci-
sion values along the range of true positive rates, provide
a better discrimination metric for classifier evaluation
[46].

When AUPRCs are used for model evaluation, more
distinct model performances are obtained, particularly
for the 20 h data sets (Fig. 4F, bottom). Individually, all
assays perform much better than chance in both stages
(Fig. 4E and F). The combination of ATAC and dREG
predictors barely improves performance at some recall
values (Fig. 4E and F, bottom), and similarly, Pol II ChIP
signal does not facilitate better enhancer activity predic-
tions alone (Fig. 4F) or in combination with other data
sets (results not shown). The limited model improve-
ment with combined data sets is perhaps expected given
their substantial correlation, with Pearson’s correlation
coefficients ranging from 0.6 to 0.8 between predictors
of the same stage. Incorporation of other parameters
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such as peak summit value, did not improve any predict-
ive models, as illustrated for dREG (Fig. 4H). As ex-
pected, lower model performance was also obtained
when the functional genomic data were computed along
the entire CRM instead of restricting the signal input to
peak call windows (not shown). Optimization of other
machine learning methods, such as random forest and
support vector machine, did not improve classifier per-
formance over logistic regression (not shown), likely
reflecting the small size of the available data. In short,
total ATAC-seq and PRO-seq signals at dREG peaks are
the best predictors of active enhancer activity among the
profiles tested in this study.

About half of the CRMs that overlap promoters are
active in the reporter assays, indicating a high degree of
enhancer activity from promoter-adjacent DNA in sea
urchin embryos [33]. Nearly all these promoter-
overlapping CRMs were previously shown to be active in
both orientations [33], demonstrating bona fide enhan-
cer activity. We further confirmed that the concurrent
and divergent orientation of promoter-overlapping
CRMs in reporter constructs were evenly represented in
our data set and did not correspond with significant en-
hancer activity differences (Fig. S3), excluding the rele-
vance of confounding effects due to transcription
initiation at the CRMs followed by elongation into the
reporter. The sizes of promoter-overlapping CRMs
(Fig. 4A) suffice to include both distal and proximal
TREs, including promoters. Interestingly, ATAC and
dREG models trained with the entire data set (Fig. 4F)
underperformed relative to Pol II ChIP based models in
the prediction of enhancer activity of the promoter-
overlapping CRM subset (Fig. 4G, top). In the comple-
mentary analysis, the Pol II ChIP model trained with the
entire set further underperformed relative to ATAC and
dREG models in the prediction of CRMs not overlapping
promoters, while ATAC and dREG maintained perform-
ance similar to predictions with the entire set (Fig. 4G,
bottom). The exclusion of the 41 promoter-overlapping
CRMs from the training and testing data set decreased
the prediction performance of all models in both stages
(Fig. S4 A and B). Overall performance was broadly
similar between ATAC and dREG models trained and
tested with the promoter overlapping or non-
overlapping in 12 h embryos (Fig. S4 A and C). In con-
trast, ATAC and dREG models trained with CRM-
overlapping promoters failed to predict the activity of
their hold out set and were outperformed by Pol II ChIP
models in the 20 h data set (Fig. S4 D). All of the above,
reveals that the enhancer activity predictive power of
ATAC-seq and PRO-seq for promoter-proximal CRMs
dramatically devalues during the 12 to 20 h transition.

The larger proportion of positive enhancers among
CRMs that overlap promoters relative to CRMs not
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Fig. 4 Modeling of CRM reporter activity from of ATAC-, Pol Il ChIP- and PRO-seq. A Violin/box-plot of the ATAC, Pol Il ChiP peak call and dREG
TRE prediction sizes, and the 389 CRMs. The inset plots the size distributions of active and inactive CRMs, which is not significatively different. B
and C, ranked CRM expression plot in 12 and 24 h embryos, respectively. The blue line at 1 marks the CRM expression level when it equals that of
the basal-promoter reporter. The red line by the curve “elbow” marks the 2 fold above control chosen as the expression threshold. D Violin/box-
plots of PRO-, ATAC-, and Pol Il ChIP-seq significatively different signals between active and inactive CRMs in 12 and 20 h embryos. E, top, 12 h
embryo Receiver Operating Characteristics (ROC) and, bottom, Precision-Recall Curves (PRC) of the logistic regression models trained and tested
by 5 fold cross-validation repeated 200 times. Area Under the ROC (AUROC) and AUPRC as indicated for each model. Dotted lines mark random
guess prediction performance, a mid-diagonal for ROC and a horizontal line at the fraction of active CRMs for PRC. The absolute AUPRC indicated
in bold and the difference with random guess in parenthesis. F ROCs and PRCs in 20 h embryos. G, top, PRCs evaluating the enhancer activity
predictions for the CRM promoter-overlapping data set of models trained with the entire 20 h CRM data set. Bottom, model predictions for the
complementary, non-promoter overlapping data set. H Violin/box-plot of the AUPRC after cross-validation with different predictors, as indicated;

the maximum values at dREG peaks

All, includes the sum and max of the 3 genomic profiles allowing second order interactions among predictors; dREG-max, signifies the sum of

overlapping promoters, ~50% vs. ~13% in 20h em-
bryos, is not surprising given the bias for regulatory
genes active during development of this data set [33]
combined with the general trend of enhancers to be near
their promoter targets [47]. The enhancer activity of
promoters has precedents [48, 49] and it is perhaps not
surprising for evolutionary reasons [2].

We tested if the functional genomic datasets could
predict the levels of reporter enhancer activity of CRMs.
In all cases, better linear regression model prediction
was obtained with non-promoter overlapping CRM sets.
The best performing model included the ATAC-seq plus
the ATAC:dREG interaction, which explained about one
third of the expression variation (average R =0.29) in
20 h embryos (Fig. 5). ATAC-seq was a better predictor

of enhancer activity in 20 h embryos relative to 12 h em-
bryos (R° =0.26 versus R’ =0.17, p-value <2.2 e-16),
and outperformed dREG in 20 h embryos (R =0.17, p-
value = 7.4 e-16) (Fig. S5). The difference in dREG model
performances between stages or with ATAC-seq models
in 12 h embryos was not significant due to the small size
of the dataset. Nevertheless, the relative enhancer pre-
dictive power of ATAC-seq and PRO-seq is stage-
dependent. The predicted value of most CRMs generally
varies with the training set, as expected. However, there
is a group of CRMs that are consistently and erroneously
predicted as barely active (Fig. S5) due to their low sig-
nals in all assays (not shown). Highly active reporter
constructs with low predictor signals may result from
not uncommon miss-regulation outside the endogenous
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genomic context [4], which may cause ectopic expres-
sion, such as the one observed for SpHox11/13b module
D [24], or it may reflect mismatches between the time
points, especially at the 20 h stage.

Discussion

Machine learning models identify ATAC- and PRO-seq as
efficient predictors of the developmental enhancer activity
of genomic regions previously validated by their reporter
driven expression in sea urchin embryos (Fig. 4E and F).
Further prediction improvements are expected after ad-
dressing some limitations and biases in of our experimen-
tal setup. First, the bulk functional genomic profiles of
whole embryos represent a blend of several transcriptional
states present in different territories. The unavoidable bias
against enhancers only active in a few cells should never-
theless correspond with similarly biased CRM reporter ex-
pression levels. More problematic could be the
confounding enhancer and silencer activities in different
territories for the same element, which are common in de-
velopmental gene regulation [4, 50], as previously dis-
cussed in the context of SpHox11/13b and onecut (Fig. 3
and Fig. S2). Future single-cell ATAC-seq studies will in-
crease the spatial resolution over whole embryo character-
izations, such as the one presented here, which are
nevertheless required for validation. To our knowledge,
there is no single-cell approach for PRO-seq. However,
single-cell resolution should be also developed for the
CRM functional assays in order to fully overcome this
limitation. Second, the mismatch between the size of TRE
peak calls and CRMs tested is less than ideal (Fig. 4A). In
most high-throughput reporter assays [10], the regulatory
regions tested are usually smaller than the few hundred
base pairs of common TREs, which represents one of the
several limitations of enhancer activity evaluation by re-
porter constructs [10]. In contrast, the genomic regions
tested in our data set are large (Fig. 4A) and often contain
several ATAC and dREG peak calls, whose signals would
possibly better match enhancer activity if individually
tested. Third, the CRMs functionally tested are biased for
evolutionary sequence conservation, which may exclude
functional but fast evolving CRMs. Thus targeting the
functional analysis to ATAC-seq and dREG peak call
regions would be more suitable to analyze the predictive
value of these genomic profiles. Fourth, inherent to most
high throughput reporter assays, enhancer activity is
tested with a heterologous promoter, allowing for the mis-
match between functional genomic assays and reporter
activity due to enhancer-promoter specificity [51].

Despite the tight match between dREG TRE predic-
tions and CRMs experimentally narrowed down to the
smallest functional regulatory elements in a generally
unbiased manner (Fig. 3), our results reveal that PRO-
seq has similar predictive power as ATAC-seq. Perhaps
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this results from the dual report of transcription and
pause by PRO-seq. Alternatively, the small set of posi-
tive enhancers measured by reporter assays could result
in having insufficient statistical power. Nevertheless,
despite all these caveats, ATAC-seq and PRO-seq alone
suffice to explain between one quarter and one fifth of
the reporter enhancer activity in 20 h embryos (Fig. 5
and Fig. S5). It is reasonable to expect even better per-
formance in single cell assays exclusively testing the
genomic regions highlighted by ATAC- and PRO-seq
profiles.

Our results confirm and extend reports of distinct en-
hancer prediction performance for promoter-proximal
regulatory elements previously obtained with a distinct
set of functional genomic profiles [11].

The higher enhancer activity predictive power of Pol II
for the promoter-overlapping subset (Fig. 4G and Fig. S4
B and D) is not surprising, because the endogenous Pol
II signal due to effective transcription should parallel
transcription driven by the promoter of the reporter
construct whenever relevant regulatory elements are in-
cluded in the CRM (Fig. S3 A). Interestingly, ATAC and
PRO-seq profiles are irrelevant for the prediction of
promoter-overlapping CRMs in 20h embryos (Fig. 4G
and Fig. S4 C and D). The lower predictive power of
ATAC and PRO-seq for the promoter overlapping sub-
set may relate to enhancer sharing between the en-
dogenous promoter and the reporter promoter (Fig. S3
A), which should be biased against the reporter pro-
moter due to enhancer-promoter specificity. In other
words, the endogenous promoter represents a perfect
match and should more effectively sequester any local
enhancers included in the CRM, therefore lowering re-
porter activity. This potentially confounding factor for
promoters that are tested for enhancer activity in re-
porter assays may be difficult to address because the
core promoters of enhancers are functional components
required for their enhancer activity [18]. More interest-
ingly, different from the 20 h embryos case, ATAC- and
PRO-seq profiles have similar predictive power for
promoter-overlapping CRMs relative to distal CRMs in
12 h embryos (Fig. S4 C and A). This suggests that dis-
tinct transcriptional regulatory mechanisms, including
those related to enhancer-promoter specificity, may pre-
vail at TREs used at different levels of the gene regula-
tory hierarchy that is sequentially deployed during sea
urchin development [45], or that regulatory genes are at
distinct stages in the sequence of events leading to their
transcriptional activation during the 12 to 20h transi-
tion. Alternatively, the potential enhancer-sharing bias
against promoter-overlapping CRMs mentioned above
may be more pronounced in the 20 h stage, when most
of the 37 regulatory genes subject of this study [32] are
activated (Fig. S6).
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Along with major transcriptome changes during the
12 to 20 h transition [36], the majority of the 37 regula-
tory genes undergo more than a twofold change in tran-
script levels (Fig. S6), in agreement with their position in
the topological models of the BioTapestry Interactive
Network Viewer [45]. In short, the activation of the up-
stream regulatory genes that determine the main terri-
torial subdivisions is underway in the 12 h blastula, while
the transcriptional states determining these subdivisions
are well stablished in the 20 h blastula, including the ac-
tivation of terminal differentiation gene batteries at the
periphery of the transcriptional network [21-23, 45, 52].
In general, more PRO-seq than ATAC-seq associated
changes are observed during the 12 to 24 h transition
(Fig. S1 F), in agreement with punctual observations
(Fig. 3 and Fig. S2). This would follow the general se-
quence of events in the transcriptional cycle [53], with
enhancer accessibility preceding transcriptional initi-
ation, followed by pause and release, all of which are tar-
get of regulation by sequence specific transcription
factors. The early territorial subdivisions are mediated
both by transcriptional enhancer and silencer functions,
and the relation of functional genomic profiles to experi-
mental characterizations (Fig. 3 and Fig. S2) suggest that
pausing may not only provide a venue for coordinated
and prompt transcriptional activation during develop-
ment [54], but also anticipate permanent silencing in
some territories.

Conclusions

In summary, ATAC- and PRO-seq are efficient predic-
tors of reporter enhancer activity of distal CRMs in sea
urchin embryos, while the prediction of promoter-
overlapping CRMs is stage-dependent. In late blastula
embryos, Pol II enrichment is the best predictor of
promoter-proximal CRM enhancer activity. There is a
net increase in dREG TRE predictions during later em-
bryonic stages, while accessibility peaks remain rela-
tively constant. In combination, this suggests that the
sequence of regulatory events leading to developmental
TRE enhancer activity has different relevance at differ-
ent GRN levels or developmental stages. Our work fa-
cilitates ongoing developmental gene regulatory studies
by mapping genome-wide candidate TREs, identifies
PRO-seq and ATAC-seq as candidate factor-
independent methods that predict developmental en-
hancer activity in whole embryos, and outlines the
stage-dependency and predictive value of distinct func-
tional genomic profiles associated with proximal and
distal regulatory elements.

Page 11 of 15

Methods

Preparation of nuclear extracts and sequencing libraries
Sea urchin embryos were reared to different stages as
previously described [25]. Nuclei for ATAC-seq and
PRO-seq were prepared using a modified version of a
density gradient method [55] as follows. Sea urchin em-
bryos were centrifuged at 500¢g for 3 min at 0°C, the
pellet was resuspended in 10 volumes of ice cold lysis
buffer consisting of 20 mM EDTA, 2% polyethylene gly-
col, and 4 mg/ml of Protease Inhibitor Tablets (Thermo
Scientific™ Pierce™ #A32965), added just before use, in
0.1 X PBS (PBS is 0.137 mM NaCl, 2.7 mM Cl, 10 mM
Na,HPO, and 18 mM KH,PO,), and incubated on ice
for 5min. Dissociated cells were further disrupted with
50 or more strokes in a fine dounce homogenizer. Dens-
ity gradient nuclear wash and floating layers were pre-
pared by diluting iodixanol 60% (OptiPrep™) in 1 X PBS
to 20 and 40%, respectively. About 5 ml of nuclear lysate
was deposited on top of 10 ml of nuclear wash and nu-
clei were collected over 200 pl of floating layer after cen-
trifugation for 30 min at 2°C and 3000g in a swing
bucket rotor. Nuclei aliquots were flash-frozen in liquid
nitrogen. For the 20 h stage, nuclei of one of the two
ATAC-seq biological replicates was prepared as previ-
ously described [25]. For ChIP-seq, fixation was per-
formed by resuspending embryo pellets in crosslinking
solution (1 mM EDTA, 0.5mM EGTA, 100 mM NaCl,
1.8% formaldehyde, 50 mM HEPES, pH 8.0) for 15 min
at 22 °C, followed by gravity settling and subsequent re-
suspension in stop solution (125 mM glycine, 0.1% Tri-
ton X-100 in PBS), 500 g centrifugation, and two washes
with PBT (0.1% Triton X-100 in PBS). The embryos
were transferred to 25ml of ice cold homogenization
buffer (15 mM Tris-HCI pH 7.4, 0.34 M sucrose, 15 mM
NaCl, 60 mM KCl, 0.2 mM EDTA, 0.2 mM EGTA, with
4 mg/ml protease inhibitors) and incubated on ice for 5
min. Embryos were first dounced 20 times with pestle
type A (loose), followed by 10 times with pestle type B
(tight). Nuclei were then filtered through a 20 pM filter
and pelleted at 3500 g for 5 min at 4 °C. The nuclei were
resuspended in 7.5 ml of PBTB (5% BSA in PBT buffer,
with proteinase inhibitors). Propidium iodine stained nu-
clei were quantified using a hemocytometer and a fluor-
escence microscope.

ATAC-seq library preparation and Illumina sequen-
cing followed similar procedures to those previously de-
scribed [34]. The ENCOCE-DCC atac-seq-pipeline [56]
was used for mapping the raw reads to the S. purpuratus
genome version 3.1 using default settings, except for the
MACS2 peak call p threshold, which was set to 0.05.
Two biological and one technical replicate libraries were
paired or single end sequenced. A total of 16,005,927
20-h and 73,272,494 12-h embryo reads mapped to the
genome after deduplication and mitochondrial



Arenas-Mena et al. BMC Genomics (2021) 22:751

chromosome filtration. About 44% of the reads locate in
peak calls, see quality control summary for detailed re-
producibility and sequence quality metrics (Supplemen-
tary quality control files).

PROseq libraries were elaborated following previously
stablished protocols [17], single or paired end sequenced
in Illumina platforms, and mapped to the S. purpuratus
genome version 3.1 using proseq2.0 pipeline [57]. Regu-
latory elements were predicted with the vector machine
learning tool dREG [15]. Two biological and one tech-
nical replicate libraries were prepared and paired or sin-
gle end sequenced, providing a total of 56,781,051 20-h
and 28,430,031 12-h mapped reads, excluding ribosomal
RNAs.

For ChIP-seq library preparation, 50 to 100 million
nuclei were spun at 4000 g for 5 min at 4 °C. Nuclei were
resuspended in 1 ml FA buffer (50 mM HEPES/KPH pH
7.5, 1mM EDTA, 1% Triton X-100, 0.1% sodium deoxy-
cholate, 150 mM NacCl, 0.1% sarkosyl, and protease and
phosphatase inhibitors). The resuspended nuclei were
then sonicated at 4 °C for 15 min on high, cycle of 30s
on and 30s off, to obtain an extract with fragmented
chromatin. Extracts were brought up to 440 uL with FA
buffer with protease and phosphatase inhibitors. Be-
tween 1 to 2mg of extract and 4 ug of antibody were
used per ChIP. Prior to the addition of antibody, 5% of
the extract was taken for input. Mouse monoclonal anti-
body against RNA polymerase II CTD-repeat YSPTSPS
(8WG16; abcam ab817mod) was used for ChIP. The
mixture was incubated rotating at 4 °C overnight. 40 pL
of protein G sepharose bead slurry (GE Healthcare) per
ChIP sample was washed three times with 1 mL FA buf-
fer, added 40 pL bead slurry to each ChIP sample and
rotated at 4 °C for 2 h. Meanwhile, 200 uL. ChIP Elution
Buffer (1% SDS, 250 mM NaCl, 10 mM Tris pH 8.0, 1
mM EDTA) and 2 pL 10 mg/uL. RNase A were added to
inputs and incubated at room temperature. Beads were
washed at room temperature by adding 1 mL of each of
the following buffers and collecting beads by spinning
for 1 min at 2500 g: two times FA buffer for 5 min, one
time FA-1M NaCl for 5min, one time FA-500 mM
NaCl for 10 min, one time TEL buffer (0.25 M LiCl, 1%
NP-40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM
Tris-HCI, pH 8.0) for 10 min, two times TE for 5 min.
Proteinase K was added to both inputs and ChIPs and
incubated in a 50 °C heat block for an hour. Inputs and
ChIPs were allowed to reverse crosslink overnight in a
65 °C water bath. DNA was ligated to Illumina or home-
made multiplexed adapters and amplified by PCR. Using
a thin 1.5% agarose gel, DNA fragments between 300
and 600 bp were purified using the Qiagen Gel Extrac-
tion kit. Qubit flourometer was used to measure DNA
concentration. Single-end sequencing was performed for
the ChIP-seq and input DNA at the New York
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University Center for Genomics and Systems Biology
high-throughput sequencing facility. We combined repli-
cates and aligned 50 bp single end reads to the S. pur-
puratus genome version 3.1 linear scaffolds using Bowtie
2 version 2.2.3 [58] with default parameters. A total of
13,762,893 ChIP and 26,476,643 input mapped reads
were obtained. Mapped reads from ChIP and input were
used to call peaks and coverage per base using MACS
version 1.4.2 [59] with default parameters.

Computational analysis of PRO-, ChIP-, and ATAC-seq
peak calls and machine learning, enhancer activity
prediction

Signal at PRO-, ChIP-, and ATAC-seq peak calls was
quantified using the R package bigWig [60]. ATAC and
PRO-seq reads of 12 and 20 h embryos where normal-
ized to reads per million per base. For ATAC-seq peak
calls, any overlapping peaks were merged prior to ana-
lysis. Density plots used R lift posted in StackOverflow
[61]. Overlaps among PRO-, ChIP-, and ATAC-seq peak
calls were analyzed and illustrated with ChIPpeakAnno
[62] using default parameters. Promoters are defined as
the 200 bp region centered at the 5 end of transcript
based gene models, which are a better approximations
than GLEAN models [36]. For all data sets, reads from
different replicates were merged into single bigwig files
and reads computed at peak calls and dREG predictions
using the bigWig interface [60].

Using bedtools [63], the intersections between dREG
predictions and CRMs were merged, to correct for CRM
overlaps, and then extended 50 bp, to compute the pause
associated PRO-seq reads oftentimes extending beyond
the raw dREG prediction. The total number of 3" end
reads in the plus and minus strand and the summit for
each TRE prediction was estimated with the sum and
max parameters of the bigWig query function. Similar
analysis was performed for the reads per base for the
intersection with ATAC- and Pol II ChIP peaks, without
the 50bp extension. Graphics were elaborated with
ggplot and tidyverse [64].

The package caret was used for the optimization, test
and evaluation of classification and regression models
[65]. Logistic classification and linear regression models
were fitted and tested by 5 fold cross-validation with
stratified sampling repeated 200 times. The package pre-
crec [66] was used to generate ROCs and PRCs.

Abbreviations

ATAC-seq: Assay for Transposase-Accessible Chromatin using sequencing;
AUPRC: Area under the Precision-Recall Curve; AUROC: Area under the
Receiver Operating Characteristic Curve; BAC: Bacterial Artificial Chromosome;
ChIP-seq: Chromatin Immunoprecipitation followed by sequencing; CRM: cis-
regulatory module; dREG: Discriminative regulatory-element detection from
GRO-seq; GRN: Gene regulatory network; MACS: Model-based Analysis for
ChIP-seq; Pol Il: RNA polymerase II; PRC: Precision-Recall Curve; PRO-

seq: Precision nuclear run-on sequencing; ROC: Receiver Operating
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overlapping CRMs is independent of their orientation. A, the concurrent
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