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Abstract: Despite the advancement of vaccination and therapies currently available, deaths due to
the coronavirus disease 2019 (COVID-19) are still heavily documented. Severely infected individuals
experience a generalized inflammatory storm, caused by massive secretion of pro-inflammatory
cytokines that can lead to endothelial dysfunction, cardiovascular disease, multi-organ failure, and
even death. COVID-19 convalescent plasma (CCP) therapy, selected primarily based on anti-SARS-
CoV-2 antibody levels, has not been as convincing as expected in the fight against COVID-19. Given
the consequences of a dysfunctional endothelium on the progression of the disease, we propose
that the selection of plasma for CCP therapy should be based on more specific parameters that
take into consideration the effect on vascular inflammation. Thus, in the present study, we have
characterized a subset of CCP that have been used for CCP therapy and measured their anti- or
pro-inflammatory effect on human coronary artery endothelial cells (HCAECs). Our data revealed
that the longer the time lapse between the onset of symptoms and the plasma donation, the more
mitochondrial dysfunction can be evidenced. The concentration of blood endothelial cell extracellular
vesicles (BEC-EVs) was increased in the plasma of young individuals with mild symptoms. This
type of selected convalescent plasma promoted the activation of the blood vascular endothelium, as
reflected by the overexpression of ICAM1 and NFκB1 and the downregulation of VE-Cadherin. We
propose this mechanism is a warning signal sent by the injured endothelium to trigger self-defense
of peripheral blood vessels against excessive inflammation. Therefore, these results are in line with
our previous data. They suggest that a more specific selection of COVID-19 convalescent plasma
should be based on the time of donation following the onset of the clinical symptoms of the donor,
the severity of the symptoms, and the age of the donor. These characteristics are relatively easy to
identify in any hospital and would reflect the concentration of plasma BEC-EVs and be optimal in
CCP therapy.

Keywords: COVID-19; convalescent plasma therapy; blood endothelium; extracellular vesicles; biomarkers

1. Introduction

The number of individuals affected by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) is increasing exponentially, and the disease remains a challenge
to humanity [1]. Despite the advancement of general vaccination and the development
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of new therapeutic and preventive options, some individuals are still infected and hos-
pitalized following the inflammatory storm [2]. Blood endothelial damage following the
cytokine storm is also experienced by patients severely infected with COVID-19 [3–5].
Endothelial dysfunction leads to the development of chronic inflammatory diseases [6,7],
as well as serious complications including acute respiratory distress syndrome (ARDS)
and acute coronary syndrome. Furthermore, the vast majority of mortalities following
COVID-19 infection are due to the cytokine storm and multi-organ failure subsequent to
endothelial dysfunction [8]. Thus, it is essential to understand the mechanisms underlying
endothelial overactivation following SARS-CoV-2 infection.

COVID-19 convalescent plasma (CCP) therapy has been thought to prevent these
consequences and potentially reduce the risk of mortality. However, proper selection
of CCP remains essential to optimize its beneficial effect while limiting its detrimental
consequences on the hospitalized patient. Given the impact of a dysfunctional endothelium
on the progression of inflammatory diseases [9,10], proposed treatments to counteract the
harmful complications of COVID-19 infection should ideally consider the effect on the
vascular network. The safety and efficacy of COVID-19 convalescent plasma therapy has
also been tested in several clinical trials [11,12]. Yet its effects on the integrity of the vascular
endothelium are not well understood. In a previous publication, we focused on identifying
COVID-19 convalescent plasma with the least deleterious impact on lymphatic endothelial
cells [13]. The lymphatic network is essential for proper clearance of pro-inflammatory
mediators from host tissues and organs [14]. We proceeded to identify a particular signature
of CCP that could be beneficial for the integrity of the lymphatic endothelium. Our results
showed that plasma issued from early donations of CCP could protect against the loss of
lymphatic endothelial cell integrity [13]. Conversely, late donations of CCP could promote
loss of lymphatic endothelial integrity, and accentuate the permeability of the lymphatic
endothelium. Dysfunctional lymphatic drainage could impair the clearance of immune cells
and pro-inflammatory mediators, leading to the exacerbation of inflammation in patients
infected with COVID-19. Extracellular vesicles (EVs) are released by cells during their
activation or death [15]. Given their importance as biomarkers in several pro-inflammatory
diseases, we characterized their presence in CCP. EVs derived from lymphatic endothelial
cells (LEC-EVs) were abundantly found in early donated convalescent plasma. We thus
proposed that their secretion by an impaired endothelium may be a warning signal that
triggers the self-defense of peripheral lymphatic vessels against excessive inflammation.

Taking into consideration the impact of a dysfunctional endothelium on the progres-
sion of COVID-19, we now seek out to investigate whether this model remains true for
blood endothelial cells. Thus, in the present study, we sought to identify the most adapted
plasma to be used for CCP therapy that would limit vascular inflammation in the hospital-
ized recipient patients. Emphasizing on one of the endpoints of vascular activation and
inflammation, we herein assessed the plasma content of blood endothelial cell extracellu-
lar vesicles (BEC-EVs) from a heterogenous group of plasma donors. Subsequently, we
measured the impact of CCP on the integrity of human coronary artery endothelial cells
(HCAECs). Altogether, we aimed to identify new and easily identifiable parameters to
optimize the selection of CCP and limit consequences to the hospitalized recipient patient.

2. Materials and Methods
2.1. Study Participants

This study included 45 plasma donors who had recovered from COVID-19 and who
participated in the pan-Canadian clinical study CONCOR-1 (Convalescent Plasma for
COVID-19 Respiratory Illness) [16]. All donors included in this study gave written in-
formed consent to participate in the CONCOR-1 trial and were recruited between 24 April
and 12 July 2020. The present project has been approved by the Montreal Heart Institute
Ethic Committee (protocol #2021-2812) and Héma-Québec (protocol #2020-004), in accor-
dance with the Declaration of Helsinki. Women with previous pregnancies were excluded
from donation. All participants had documented SARS-CoV-2 infection as assessed by a
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positive reverse transcription-polymerase chain reaction test, and human anti-SARS-CoV-2
Receptor-Binding-Domain (RBD) antibodies were quantified as previously published [17].
A minimum of 14 days after clinical recovery from COVID-19 were required before con-
valescent plasma collection. The time of donation was defined by the time lapse between
the onset of symptoms and the convalescent plasma donation. The severity of the symp-
toms was quantified using a questionnaire answered by donors and graded as follows:
0 - asymptomatic, 1 - mild, 2 - moderate, and 3 - severe. None of the 45 participants
included in our study had been hospitalized due to COVID-19. The donors were aged
between 18 and 69 years old, and 38% were women. Plasma donation (500–700 mL) was
made at 67 days on average after the onset of symptoms [13]. Plasma was divided into
aliquots and frozen at −80 ◦C until use. The collection and distribution of the samples was
performed and administered by Héma-Québec.

2.2. Cell Culture

Human coronary artery endothelial cells (Lonza cat. CC-2585) were seeded in complete
endothelial cell growth medium MV2 (EGM-MV-2, PromoCell, cat. C-39221), which is a low-
serum (5% V/V) medium. The cells were used at a passage of 4 to 6. Cells were equilibrated
and treated with 10% convalescent plasma for 4 h in heparin-supplemented endothelial
basal medium (EBM). EBM or fibrinogen- and SARS-CoV-2-free plasma (SeraConTM II
Negative Diluent) was used as control. Interleukin 6 (IL-6, 20 ng/mL, PeproTech, cat.
10778-280), tumor necrosis factor alpha (TNFα, 20 ng/mL, R&D Systems, cat. 210-TA-10),
and interferon gamma (IFNγ, 10 ng/mL, PeproTech, cat. 10773-476) were then added
on the endothelial monolayer for 20 h to induce inflammation. HCAECs maintained in
EGM-MV-2 for the whole 24 h were used as control.

2.3. Measurement of Cellular Viability

Cell death was assessed as previously described [13,18]. Briefly, HCAECs were stained
with annexin V (BD Biosciences, cat. 560506) and propidium iodide (PI) (Biotium, cat.
40017) and analyzed by flow cytometry (BD FACS CelestaTM). FlowJoTM version 10 was
used for data processing. Gating strategies are depicted in Figure S1.

2.4. Analyses of Extracellular Vesicles in Plasma

Plasma EVs in CCP were identified and quantified as previously detailed [13,19,20].
Briefly, a small particles option flow cytometer (BD FACS CelestaTM) was used to iden-
tify EVs. The 450/40 bandpass filter (BV421, violet laser) was manually swapped with
a 1 mm-thick magnetron sputtered 405/10 bandpass filter (Chroma Technology, Bellows
Falls, VT, USA), which is referred to as V-SSC in Figure S2. The flow cytometer was first
calibrated for EV detection using the ApogeeMix (#1493, Apogee Flow Systems, Hemel
Hempstead, UK), a mixture of non-fluorescent silica beads (180, 240, 300, 590, 880, and
1300 nm) and FITC-fluorescent latex beads (110 and 500 nm), and count beads (Apogee
Flow System cat. #1426). Samples were stained with carboxyfluorescein succinimidyl ester
(CFSE) (Cedarlane, cat. S8269-10MG, 1/5000) to identify vesicles derived from cells. CFSE
needed to be converted by active esterases to fluoresce, suggesting that gated events in the
first panel of Figure S2G were derive from cells. The anti-major histocompatibility complex
1 (MHC-I) (BD Biosciences, cat. 555553, dilution 1/100), anti-CD45 (BD Biosciences, cat.
560777, 1/200), and anti-CD62e (BD Biosciences, cat. 563359, 1/75) antibodies were used
to select the specific subsets of EVs. FACS plots and histograms show all parameters in
height (indicated as –H), as recommended for EV detection [21]. The threshold for the FSC
detector was set at 200 V in FACS Diva software (BD Biosciences).

2.5. Messenger RNA Analysis by RT-qPCR

HCAECs were harvested, suspended in RNA Extraction Reagent, and stored at −80 ◦C
before RNA extraction and qPCR analysis as previously described [13]. The primers
used are the following: ACTB (F: ACGACATGGAGAAAATCTG and R: ATGATCTGGGT-
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CATCTTCTC) ICAM1 (F: ACCATCTACAGCTTTCCG and R: TCACACTTCACTGTCACC),
NFκB1 (F: CACAAGGAGACATGAAACAG and R: CCCAGAGACCTCATAGTTG), ND-
FUA9 (F: CATTTCCGGAAGCCATTATC and R: CATCTACGACATATACTGGTTG), and
UQCRC2 (F: GTGAGTCATCCTGTTCTAAAG and R: CATTCTGTTCTCGGATTTCAC).
Amplification plots are presented in Figure S3.

2.6. Immunoblotting

Immunoblotting was performed on HCAECs as previously described [13]. Anti-VE-
Cadherin (Abcam, cat. Ab33168) and anti-phospho-VE-Cadherin (Invitrogen, cat. 44-1144G)
antibodies were used. Original blots are presented in Figure S4.

2.7. Statistical Analysis

Associations between variables were calculated by Spearman’s rho or Pearson’s corre-
lation, as appropriate. Non-parametric parameters were log transformed as indicated. Nor-
mality was assessed by the Shapiro-Wilk test. Analyses were performed using SPSS version
27 software and figures made with Prism version 9 software (GraphPad). p value≤ 0.05
was defined as statistically significant.

3. Results
3.1. An Early Donation of Convalescent Plasma Increases the Expression of Mitochondrial Genes
by Blood Endothelial Cells

We first investigated whether the anti-SARS-CoV-2 antibody concentrations and the
duration of symptoms of the donors were associated with deterioration of the blood
vascular endothelium. For this purpose, CCP was incubated on a monolayer of HCAECs for
4 h. Cell death was assessed by flow cytometry, following annexin V and propidium iodide
labeling. Our results show that high plasma concentration of anti-SARS-CoV-2 antibodies
did not correlate with an increase in cells undergoing late apoptosis, characterized by
annexin V+ and PI+ labeling (r = 0.214, p = 0.463) (Figure 1A). Furthermore, the duration of
symptoms of donors did not correlate with cell death (r = −0.180, p = 0.538) (Figure 1B).
Lastly, the severity of the symptoms did not correlate with late apoptosis nor necrosis of
blood endothelial cells (r = 0.102, p = 0.805) (Figure 1C).

Next, we tested whether the time of donation since the onset of the symptoms in-
fluenced blood endothelium integrity and propensity to inflammation. We found that
blood endothelial cells expressed more NADH dehydrogenase 1 alpha subcomplex subunit
9 (NDUFA9) and cytochrome b-c1 complex subunit 2 (UQCRC2) by quantitative PCR when
incubated with early donated convalescent plasma (Figure 1D,E). Thus, these two genes
were less expressed when incubated with late donated convalescent plasma. A decrease in
the expression of these genes could lead to mitochondrial dysfunction, resulting in a loss of
function of the blood endothelial cells. This reflects the beneficial impact of incubating a
CCP donated early following the resolution of symptoms on the blood endothelium.

3.2. Convalescent Plasma with High Concentrations of Extracellular Vesicles Derived from Blood
Endothelial Cells Increases the Activation of Human Coronary Artery Endothelial Cells

In the subsequent experiment, we measured parameters that are reflecting endothelial
cell activation following the incubation of convalescent plasma on cultured HCAECs. Our
results show that BEC exposed to plasma that contains low BEC-EVs underwent more late
apoptosis or necrosis, as measured by annexin V and PI labeling (r = −0.564, p = 0.045)
(Figure 2A). In addition, plasma rich in BEC-EVs induced an increased expression of ICAM1
mRNA and nuclear factor-kappa B subunit 1 (NFκB1) by HCAECs (Figure 2B,C). Moreover,
higher concentrations of BEC-EVs led to a decrease in the expression of the phosphorylated
form of VE-Cadherin (Figure 2D). Whereas BEC-EVs could represent a reliable biomarker in
the selection of the optimal CCP for CCP therapy, we are aware that not all clinical laboratories
worldwide can assess the presence of extracellular vesicles. Therefore, we sought to identify
universal parameters that could reflect the presence of this specific subset of EVs.
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Figure 1. Clinical characteristics, cell death, and mitochondrial gene expression. Correlation between
late apoptosis and (A) plasma anti-SARS-CoV-2 antibody concentration, (B) duration of symptoms of
donors, and (C) severity of symptoms (from 0 to 3, 3 being the most severe) was assessed. The time
from the onset of symptoms to donation was then correlated with the expression of (D) NDUFA9 and
(E) UQCRC2 mRNA expressed by HCAECs. Data are represented as a relative percentage to cells treated
with control plasma. Significance was determined by Spearman correlation. p ≤ 0.05 was considered
significant. PI: propidium iodide; RBD: receptor binding domain; O.D.: optical density NDUFA9: NADH
dehydrogenase 1 alpha subcomplex subunit 9; UQCRC2: cytochrome b-c1 complex subunit 2.
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Figure 2. Circulating CD45-CD62e+ extracellular vesicles and endothelial cell activation. The correlation
between CD45-CD62e+ EVs and (A) endothelial cells undergoing late apoptosis and necrosis, (B) endothe-
lial cell ICAM1 mRNA expression, (C) endothelial cell NFκB1 mRNA expression; (C,D) phosphorylated
VE-Cadherin protein expression was assessed. Data are represented as a relative percentage to cells
treated with control, uninfected plasma. Significance was determined by Pearson correlation. p ≤ 0.05
was considered significant. PI: propidium iodide; EVs: extracellular vesicles; AU: arbitrary units.
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3.3. Extracellular Vesicles Derived from Blood Endothelial Cells Are More Abundant in Convalescent
Plasma from Donors with Mild Symptoms

We then sought to identify which convalescent plasma was associated with a high
concentration of BEC-EVs. We found that plasma from patients with mild symptoms
(n = 15) contained more BEC-EVs compared with patient with moderate (n = 9) or severe
symptoms (r = −0.397, p = 0.024; n = 7) (Figure 3A). We also observed that BEC-EVs
were more abundant in younger patients (r = −0.451, p = 0.001) (Figure 3B). Finally, our
data revealed that patients with low plasma anti-SARS-CoV-2 antibody concentration had
higher concentrations of BEC-EVs (r = −0.332, p = 0.021) (Figure 3C). However, using a
multivariate model, collinearity between the severity of symptoms and age of the donors
was observed. In the multivariate model, severity of symptoms was the only variable
independently associated with BEC-EVs levels (β = −0.456, p = 0.018). Including the
concentration of anti-SARS-CoV-2 antibodies, we failed to reach statistical significance for
this variable (β = −0.163, p = 0.377).
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Figure 3. Circulating CD45-CD62e+ EVs and clinical parameters. The correlation between
CD45-CD62e+ EVs and (A) the severity of symptoms of donors, (B) the age of donors, and (C) the
concentration of plasma anti-SARS-CoV-2 antibodies was assessed. Significance was determined
by a Spearman correlation for symptom severity and by a Pearson correlation for age and antibody
concentration. p ≤ 0.05 was considered significant. Multiple linear regression was performed using
the forward method, since more than one variable in the univariate analysis was associated with the
outcome tested. EVs: extracellular vesicles; RBD: receptor binding domain; O.D.: optical density.

4. Discussion

Convalescent plasma therapy has been extensively studied since the beginning of the
COVID-19 pandemic [11]. In most of these studies, the criterion for the selection of CCP
was based on the plasma concentration of antibodies. Yet, CCP therapy has not been as
efficient as expected. Therefore, we have sought to investigate whether other parameters
can be considered when selecting the plasma used for CCP. In a recent study, we have
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demonstrated that early donations of CCP could be beneficial for the integrity of lymphatic
endothelial cells [13]. Given the importance of the lymphatic system in the clearance of
immune cells and other pro-inflammatory modulators from peripheral tissues, damage
to its integrity could compromise this critical function [22]. Nevertheless, an adequate
selection of CCP must also be beneficial for the integrity of the blood vascular system, given
its significance in the development of diseases. The administration of inadequate CCP for
the blood endothelium could be detrimental for the patient. Indeed, following incubation
of plasma from severely infected patients with the virus on a pulmonary endothelium,
Rauch et al. revealed that the subsequent endothelial dysfunction could be attributable to
the increased presence of pro-inflammatory cytokines in the plasma [3]. This alteration in
endothelial function following virus internalization is manifested by an imbalance between
the bioavailability of vasodilators and vasoconstrictors. A decrease in the production of
nitric oxide (NO), a potent vasodilator, and an increase in the production of ROS have
been demonstrated [4]. This induces a state of oxidative stress for the endothelial cell,
contributing to the progression of the pathogenesis of COVID-19 disease [4].

Our previous results showed that early donation of CCP could protect against lym-
phatic dysfunction [13]. Conversely, late donations of CCP could promote loss of endothe-
lial integrity, as well as accentuate the permeability of the lymphatic endothelium. Herein,
we first demonstrated that CCP incubated on cultured HCAECs did not impact cell death
regardless of plasma anti-SARS-CoV-2 antibody concentration, duration, and severity
of symptoms. Interestingly, we found, however, that blood endothelial cells expressed
less NDUFA9 and UQCRC2 when incubated with late donations of convalescent plasma.
NDUFA9 is an essential subunit for the assembly and stability of complex I, the first and
largest complex of the mitochondrial respiratory chain [23]. This complex is divided into
three functional fractions essential for oxidative phosphorylation (OXPHOS) [23]. A de-
ficiency of this complex is one of the most common defects of the OXPHOS system [23].
Dysfunctions of this system can lead to several devastating diseases [24]. Recently, it has
been shown that NDFUA9 gene expression is decreased in mitochondria in placenta from
asymptomatic and symptomatic women infected with COVID-19. This decrease is associ-
ated with the reduction in other mitochondrial genes, such as SDHA, COX41, and UQCRC1,
suggesting an impairment of mitochondrial function during COVID-19 infection [25]. The
UQCRC2 protein is essential for the function of complex III of the mitochondrial respiratory
chain [26]. Enzyme deficiency of mitochondrial complex III is responsible for rare diseases
such as Bjornstad syndrome, GRACILE syndrome, and Leigh syndrome, which can cause
severe complications including hypoglycemia, lactic acidosis, ketosis, intrauterine devel-
opmental delay, and liver failure [26,27]. These data support that there is a mitochondrial
dysfunction within blood endothelial cells and underline that mitochondria could be a
potential target to protect the endothelium [28]. Therefore, early donated CCP is deemed
beneficial for the blood endothelium.

Given the abundance of LEC-EVs previously found in early donated convalescent
plasma [13], we proposed that their secretion by an impaired endothelium may be a warning
signal that triggers the self-defense of peripheral lymphatic vessels against excessive
inflammation. We hypothesized that BEC-EVs would have a similar effect. We found
that the incubation of HCAECs with plasma low in BEC-EVs correlated with more cells
undergoing late apoptosis or necrosis, proven to be harmful to cells [29]. In addition,
high levels of plasma BEC-EVs correlated with higher production of HCAECs activation
markers. This supports the hypothesis of EVs being produced as a warning signal, as we
have previously shown [13]. Moreover, EVs from plasma of COVID-19 patients contain
pro-inflammatory, pro-coagulation, and tissue-remodeling markers [30]. EVs could be
used to deliver cytokines/chemokines to recipient cells and tissues [31]. Indeed, these
BEC-EVs, produced in large quantities by the CCP donor, could be internalized by the
host blood endothelial cells and in turn modify their function to express markers found
during inflammation. This would prepare the recipient cells or tissues to adapt to the
upcoming inflammation observed during COVID-19. In addition to the overexpression of
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ICAM1 and NFκB1, we also observed a decrease in phosphorylated VE-Cadherin expression
following the incubation with CCP containing a high concentration of BEC-EVs. During an
inflammatory process, the blood endothelium increases the expression of certain adhesion
molecules for the adhesion of monocytes and immune cells that can fight the pathogen [32].
However, these immune cells must sometimes extravasate through the endothelium [32],
thus decreasing the adhesion of endothelial cells to each other, which explains this decrease
in VE-Cadherin expression. A study by Gotsch and colleagues demonstrated that VE-
Cadherin is involved in the process of leukocyte extravasation through the endothelium [33].
Following the injection of a monoclonal antibody blocking VE-Cadherin aggregation, they
observed an increase in neutrophil migration across the endothelium [33]. In addition,
neutrophil docking to the apical surface of cultured endothelial cells was shown to cause
degradation of VE-Cadherin-associated β-catenin and led to an increase in the permeability
of the endothelium for macromolecules [34]. Thus, one possible mechanism could be
that CD45-CD62e+ EVs could adhere to HCAECs and be internalized to then increase the
endothelium permeability and facilitating leukocyte extravasation.

5. Conclusions

Altogether, our data suggest that identifying convalescent plasma rich in BEC-EVs
could help maintain the integrity of the blood endothelium and in turn promote the
chances of patient remission. The concentration of BEC-EVs was herein increased in plasma
isolated from young patient with mild symptoms. Based on previous results indicating that
plasma issued from early post-infection donation should be prioritized to better protect
the lymphatic endothelium, these additional data suggest that the age of the donor and
the severity of the symptoms should also be taken in consideration when selecting CCP.
These results demonstrate the importance of properly selecting convalescent plasma for
therapeutic use to optimize its beneficial effects on the infected and hospitalized patient.
This remains essential for future pandemics and/or epidemics where convalescent plasma
therapy could potentially be beneficial.
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