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Abstract: The structure of amorphous layer of folding surface controls the properties of the polymer
lamellar crystal, which consists of chains with a loop conformation. The surface tension depends on
the length and the distance between two injection points of the loop which involving the reptation
motion and lateral exchange motion of the stems. In the present work, a local-exchange motion model
based on the worm-like chain model is developed to investigate the effects of lateral motion of stems
on the release the surface tension. The optimal distance between two injection points is determined
by the balance of chain bending energy and conformational entropy. The numerical results provide
evidences to the adjacent re-entry model for various loop lengths. A possible explanation involving
density of injection points is proposed to interpret the mechanism.

Keywords: worm-like chain; loop brush; folding surface of polymer crystal

1. Introduction

Polymer crystallization is one of the most important issues in polymer science. Two-thirds
of common polymer materials can be crystallized. Controlling the degree of crystallization is the
major way to tune the performances of polymer materials, including their mechanical properties,
photoelectric properties, thermal conductivity, etc. The mechanism of polymer crystallization are
extensively studied. The chain-connectivity makes the problem complex. Although the experimental
phenomena have been reported, and the comprehensive theoretical description about polymer
crystallization is scarce [1]. In ideal crystal formed by small molecules, molecules are arranged
on an infinite periodic lattice. The polymer chains in their perfect crystals, should be straightened
fully, and packed parallelly. This kind of polymer crystal is called as infinite extended chain crystal.
Nevertheless, it is impossible for actual polymer chains to organize their configurations in this way to
form the perfect crystal in a finite period. With this constrains, the polymer forms folded chain crystal
(also called the lamellar crystal) generally [2–4]. The stems whose lengths are much shorter than the
total contour lengths of polymer chains consist the lamellar crystals. The folded chain segments form
the amorphous layers.

In the 1960s, Hoffman and Lauritzen proposed their theory of polymer crystallization,
which afterwards was called classical theory [5–9]. This theory treats the crystallization behavior
as a successive process that the stems attach one by one onto the growth surface. They derived the
spontaneous selection of lamellar thickness and the growth rate, and agree with the experimental
results in their age [10]. The prerequisite of this theory is the existing primary nucleus (or a lamellar
crystal already exists). In this theory the lamellar has two surface: one is the lateral surface on which
the stem deposition happens, and another is the chain-folding surface. In fact, the growth of lamellar
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crystals both the adhesion of stem on the lateral surface and the increase lamellar thickness by the
regulating the conformation of folding chains in amorphous layers. The Lauritzen–Hoffman (L-H)
theory pays attention to the successive quasi-equilibrium processes on the lateral surface. Its structure
and roles on crystallization have not well addressed.

The folding chain surfaces consist of loops, and a small amount of bridges and tails [11].
Around this theme there are two contrary mainstream models, adjacent re-entry model proposed by
Keller [2,12] and revised by Fischer [3], and switchboard model suggested by Flory [13,14]. The former
supposes the segments in non-growth surface layer re-enter into the lamellar crystal at the sites which
are nearby the location where they project out from the crystal region, while the later supposes the
re-entries happen at the sites with arbitrary distances with the projecting-out points. The adjacent
re-entry model also divides into two typical schematism. The first one is Keller’s original model [2]
which assumes that the loops re-enter the crystal region after experiencing a short length in interface
layer, to form a tight loop. The second one is Fischer’s revised model [3], which describes the loops
with a remarkable longer length, i.e., loose loops. Some other variants or revisions of the models
about non-growth surfaces are developed successively, while their key ideas are contained in the
above-mentioned models.

Muthukumar used Langevin dynamics and Monte Carlo method to simulate the polymer
crystallization to study the primary nucleation, the spontaneous selection of lamellar thickness, and the
growth kinetics [15,16]. The loop-like conformation formed by chain-folding plays an important role
in these aspects. First, the folding surface tension is mainly contributed by the entropy penalty due
to formation of the loop conformation. An optimal fraction of chain segments in the crystal can be
determined from the balance between free energy gain due to forming the crystal and the entropy
penalty due to forming the loop conformation. The entropy penalty can be estimated analytically
when two injection points of the loops are assumed to be fixed. This theory had agreed with several
experiments. In this theory the distance between two injection points of a loop is assumed to be
a constant. This parameter is a length scale that should be optimized. How the injection points are
arranged on the surface, and how the loops are packed in the amorphous left are still unclear.

Muthukumar’s theory with an explicit chain model for the amorphous layers, was extended
from single-chain system to the multi-chain system by Sommer [17]. The results indicate that the
lamellar thickness increases with the number of chains in the crystal, and extended chain crystals are
formed if the number of chains in the crystal is large enough (more than the square of the degree of
polymerization of the chains in thermodynamic equilibrium states). Sommer’s multi-chain crystal
model relies on two main approximations, i.e., the Gaussian chain statistics and the flat, non-fluctuating
folding chain surface. He investigated the loops with finite bending rigidity and the surface with
a tilt angle, respectively [18]. Moreover, it has been pointed that the free energy per loop increases
substantially as the end-to-end distance of loops become larger, and reveals the preference of tight
loops and close re-entries qualitatively under experimental condition below equilibrium melting
temperature. A monotonically increasing relation between free energy per loop and end-to-end
distance of loops is obtained by this theory. This is because the bending energy of the chain was
ignored. Besides, the quantitative optimal value and the distribution of end-to-end distance are
still undetermined.

Both Muthukumar’s theory and Sommer’s model indicated that an optimal distance between two
injection points exists, which allows the rearrangement of stems and loops after the polymer segments
are crystallized. Because two ends of a loop are linked to two stems in lamellar crystal, loops can
change their end-to-end distance by the lateral motion of stems, and then minimize the surface tension.

According to the simulation of growth of the lamellar, there are two motion modes: the lateral
motion and the parallel motion. The lateral motion (which will be called local-exchange in this paper)
is the stem moving in the lateral direction in its entirety. The parallel motion is the reptation motion of
the stem, which involves the monomers moving in and out the crystal region. Both motion modes
change the loop conformations. The lateral motion changes the end-to-end distance of the loop and
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the parallel motion change the length of the loops. The simulation work indicated that the lateral
motion continues throughout the crystallization process and is even more important than parallel
motion during the early stage [19,20]. This is just what the L-H theory does not answer. L-H theory is
a secondary nucleation theory, in which primary nucleation is already finished [10].

The folding structure of polymer chains in the amorphous layers was observed by Savage et al.
recently [21] using torsional trapping atom force microscopy (AFM). Both many first-neighbor folds
and a smaller number of second-neighbor folds are caught. The simulations of interface region can be
traced back to Balijepalli’s work in the 1990s [22–25]. He modelled the interface layer consisting of loops,
tails and bridges by freely rotating chain [22,24], and tilt of surface is considered [25]. Nilsson et al.
added two kinds of conformations, free chains and entangled loops, based on Balijepalli’s model,
and the hindered rotation model was applied [26]. The SCFT is introduced to investigate the interface
structure by Milner [27] and Shah [28]. Because the density of ends is rather low in long polymer
systems, Milner modelled the interface by a homogeneous loop-brush in half-space without tail
and bridge [27]. Shah et al considered the crystallization of multi-block copolymers constituted by
components with various rigidity. Lempesis et al. simulated the interface between the crystalline
and amorphous domains of poly(tetramethylene oxide) by molecular dynamics [11]. In general,
these theoretical models including loops with variable length correspond to parallel motion model.
On the other hand, a theoretical model including loops with variable end-to-end distance corresponds
to the lateral motion model. Balijepalli gave the density profile of re-entry sites [22], and Sommer
derived the qualitative preference of small end-to-end distance under the equilibrium conditions [17].

The polymeric loop brush is a helpful theoretical model to characterize the conformation of
polymers in the amorphous layer [27]. The lamellar is considered as the substrate of the polymer brush.
The injection points of a loop is modeled as the grafting points of the loop brush. The adjacent re-entry
model and the switchboard model of crystallization can be modeled by continuously changing the
distance between two injection points.

In the amorphous layer the length of loops are much shorter than the chain length and comparable
with that of the Kuhn length. Therefore, its conformation deviates Gaussian statistic behavior and
will be dominated by the semiflexible behavior. It has been reported that the end-to-end distance
of the semiflexible chain depends on the chain end orientation and the chain length [29]. Therefore,
the loop in the amorphous layer must has an optimal end-to-end distance. The surface tension of the
amorphous will depend on the end-to-end distance.

In present work, the lateral motion model of amorphous layer based on the worm-like chain
model has been put forward aiming to study the structure of the folding surface. In this model, the two
injection points of the loop are allowed to move on the folding surface to model the local-exchange of
the stems, which is different from the immobile loop brush [30], while the influence of the mobility
of injection points is neglected. The single-chain in mean-field theory (SCMFT) is used to solve this
model, in which the path integral of chain statistics in the auxiliary field is computed by the Monte
Carlo simulation [31–33]. The conformations of the folded chain in the amorphous region can be well
demonstrated by a Wang–Landau algorithm.

This paper is organized as follows: In Section 2 the model system and the numerical methods
are provided which incorporate the Monte Carlo simulation, Wang—Landau algorithm and SCMFT;
In Section 3 the main results of crystal-amorphous interfacial structure have been obtained; In Section 4
the discussion.

2. Theory and Numerical Method

2.1. Modeling the Crystal-Amorphous Interface

The amorphous layer is considered to be a polymer loop brush with two injection points
connecting to two stems in the crystal. The crystal is modeled as the substrate of the brush and the
stems are considered implicitly [10]. Considering stems exchange lateral position in the crystal, the free
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energy of the crystal region will not be changed. However, the free energy of the amorphous region
will be changed due to the variation of the distance between injection points of loops. The parameters
of interfacial “pseudo-brush” include (1) the contour length of loop chains, and (2) the areal density of
“injected” chains. The latter concerns the lattice constant and is equivalent to “grafting density” in the
language of polymer brushes. In above conditions, the system will determines the optimal distance
between two injection points via minimizing chain bending and maximizing conformation entropy.

A minimum model is considered here to reveal the lateral motion of the stem to optimize the
surface tension of the amorphous layer which is similar to Ref. [27]. According to the atomistic
simulation of poly(tetramethylene oxide), the percentage of loops in the noncrystalline domain is
the largest, and much larger than the sum of the corresponding number of bridges and tails [11],
thus, the contribution of tails and bridges can be ignored. To simplify the study, we assume that the
direction of stems is normal to the surface of lamellae, although this is not in full accord with the
real situations. For example, both experiments [21,34] and simulations [11] point out that there is
an angle between the stem and the normal direction of lamellar. Besides, Savage et al. also observed
that the lamellae edges have a roughness in the order of nanometers [21,24,25]. The point we focus
on here is the minimization of interfacial tension via changing the distance between two injection
points. Considering the complexity of this problem, we fixed the loop length, and simplify the system
as a mono-disperse loop brush. This simplification ignores the chain-slipping behavior, which will be
taken into consideration in our future work.

We model the amorphous layer by n worm-like chains loops with their ends on the lamellar edge
(the x− y plane at z = 0) with area A, as shown in Figure 1. The lattice constant is c, and c2 is inversely
proportional to the density of injection points σ [17,18]. Each loop has a total contour length L with
persistence length a and excluded diameter d. Henceforth, all the lengths are nondimensionalized by a.
The configuration of loop is described by a spacial curve R(s), where s ∈ [0, L] is the contour variable.
The distance between its two injection points is defined by D ≡ |R(L)− R(0)|. The interfacial free
energy formula can be given by SCMFT (see Appendix A for details):

βF [ω] ≡ −1
2

∫
drdudu′

ω(r, u)ω(r, u′)
2da2|u× u′| − n ln Q[ω], (1)

where u(s) = dR(s)/ds is the tangent vector of the chain. β = 1/kBT with the Boltzmann factor kB
and temperature T. ω is the auxiliary field. The Q[ω] term, which is the single chain partition function,
can be written as function of D (see Appendix B for details):

− ln Q(D) = − ln

{
g(D)

∫ Em
0 dEgD,L(E) exp(−βE)∫ Em

0 dEgD,L(E)

}
, (2)

where g(D), defined by Equation (A15), is the density of states for a given D; gD,L(E), defined by
Equation (A21), is the density of energy states for a given D and L; Em is the ceiling energy. We design
a modified Wang–Landau algorithm to accomplish the calculation of Q(D) in the ensemble [L, D, βE].

2.2. Modified Multi-Steps High-Precision Wang–Landau Algorithm

As two typical cases, L = 1 and L = 8 are chosen to represent the “tight fold” case and the
“loose loop” case, respectively. Considering simple cubic polymer crystal, the density of injection
points σ = n/A is inversely proportional to the square of lattice constant c, i.e., σ = 1/c2. As an
example, in the following calculations, we take the persistence length a = 2.5c at the crystallization
temperature. With this parameter, σ = 6.25 (i.e., c = 1/

√
σ ≈ 0.4). For a given auxiliary field ω,

5× 105 Monte Carlo steps are performed to make sure the chain equilibrates under the field and then
M ∼ 107 conformations are sampled to evaluate the ensemble average of density functional. Then we
update the auxiliary field ω using the mean-field Equation (A8) with simple mixing algorithm [35] to
reach the convergent result.
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Figure 1. Schematic diagram of the local-exchange model for polymer crystal-amorphous interface.

The ensemble average of any observable quantity 〈A〉 is computed by sampling the possible
paths in the auxiliary field, ω, explicitly by Monte Carlo simulation, i.e.,

〈A〉 = 1
M

M

∑
j=1

A{Rj(s)}], (3)

where M is the total number of conformations sampled for the ensemble average and Rj is the j-th
conformation of a single chain in the auxiliary field sampled by the Metropolis algorithm.

The determination of g(D) written as Equation (A15) follows the algorithm proposed by Wang
and Landau [36], except that the conventional reference parameter E is replaced by D [37]. The range
of variation for D/L is within [0, 1], where D/L = 1 corresponds to the conformation which is fully
stretched and clings to the two-dimensional lamellae edge. The D/L is evenly divided into m = 100
equal bins, where the function g(D) for the i-th bin is represented by a variable gi (i = 1, 2, 3...m).
We take the densities of states gi equal to 1 and the accumulating histogram Hi equal to 0 for all i in
the beginning of procedure, together with a initial modification factor f = 1.

The random walk in D-space is performed by to sample the conformation of inextend loop by
Monte Carlo trial move without any consideration of energy. Two trial moves are used in present work:
the lateral motion of the injection point and the crankshaft move. In the lateral motion, the segments
between a randomly selected segment and a injection point are rotated by a random angle about the
axis which is normal the substrate and goes through the selected segment. In the crankshaft move,
the segments between randomly selected two segments are rotated by a random angle about the
end-to-end vector of these segments. Both trial moves are subject to the hard-wall interaction of the
substrate at z = 0. The acceptance of the trial move from the conformation with D1 to that with D2 is
p(D1 → D2) = min[g(D1)/g(D2), 1].

After the Monte Carlo attempt, once the value of D visits the i-th bin, the density of state lngi
is updated by the modification factor, i.e., ln gi ← f + ln gi, as well as the accumulating histogram
updating by Hi ← 1 + Hi. A simulation iteration terminates when the maximal difference

∣∣Hi − H
∣∣,

where H is the average of all Hi, is less than 1%. The modification factor, f , is then multiplied by 1/2,
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the histogram Hi is reset to zero, and a new MC simulation iteration was conducted by using the new
f until f < 10−9. An approximation for ln g(D) within accuracy no more than 10−9 has been obtained.

The Wang–Landau algorithm was also used to estimate gD,L(E). In worm-like chain model,
the upper bound of bending energy could be as high as βE = 104 for L = 1, corresponding to the
zigzag conformation. However, the Boltzmann factor exp(−βE) would exceed the precision which
the computer could achieve for βE > 700. Considering the integrand is multiplied by gD,L(E) and
exp(−βE), the precision of density of energy states near ground state is crucial because of the weighting
of Boltzmann factor. The conventional Wang–Landau algorithm, could not meet the requirement
of precision.

In the view of above-mentioned difficulty, we proposed a modified Wang–Landau scheme to
determine the gD,L(E). It contains three steps:

(1) Giving a trial run of Wang–Landau algorithm in the whole energy space, aiming to search
a configuration which can be treated as the ground state reasonably.

(2) The E space is divided into NE regions, and width of every region is η of that of the adjacent
higher-energy region (in this paper, we take NE = 12 and η = 0.6). Besides, each region has a small
but enough part of overlap with its left and right neighbouring regions, respectively. Wang–Landau
algorithm is independently performed in each energy region. A simulation iteration terminates when
the maximal difference

∣∣Hi − H
∣∣ is less than 1%, and the iterations of MC segments are considered

convergent after f become smaller than 10−7.
(3) Up to present, the sectional ln gD,L(E) in different energy regions had been obtained

independently, but the difference between them is still unknown. To make all of them join together as
a smooth curve, we“alining” the overlap of adjacent two regions, which means, shift ln gD,L(E) of all
regions till the overlap regions are coincide with their neighbors. This method manages visiting the
energy states which are too low for a individual Wang–Landau run to explore.

3. Results and Discussion

3.1. Structure of Amorphous Layer

The distribution of the distance between two injection points can be obtained by

ρ(D) = 〈δ[D− D{Rj(s)}]〉, (4)

as shown in Figure 2a. Both tight folds and loose loops display most probable distances between two
injection points. The maximums of ρ(D) locate at D∗/c = 0.82 for tight folds while 0.89 for loose
loops. The plot of loose loop (L = 8) takes a near-Gaussian form. If the loop length increase to infinity
(L → ∞), its distribution plot will degenerate to the right bank of a Gaussian curve. On the other
hand, the plot of tight fold shows a sharp peak. In the short loop limit (L → 0), loop has to re-enter
the lamellar crystal before it can make any bendness, so the distribution function will take a δ-form
whose peak appears at D/c ∼ L/c. Thus, the optimal distance between two injection points of loops is
variable as loop length changing. However, in Muthukumar’s treatment, he used a constant cutoff
value for D [16], which remains in the final result.

It is noteworthy that both the optimal distance between two injection points for tight fold and
loose loop are near to and a bit smaller than one times the lattice constant, even though the loose loop
length is longer than 17 times the lattice constant. D∗/c of loose loop is slightly higher than D∗/c of
tight fold, although the length of the former is as eight times as long as the latter. The distribution
of tight folds is only in the range D/c ∈ [0, 2.2], because they are too short to reach a re-entry point
exceeding two times the lattice constant. The distance between two injection points distributes centrally
in the range no further than four times the lattice constant. These results provide evidence for the
adjacent re-entry model.
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Figure 2. The distribution profile of (a) the distance between two injection points D, and (b) the distance
between the lamellae edge and the highest point in the loop zmax. D is scaled by lattice constant c,
and zmax is scaled by L/2. The blue solid lines and red dash lines represent the tight fold (L = 1) and
loose loop (L = 8), respectively.

The difference between interfaces formed by tight folds and loose loops could also be found from
Figure 2b, which plots the distribution of distance between lamellar edge and the furthest point in the
loop, i.e.,

ρ(zmax) = 〈δ[zmax − zmax{Rj(s)}]〉. (5)

Both two curves show a peak. The peak appears at zmax = 0.36 for tight fold, while at a more
distant location, i.e., zmax = 3.2, for a loose loop. This agrees with the physical expectation that a longer
loop could visit a further distance. Besides, the larger peak width for L = 8 than that for L = 1
means the crystal-amorphous interface formed by loose loops has a larger roughness than the interface
formed by tight folds.

The morphology and conformation of amorphous layer given by SCMFT is shown in Figure 3.
The density distribution function along the normal direction of substrate is characterized by

ρ(z) =
〈

1
L

∫ L

0
δ[z− z(s)]ds

〉
. (6)

In tight fold case, the density distribution increases moderately as z increasing at first, and shows
a maximum at z/(L/2) = 0.52. As z increasing further, the density distribution decays quickly,
and finally reaches zero at z/(L/2) = 0.9. The maximum can be explained by this consideration:
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a tight fold needs to reach back to the lamellae edge within a shorter length, thus it will preserve the
conformation as an arc, and the density distribution of an arc has a natural maximum at a certain
location away from the lamellae edge (as shown in the left panel of Figure 4). In the loose loop case,
the density distribution hold a near-plateau form in a wide range, and as z increasing further, it will
decrease monotonously, and reaches zero also at z/(L/2) = 0.9. This indicates that the loose loops in
amorphous layer take the “Bobby-pin”-like conformation: it consists of two straight legs and a sharp
fold (as shown in the right panel of Figure 4). The sharper fold than tight fold case, just like an acute
angle, results in the absence of maximum in density distribution profile. These are consistent with our
results in Figure 2 and the analysis of Savage et al. [21], who proposed that the fold projecting farther
out from the lamella to complete the fold would be less immobilized and in proximity to the crystal.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.3

0.6

0.9

1.2

1.5

1.8

 (z
)

z/(L/2)

 L=1
 L=8

Figure 3. The density profiles versus the distance away from the surface. The distance away from the
surface is scaled by half of loop length, i.e., L/2. The blue solid lines and red dash lines represent the
tight fold (L = 1) and loose loop (L = 8), respectively.

To clarify the loop conformation in the amorphous layer more clearly, the segment orientation
function P1(s) is computed by

P1(s) = 〈cos θ(s)〉, (7)

where θ(s) is the angle of tangent vector at s along the loop measured with respect to the direction
perpendicular to the lamellae surface. For a perfect semi-circle conformation, the P1(s) should perform
as a cosine curve. The results is shown in Figure 5a. The plots have centrosymmetry about point
(s/L = 0.5, P1(s) = 0). The result of tight fold is more similar to a cosine curve, indicating that it hold
a semi-circle conformation roughly. However, the behaviors of loose loops deviate from the semi-circle
conformation, and reach a plateau after the drop at the very start. The plateau is maintained until
about s/L = 0.4, and then experiences a rapid drop. The segment orientation functions of both tight
folds and loose loops have maximal slopes at s/L = 0.5, because statistically speaking, the loops need
to complete the fold at their midpoints. The segment orientation function of loose loops shows a clear
drop which is absent in the tight folds case, which indicates the existence of a sharp turn in loose loop
conformation, and the plateau corresponds to the straight legs of the “hobby-pin” conformation.
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Crystal Region

Figure 4. Conformational examples of tight folds (L = 1, left) and loose loops (L = 8, right) injecting
outside the lamellar crystal. The conformations come from the important sampling by Monte Carlo in
SCMFT. The blue bars represent the stems in crystal region.

-1.0

-0.5

0.0

0.5

1.0

 L=1
 L=8

(a)
 P 1
(s
)

0.0 0.2 0.4 0.6 0.8 1.00.7

0.8

0.9

1.0

1.1 (b)

 

 

<
E b
(s
)>
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Figure 5. (a) The segment orientation functions and (b) the bending energy versus the coordinate along
the loop chain. The blue solid lines and red dash lines represent the tight fold (L = 1) and loose loop
(L = 8), respectively. s is scaled by loop length L.

The average bending energy along a loop, defined by

βEb(s) =
1
2

∣∣∣∣du(s)
ds

∣∣∣∣2 , (8)
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is shown in Figure 5a. The curve of loose loop is lower than tight fold in most cases, because it is
easy for a longer loop to release the stress caused by folding back to re-enter the lamellar crystal.
However, the average bending energy at middle points of loose loop is larger than tight fold,
proving the existence of a sharper fold in loose loops. The left and right wings of loose loop curve
approximate to plateaus, related to the more straight conformation taken by the two halves of loose
loop. Thus, the interfacial tension was accumulated on the edge of the amorphous layer formed by
loose loops, while distributes more uniformly in the whole interface formed by tight loop.

3.2. Conformation of Polymeric Loop in Amorphous Layer

The density of states for the distance between two injection points of loops, g(D), is shown in
Figure 6, calculated in Equation (A15) by classic Wang–Landau algorithm. In general, g(D) declines as
D/L increasing. This can be interpreted by considering the limit case that number of states is only 1
when the loop is fully stretched and pinned onto the lamellae edge. A maximum exists at D/L = 0.06.
If a propagator reaches back onto the lamellae edge after random walking in half-space by contour
length L, its distance with original point is corresponding to the maximum value. The results of g(D)

corresponds to the partition sum gloop(p) in Equation (18) in Ref. [16], in which an approximated
formation was used.

0.0 0.2 0.4 0.6 0.8 1.0
-250

-200

-150

-100

-50

0

 

 

ln
[g

(D
)]

D/L
Figure 6. Density of states g(D) versus the distance between two injection points of an ideal loop.
g(D) is plotted in a logarithmic plot, produced from the Wang–Landau Monte Carlo determination.
D is scaled by loop length L. The absolute values of g(D) are meaningless, and g(D = 0) is chosen to
be zero.

Then the bending energy contribution, which has been ignored in Muthukumar’s theory, is
taken into consideration in the present work. The density of energy states, gD,L(βE) is calculated
by Equation (A21), and some examples in case of L = 1 are shown in Figure 7. The modified
Wang–Landau algorithm can has much better performance in the low energy states than the original
one, as well as the precise global information in the whole energy space. Since the gD,L(βE) curves
are plotted in a logarithmic plot, the density of energy states drops rapidly as energy approaching
to ground state. This means the number of low energy states is quite few and is hard to visit by the
classic Wang–Landau algorithm, and contributes large errors. These problems have been well solved
by the present modified Wang–Landau algorithm.
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Figure 7. Examples of density of energy states gD,L(E) for a series given D when L = 1 is plotted in
a logarithmic plot, produced from the Wang–Landau Monte Carlo determination. Black solid line,
red dash line, blue dot line, green dash dot line represent D = 0, 0.2, 0.4, 0.6, respectively. The absolute
values of gD,L(E) and the relative value between different curves are both meaningless, and maximum
of gD,L(E) curve is chosen to be zero. The range of energy in the case of smaller D is larger than that of
larger D, because the ceiling energy of conformation with smaller D is higher.

Substituting above results into Equation (2)− ln Q as a function of D can be obtained, as shown in
Figure 8. For tight fold case, there is a minimum at D = 0.46. As L increasing, this minimum location
moves toward left. These are the results of competition between enthalpy and entropy. For tight fold,
the loop is short and entropy contribution is limited, thus the behavior of − ln Q(D) is dominated
by energy. Tight folds search the conformation to minimize their energy. The two injection points,
kept perpendicular to the lamellae edge. To minimizing the bending energy, the tight loops take
the semi-circle conformation. Taking consideration of the excluded volume interaction, the distance
between two injection points should be decreased. As a consequence the diameter of the semi-circle
with perimeter L, i.e., 2L/π ≈ 0.63L, is higher than 0.465, should be the upper bound of estimation of
D. In loose loop condition, the entropy dominates structure of the amorphous layer. − ln Q(D) curves
will approach to the opposite value of ln g(D), thus the maximum location of g(D) curve, D/L = 0.06,
is the lower bound of estimation of the minimum location of − ln Q(D). Thus, the loop conformation
in amorphous layer is the result of competition between entropy and energy.



Polymers 2020, 12, 2555 12 of 19

0.0 0.5 1.0 1.5 2.0

-6

-4

-2

0

 

-ln
Q

(D
)

D

L=8

-6

-4

-2

0

 

-ln
Q

(D
)

L=5

-6

-4

-2

0

 

-ln
Q

(D
)

L=2

-6

-4

-2

0
0.0 0.5 1.0 1.5 2.0

 

 

-ln
Q

(D
)

L=1

Figure 8. The value of term − ln Q(D) versus the distance between the two injection points of loops for
loop length L = 1, 2, 5, 8. The absolute values of − ln Q(D), and the relative value between different
curves, are both meaningless. − ln Q(D = 0) of each curve is chosen to be zero.

3.3. The Effect of Density of Injection Points

Figure 9 presents the optimal average distance between two injection points of loops 〈D〉 as
a function of loop length, computed by Equation (3). To reveal the effect of density of injection points,
the optimal average distance 〈D〉 for various L is also given for ideal chain. For both ideal and real
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chains, the optimal average distance increases as loop length increasing. However, the slopes of these
two curves are always much lower than 1, and decrease as L increasing. Namely, it is hard to gain
a further 〈D〉 by simply increasing the loop length. The density of injection points induces loops to
depress their value of 〈D〉. In consideration of lattice constant c = 0.4, a first-neighbor fold needs
loop length L ≈ 1, a second-neighbor fold corresponds to L ≈ 3, while a loop which strides only
three crystal lattices and re-enters the lamellae edge needs L > 10. The distance between two injection
points is no more than several lattice constant even though the loop length increases to a large value.
For a tight fold, it is too short to reach a distant re-entry point. For loose loops, if they re-enter the
lamellae edge at a far point, they will constitute a thinner crystal-amorphous interface. With a given
total number of monomers, the thinner interfacial thickness means the higher concentration. In this
condition, loops tend to project themselves into the space further away from the lamellae edge to
release the pressure, leading to the shrinkage of distance between two injection points. These also
can be indicated by Figure 4. As a result, both tight folds and loose loops prefer adjacent re-entry.
These results consists with a series of experiments [9,34] and simulations [38–40], which support that
the adjacent re-entry occupy the major fractions of loop conformations.

1 2 3 4 5 6 7 8 9 10
0.0

0.4

0.8

1.2

1.6

2.0

2.4

 

 

<
D
>

L

 Ideal Chain
 Real Chain

Figure 9. The optimal average distance between two injection points of loop versus its length
for ideal/real chain. The blue dash line and red solid line correspond to ideal chain and real
chain, respectively.

For verifying our analysis, the optimal average distance between two injection points 〈D〉,
the average height 〈H〉, and the segment orientation order parameter P2 are displayed as functions of
density of injection points for both tight fold and loose loop in Figure 10. The average height of one
loop is defined by

H =
1
L

∫ L

0
z(s)ds, (9)

where z(s) is the distance between the lamellae edge and a point along loop R(s). The segment
orientation order parameter is defined by

P2 =
1
L

∫ L

0
〈1

2
(3 cos2 θ(s)− 1)〉ds, (10)

were θ(s) is the angle between the bond vector and the normal direction of the substrate. As shown
in Figure 10a, the optimal average distance decreases monotonically as the stems in polymer crystal
becoming more compacted, which reflects the repulsive effect contributed by surrounding loops.
The loose loop is much sensitive to the density of injection points than the tight folds. Both the loop
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length and the density of injection points vary in one order of magnitude, however, 〈D〉 varies in no
more than 1 for both tight fold and loose loop and does not exceed the range of adjacent re-entry.

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6 (c)

 P 2

0.0

0.5

1.0

1.5
(b)

 

<
H
>

0.5

1.0

1.5

2.01 2 3 4 5 6 7 8 9 10

 

 

<
D
>

 L=1
 L=8

(a)

Figure 10. (a) The optimal average distance between two injection points of loop 〈D〉, (b) the average
thickness 〈H〉, and (c) the segment orientation order parameter P2, versus the density of injection points
σ varying from 1 to 10. The blue solid lines and red dash lines correspond to tight fold (L = 1) and
loose loop (L = 8), respectively. Higher value of P2 is corresponding to higher ordered conformation.

The decreasing of 〈D〉 is accompanied with the increasing of average height 〈H〉 in Figure 10b.
This is because a loop could stretch more into the amorphous region if its two injection points is
nearer to each other. As σ increases, each loop in interface undergoes the confinement effect from the
other loops nearby. The loops have two responsive ways to the excluded volume effect: (1) reducing
their volume and shrinking in the direction parallel to the lamellae edge, via decreasing the distance
between two injection points; (2) enlarging their asphericity and extending along the direction parallel
to the stem vector, via spreading further away from the lamellae edge. These two motion modes are
displayed in Figure 11. The combination of above two aspects results in the repulsion behavior among
loops and improvement of order of amorphous layer, as shown in Figure 10c. In linear brush system,
The ordering behavior induced by density of injection points [30,41,42] only involves the second motion
mode. Finally, the density of injection points has larger influence on loose loop, which can be seen
from the higher slope of loose loop in Figure 10b,c. These results demonstrate the behavior of interface
during the phase transition from “Rotator” to crystal between which σ is the only difference [27].
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D D

Density of Injection Points

Figure 11. Schematic diagram of loop responding to the density of injection points. Two motion modes
are presented: 1. the horizontal arrows represent the motion along the direction parallel to the lamellae
edge, leading to the decreasing of 〈D〉; 2. the vertical arrows represent the motion along the direction
of stems, leading to the increasing of 〈H〉.

4. Conclusions

In this paper, the local-exchange model for polymer amorphous layer, which is constituted mainly
by folded loops, is proposed. In the amorphous layer, because the length of loops is much shorter
than the total length of the chain and comparable with the Kuhn length, the semiflexible chain model
was used instead of the Gaussian chain model which was adapted by previous theoretical studies on
amorphous layer. Based on the worm-like chain model, the optimal distance between two injection
points of a loop is determined by the balance of chain stiffness and conformational entropy. This model
gives a possible interpretation for the origin of folding interface structure theoretically. The role of
local-exchange behavior in polymer crystallization is emphasized in this model. The structure of
amorphous layer formed by tight loops or loose loops has been investigated by SCMFT, respectively.
The stems inside the lamellar crystal shift their locations to optimize the distance between two injection
points. The result of optimal distance between two injection points for both tight and loose loop
support the adjacent re-entry model. The effect of density of injection points is introduced to explain
this behavior.

Besides, to balance the requirement for complete information in global energy space and the
precise information in local low-energy states, a modified three-steps Wang–Landau algorithm has
been developed to obtain the accurate solution of partition function for the worm-like chain.
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WLC Worm-like chain
AFM Atom Force Microscopy

Appendix A. Single-Chain in Mean-Field Theory

The Hamiltonian of a worm-like chain for a given conformation is given by

βH0 [u(s)] =
1
2

∫ L

0
ds
∣∣∣∣du(s)

ds

∣∣∣∣2 . (A1)
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The distribution function of a single conformation is

P0 [R(s), u(s)] = exp {−βH0 [u(s)]}∏
s

{
δ [|u(s)| − 1] δ

(
u− dR(s)

ds

)}
δ [Rz(0)] δ [Rz(L)] . (A2)

The two δ functions in the bracket of { } in Equation (A2) implicate the constraint of smoothness
and inextensibility. The last two δ functions mean the polymer loops inject into the amorphous region
by crossing the surface of z = 0.

The density operator is defined as

ρ̂(r, u) =
n

∑
i=1

∫ L

0
dsδ [r− Ri(s)] δ [u− ui(s)] . (A3)

The anisotropic excluded volume interaction is described by Onsager’s formula:

βV(r, r′, u, u′) = 2da2δ(r− r′)
∣∣u× u′

∣∣ . (A4)

The interaction between loop segments and crystal-amorphous interface are described by the
impenetrable potential

βVI(r) =

{
0 z > 0
∞ z < 0

. (A5)

After conventional derivation, the interfacial free energy could be written as

βF [ω] ≡ −1
2

∫
drdudu′

ω(r, u)ω(r, u′)
2da2|u× u′| − n ln Q[ω], (A6)

and the single chain partition function is

Q[ω] ≡
∫
D{R(s), u(s)}∏

s

{
δ[|u(s)| − 1]δ

(
u(s)− ∂R(s)

∂s

)}
δ [Rz(0)] δ [Rz(L)]

× exp
{
−βH0 [u(s)]−

∫
ds {ω [R(s), u(s)] + VI [R(s)]}

}
, (A7)

Performing mean field approximation δF/δω = 0, we have the self-consistent field equation

ω(r, u) = 2da2
∫

du′
∣∣u× u′

∣∣ ρ(r, u′), (A8)

where

ρ(r, u) ≡ 〈ρ̂(r, u)〉

=
LAσ

Q

∫
D{R(s), u(s)}∏

s

{
δ[|u(s)| − 1]δ

[
u− dR(s)

ds

]}
δ [Rz(0)] δ [Rz(1)]

×
∫ 1

0
dsδ[r− R(s)]δ[u− u(s)] exp

{
−βH0 [u(s)]−

∫
ds {ω [R(s), u(s)] + VI [R(s)]}

}
. (A9)

It should be mentioned that d here is a parameter from the Onsager interaction which characterizes
the thickness of the polymer. In present model, d is not an independent variable. The product
of excluded volume, v and the density of injection points, σ is the independent variable. Here,
the excluded volume of the segment is defined by v = 2da2. Therefore, a reduced density of injection
points can be defined σ→ vσ.
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Appendix B. Calculation of the Single Chain Partition Function

In this paper, a symbol with angle brackets, 〈A〉, denotes the average of a physical quantity A in
a canonical ensemble,

〈A(L)〉 =
∫

d(·)A(·) exp[−βε(L, ·)]∫
d(·) exp[−βε(L, ·)]

, (A10)

where the abbreviation (·) is used for all variables that describe the positions of all monomers of
the loop polymer. The total energy ε(L, ·) contains three terms corresponding to the bending energy,
the excluded volume effect, and the hard-wall potential of a specified conformation (·), respectively, i.e.,

ε(L, ·) = βH0 [u(s)] +
∫

ds {ω [R(s), u(s)] + VI [R(s)]} . (A11)

The denominator in Equation (A10) is partition function,

Q =
∫

d(·) exp[−βε(L, ·)]. (A12)

For any given loop configuration described by the coordinates (·), it has a distance between the
two injection points ζ(·),

ζ(·) = |R(L)− R(0)|. (A13)

In fact, during a MC production run with statistical weight being W(D), the measured histogram
of visited D is related to

H(D) =
∫

d(·)W[ζ(·)]δ[D− ζ(·)], (A14)

where δ is Dirac’s delta function. Because the density of states for D is defined by

g(D) =
∫

d(·)δ[D− ζ(·)], (A15)

in a production run where W(ζ) = 1/g(ζ) is used as a statistical weight, H(D) reaches
a D-independent constant after adequate statistics. (The advantage of using 1/g(ζ) as the transition
probability in a MC simulation is such that the simulated polymer goes through all the D bins many
times in a MC run.) We can rewrite Equation (A10)

〈A(L)〉 =
∫ Dm

0 dDg(D)〈A(D, L)〉∫ Dm
0 dDg(D)〈Q(D, L)〉

, (A16)

where Dm is the upper bound of D, W(ζ) = 1/g(ζ), and

〈A(D, L)〉 =
∫

d(·)W[ζ(·)]A(·) exp[−βε(L, ·)]δ[D− ζ(·)]∫
d(·)W[ζ(·)]δ[D− ζ(·)]

, (A17)

〈Q(D, L)〉 =
∫

d(·)W[ζ(·)] exp[−βε(L, ·)]δ[D− ζ(·)]∫
d(·)W[ζ(·)]δ[D− ζ(·)]

, (A18)

is the partition function for given D and L. The partition function for D is embodied in Equation (A16)

Q(D) = g(D)〈Q(D, L)〉. (A19)

It is formidable task to compute it using a simple sampling. To overcome this difficulty, we use
the Wang–Landau algorithm to compute Q(D, L) as well:

〈Q(D, L)〉 =
∫ Em

0 dEgD,L(E) exp(−βE)∫ Em
0 dEgD,L(E)

, (A20)
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where
gD,L(E) =

∫
d(·)δ[E− εD,L(·)]. (A21)
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