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ABSTRACT Granulomas sit at the center of tuberculosis (TB) immunopathogenesis. Progress in biomarkers and treatment spe-
cific to the human granuloma environment is hindered by the lack of a relevant and tractable infection model that better ac-
counts for the complexity of the host immune response as well as pathogen counterresponses that subvert host immunity in
granulomas. Here we developed and characterized an in vitro granuloma model derived from human peripheral blood mononu-
clear cells (PBMCs) and autologous serum. Importantly, we interrogated this model for its ability to discriminate between host
and bacterial determinants in individuals with and without latent TB infection (LTBI). By the use of this model, we provide the
first evidence that granuloma formation, bacterial survival, lymphocyte proliferation, pro- and anti-inflammatory cytokines,
and lipid body accumulation are significantly altered in LTBI individuals. Moreover, we show a specific transcriptional signature
of Mycobacterium tuberculosis associated with survival within human granuloma structures depending on the host immune sta-
tus. Our report provides fundamentally new information on how the human host immune status and bacterial transcriptional
signature may dictate early granuloma formation and outcome and provides evidence for the validity of the granuloma model
and its potential applications.

IMPORTANCE In 2012, approximately 1.3 million people died from tuberculosis (TB), the highest rate for any single bacterial
pathogen. The long-term control of TB requires a better understanding of Mycobacterium tuberculosis pathogenesis in appro-
priate research models. Granulomas represent the characteristic host tissue response to TB, controlling the bacilli while concen-
trating the immune response to a limited area. However, complete eradication of bacteria does not occur, since M. tuberculosis
has its own strategies to adapt and persist. Thus, the M. tuberculosis-containing granuloma represents a unique environment for
dictating both the host immune response and the bacterial response. Here we developed and characterized an in vitro granu-
loma model derived from blood cells of individuals with latent TB infection that more accurately defines the human immune
response and metabolic profiles of M. tuberculosis within this uniquely regulated immune environment. This model may also
prove beneficial for understanding other granulomatous diseases.
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The World Health Organization estimates that 8.6 million peo-
ple were infected with tuberculosis (TB) in 2013, including 1.1

million cases among people living with human immunodeficiency
virus (HIV) (1). TB ranks as the second leading cause of death
from a single infectious agent, after HIV infection (2). The long-
term control of TB requires a better understanding of bacterial
virulence properties and host response in appropriate research
models.

Granulomas in humans sit at the center of TB immunopatho-
genesis. Active TB can result from either early progression of a
primary granuloma during the infection process (rare) or reacti-
vation of Mycobacterium tuberculosis from an established granu-
loma in a latently infected person (10% lifetime risk in imm-
unocompetent individuals and 10% annual risk in untreated

HIV-infected individuals). Such individuals infected with M. tu-
berculosis are latent carriers of the bacterium and, although they
exhibit no signs of disease, represent reservoirs for later reactiva-
tion and transmission. The cellular and biochemical factors that
control granuloma formation, maintenance, function, and reso-
lution in humans are multifaceted, involving a complex interplay
between the host immune system and survival strategies employed
by the bacilli. These factors remain poorly understood since cur-
rent in vitro, in silico, and in vivo models do not fully recapitulate
the true microenvironment found in human granulomas.

Granulomas are organized structures of macrophages, includ-
ing blood-derived macrophages, epithelioid cells (uniquely
differentiated macrophages), and multinucleated giant cells
(Langerhans cells, fused macrophages), surrounded by a ring of
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lymphocytes (3–6). The granuloma’s main function is to localize
and contain M. tuberculosis infection while concentrating the im-
mune response to a limited area (7). Although it is presumed that
bacterial killing occurs within the granuloma, complete eradica-
tion does not occur, since M. tuberculosis has its own strategies to
persist within the granuloma and to reactivate and escape under
certain circumstances. Thus, the M. tuberculosis-containing gran-
uloma represents a unique battlefield that dictates both the host
immune and bacterial responses (8).

Progress on therapies that are active in human granulomas is
hindered by the lack of a relevant and tractable infection model
that better recapitulates the complexity of the host response as well
as M. tuberculosis counterresponses that subvert host immunity.
In vitro studies using human peripheral blood mononuclear cells
(PBMCs) have shown that the host immune status impacts myco-
bacterial growth (9–12). Recently, human PBMC-related in vitro
models that mimic the microenvironment encountered by M. tu-
berculosis within human granulomas have been developed (13–
18). However, none of these models have focused on how the
granulomatous response may be affected by the human host im-
mune status. Here we addressed this gap in knowledge by interro-
gating a human in vitro granuloma model for identifying potential
differences in the host-M. tuberculosis interplay in individuals
with and without latent tuberculosis infection (LTBI). We posited
that a dynamic model representing the human TB granulomatous
response, comprising multiple interactive cells/molecules, in
which changes over time can be studied, is necessary to advance
our understanding of the mechanisms regulating the biological
events involved as well as their impact on bacterial gene expres-
sion. Such a model would be able to identify new biomarker and
therapeutic targets uniquely expressed in this tissue microenvi-
ronment.

By assaying for multiple cellular and immunologic parameters,
we demonstrated that individuals with LTBI exhibit a more robust
granulomatous response than naive individuals. Further, we dem-
onstrate that M. tuberculosis expresses enzymes representing fun-
damentally different metabolic pathways during early granuloma
formation in LTBI individuals. These findings provide new insight
regarding the mechanisms underlying the earliest phases of the
host immune response to M. tuberculosis and related pathogen
counterdefenses. Such findings will aid in the identification of
host-pathogen molecules and pathways that are active in granu-
lomas. Moreover, this granuloma model may prove to be useful
for studying other infectious and noninfectious granulomatous
diseases.

RESULTS
In vitro granuloma-like structures are formed by infection of
PBMCs with M. tuberculosis. Granuloma-like structures were
achieved by infecting PBMCs with M. tuberculosis H37Rv in the
presence of 10% autologous serum at a multiplicity of infection
(MOI) of 1 bacillus to 1 macrophage as shown in Fig. 1a and b. Cell
cultures were maintained for up to 12 days postinfection, and the
stage of granuloma formation was determined semiquantitatively
daily. Cellular aggregation started around day 4 to day 6 postin-
fection, depending on interindividual variability. Between days 7
and 12 postinfection, a multicellular, multilayered structure was
observed as shown in Fig. 1d and f (see also Movie S1 in the sup-
plemental material). Uninfected cell cultures from the same do-
nors were used as negative controls, and no cellular aggregation
was observed throughout the course of the studies (Fig. 1c).

To determine the cellular components of granuloma-like
structures that formed early, immunofluorescence studies were
performed. The expression of several host cell markers was stud-

FIG 1 In vitro granuloma-like structures are formed by M. tuberculosis infection of PBMCs from LTBI individuals. (a) PBMCs obtained from LTBI individuals
were infected with M. tuberculosis H37Rv (MOI 1:1), resulting in the formation of granulomas by day 7 postinfection. (b) Higher magnification of the granulomas
by confocal microscopy. (c) No formation of granulomas was observed in uninfected PBMCs obtained from LTBI individuals for up to 12 days postinfection. (d
to f) Confocal microscopy images of the granulomas at day 7 postinfection revealed multicellular, multilayered structures containing approximately 4 to 8 cell
layers. (d) Differential inference contrast (DIC) image. (e) Image of transverse and straight sections by orthogonal view. (f) Three-dimensional (3D) view image.
Nuclei were stained with DAPI (cyan). (g) Granuloma-like structures include macrophages (CD11b�, red) and T cells (CD3�, green). (h) Confocal microscopy
images of the granulomas at day 7 postinfection revealed the presence of multinucleated giant cells (CD11b��, yellow; white arrow). Nuclei were stained with
DAPI (dark blue). Representative images from n � 12 experiments are shown. The images in panels a and c are shown with �40 magnification; the remaining
images are �60.
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ied to determine cell type composition. Granuloma-like struc-
tures were composed of CD11b� mononuclear phagocytes gener-
ally surrounded by CD3� lymphocytes (Fig. 1g; see also
Movie S1 in the supplemental material). Interestingly, during the
maturation process, monocytes differentiated into macrophages,
aggregated, and fused into multinucleated giant cells (Fig. 1h; see
also Fig. S2). The presence of CD4� and CD8� T cells was also
determined in granuloma-like structures (see Fig. S4). Finally, B
cells were observed in 30% to 50% of these structures which varied
according to the donor (see Fig. S4).

In vitro granuloma formation is accelerated in cells from
individuals with LTBI. We hypothesized that the generation of
granuloma-like structures would be more robust using cells from
individuals with LTBI than using cells from naive individuals as a
consequence of immunologic memory. To test this hypothesis, we
recruited a total of 28 individuals, comprising 14 otherwise
healthy LTBI and 14 uninfected individuals, between 18 and
45 years of age, including males and females, and representatives
of American Indian/Alaska native, Asian, African American, and
white races and Hispanic/Latino ethnicity (see Table S1 in the
supplemental material).

Based on published work (16, 17, 19, 20), we established a
scoring system to quantify aggregation, defined as a progressive
increase in the size and specific distribution of cells (see Fig. S1 in
the supplemental material) in both groups (LTBI and naive) stud-
ied. The scoring system was applied at day 7 postinfection since
both groups consistently showed cellular aggregation at this time
point. The index score of granuloma-like structures generated
from LTBI individuals was significantly higher than that seen with
naive individuals (Fig. 2b). As shown in Fig. 2a, differences in the
speed of cellular recruitment were observed between granulomas
derived from LTBI and naive individuals. LTBI individuals

showed cellular aggregation as early as day 4 postinfection, while
naive individuals started this process no earlier than day 6 after
infection. LTBI individuals also had larger granuloma-like struc-
tures. Finally, despite interindividual variability, these differences
remained throughout the course of the studies for up to 12 days.

Granuloma-like structures from LTBI individuals have bet-
ter control of the bacillary load over time. There were no previ-
ous studies that provided evidence on whether the host immune
status has an impact on the intracellular growth of M. tuberculosis
within in vitro granulomas. Previous in vitro studies using PBMCs
have shown that the immune status of the host can impact bacil-
lary control and that direct contact between T cells and macro-
phages is required for mycobacterial growth-inhibitory effects (9–
12). Due to the presence of immunologic memory in LTBI
individuals and on the basis of the above-mentioned studies, we
hypothesized that there would be a more effective anti-M. tuber-
culosis host response within in vitro granuloma-like structures.

To assess whether the host immune status had an impact on the
intracellular growth of bacteria within the granuloma-like struc-
tures, we performed several assays, including CFU, relative light
unit (RLU), and confocal microscopy analyses, following staining
of bacteria. Granuloma-like structures were developed as previ-
ously described, and bacterial growth was studied over time.

Results showed that intracellular bacterial survival rates be-
tween days 0 and 3 postinfection were similar. However, after day
4 postinfection in the CFU assay and day 6 postinfection in the
RLU assay, there was significantly greater control of the bacillary
load in the granuloma-like structures obtained from LTBI indi-
viduals than was seen with naive individuals (Fig. 3a and b). Im-
munofluorescence studies performed at day 7 postinfection,
where bacteria were stained with auramine-O, showed similar re-
sults (Fig. 3c; see also Movies S2 [naïve] and S3 [LTBI]). Although

FIG 2 Granuloma-like structure formation is accelerated in cells from individuals with LTBI. (a) PBMCs obtained from LTBI and naive individuals were
infected with M. tuberculosis H37Rv (MOI 1:1) for up to 12 days. While naive individuals typically demonstrated no evidence of cell aggregation until day 6
postinfection, on average, the LTBI cell cultures exhibited phase 3 to 4. (b) The scoring system was applied on day 7 postinfection, and 15 high-power
fields/sample were evaluated. Naive individuals, light grey bars; LTBI individuals, dark grey bars. All images are �40. Uninfected cells were used as controls. n �
12 in triplicate. ***, P � 0.001 (by t test). M.tb, M. tuberculosis.
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the bacterial load continued to increase over time, the difference
between the two groups existed throughout the course of the stud-
ies. These results provide evidence for a growth-inhibitory effect
present in the granuloma-like structures obtained from LTBI in-
dividuals compared with naive individuals. Importantly, sterility
was never achieved.

The proliferative activity of host cell in vitro granulomas
from LTBI individuals is significantly greater than the activity
seen with naive individuals. Trafficking of cells is the main mech-
anism of cellular accumulation in the granuloma (20), although
proliferation may also play a role (21). The presence of clonal
expansion in mycobacterium-induced granulomas suggests that
local proliferation of T cells might occur and contribute to the
granuloma composition (22, 23). To determine whether host cell
proliferative activity occurred within the granuloma-like struc-
tures, two assays were performed: a total cell count assay and an
EdU assay. Granuloma-like structures were generated as previ-
ously described, and host cell proliferation was studied over time.

First, total cell counts of LTBI and naive groups were per-
formed. Results revealed an increasing number of cells in the LTBI
group (2.43-fold change, n � 2) compared to the naive group
(1.46-fold change, n � 2) at day 7 postinfection. Since macro-
phages are terminally differentiated, these data suggested a T cell
proliferation process. Therefore, an Edu labeling index analysis
(an optimized proliferation assay where the thymidine analogue
EdU is efficiently incorporated into newly synthesized DNA and

fluorescently labeled with an Alexa Fluor dye) was performed. The
labeling index was calculated as the mean fluorescence intensity
(MFI) of M. tuberculosis-infected cells minus the basal prolifera-
tion of uninfected cells within granuloma-like structures. The Edu
labeling index values were compared between granulomas from
LTBI individuals and naive individuals. As shown in Fig. 4a and b,
LTBI individuals showed a significantly higher EdU labeling index
(1.8-fold change, n � 3).

Granuloma-like structures from LTBI individuals produce
greater inflammatory cytokines. Cytokines were determined in
in vitro granuloma cultures and culture supernatants collected
from LTBI and naive individuals over time. The release of gamma
interferon (IFN-�), tumor necrosis factor (TNF), interleukin-12
p40 (IL-12p40), IL-2, IL-10, IL-4, and IL-13 was evaluated by
enzyme-linked immunosorbent assay (ELISA) (Fig. 5) and mRNA
expression by quantitative real-time PCR (qRT-PCR) (data not
shown). Expression levels of the various cytokines followed simi-
lar trends in the two studied groups, although the levels were al-
ways significantly higher in the granuloma-like structures from
LTBI individuals. IFN-� levels peaked between days 3 and 12
postinfection and remained constant. IL-12p40 peaked at day 3
postinfection until day 8 postinfection. There was a decrease in the
Il-12p40 level at day 9 postinfection, and it peaked again at day 12.
There was a trend toward an increase in TNF levels over time. IL-2
could be detected only at very early time points postinfection and
was barely detectable in naive individuals compared to LTBI indi-

FIG 3 Granuloma-like structures from LTBI individuals have better control of M. tuberculosis growth over time. PBMCs obtained from LTBI and naive
individuals were infected with M. tuberculosis Rv-lux (MOI 1:1) for up to 9 days. (a and b) RLUs (a) and CFU (b) were determined at several time points after
infection. (c) Confocal microscopy images of the granulomas at day 7 postinfection revealed more bacilli (green) in granuloma-like structures from naive
individuals than in those from LTBI individuals. Naive individuals, light grey bars; LTBI individuals, dark grey bars. Uninfected cells were used as controls. All
images are �60. n � 3 in triplicate. *, P � 0.05; **, P � 0.01; ***, P � 0.001 (by two-way ANOVA with Bonferroni posttest).
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viduals. There was an increase in the IL-10 level after infection,
and it peaked again around day 5 postinfection. IL-4 was not de-
tected in any of the studied groups. Finally, the IL-13 level peaked
around day 4 postinfection in the LTBI and was undetectable in
the naive individuals. Overall, our results demonstrate that the
granulomas from LTBI individuals contained a complex cytokine
environment, with proinflammatory, anti-inflammatory, and im-
munoregulatory cytokines all present.

LTBI individuals have greater lipid body (LB) accumulation
in macrophages within granuloma-like structures. Since there is
an increase in the intracellular accumulation of LBs in macro-
phages after M. tuberculosis infection (24–29), we next assessed
whether LB formation was induced within the granuloma-like
structures and, specifically, whether the host immune status had
an impact on LB accumulation. Granuloma-like structures were
generated, and staining using Nile red (a red fluorescent probe for
intracellular lipids) was performed. Nile red can also stain lipids
within M. tuberculosis (30). Our results showed that, although LBs
in macrophages were present in the granulomas of both groups,
granuloma-like structures from LTBI individuals had much
greater LB accumulation than those from naive individuals at day
7 postinfection that was distinct from bacterial results (see Fig. S3
in the supplemental material [arrows]). In stark contrast, Nile red
staining was primarily associated with bacteria in the TB-naive
group. Auramine-O staining tended to decrease in both groups
with time (although the staining results differed from donor to
donor), previously considered to be consistent with a stress-
related phenotype (31, 32). There were fewer bacteria in the LTBI
group than in the naive group, and they were less elongated. Taken
together, these results indicate significant differences in the accu-
mulation of host and bacterial lipids that are influenced by the
host immune status.

Differences occur in the expression levels of M. tuberculosis

H37Rv cell wall mannosylated lipoglycan and glycolipid biosyn-
thetic enzymes within granuloma-like structures from LTBI indi-
viduals compared with naive individuals.

Several studies, including those from our laboratory, have
shown that M. tuberculosis surface mannosylation plays an impor-
tant role in the host-pathogen interaction, resulting in a highly
regulated immune response that dictates M. tuberculosis survival
within the host (33, 34, 35–37). M. tuberculosis-containing gran-
ulomas represent a unique battlefield, dictating both the host im-
mune response and the bacterial response. The precise metabolic
status of M. tuberculosis within human granulomas, particularly
during early granuloma formation, remains unclear (38). In this
regard, it is completely unknown what bacterial biosynthetic
pathways are operating within granulomas for the production of
major M. tuberculosis cell wall determinants, such as the manno-
sylated lipoglycans and glycolipids. The apparent redundancies in
these biosynthetic enzyme pathways suggest that a subset may be
particularly important for bacterial adaptation and persistence
within granulomas. We initially focused on the transcript levels of
selected genes that are involved in the mannose donor biosynthe-
sis pathway (manA, manB, pmmB, mrsA, pgmA, manC, ppm1,
Rv3779, and ppgS) and within the lipoarabinomannan (LAM)
biosynthesis pathway (pimA, pimB, and pimF). We have previ-
ously shown that there are differences in the expression profiles of
mannose donor biosynthetic genes in M. tuberculosis grown in
broth culture as well as within human macrophages, suggesting
that the level of mannose donors may vary during the course of
infection and thereby impact the biosynthesis of mannose-
containing cell wall molecules (39) (see Table S2 in the supple-
mental material for primer sequences). To evaluate the expression
profile of this set of genes within granuloma-like structures from
LTBI individuals and naive individuals, granulomas were gener-

FIG 4 The proliferative activity of granuloma-like structures from LTBI individuals is significantly greater than that seen with naive individuals. PBMCs
obtained from LTBI and naive individuals were infected with M. tuberculosis H37Rv (MOI 1:1) for up to 7 days, and cell proliferation was determined by EdU
assay. (a) Confocal microscopy images of the granulomas at day 7 postinfection revealed greater proliferation (green) in granulomas from LTBI individuals than
in those from naive individuals. (b) Quantification of the cellular fluorescence shown by calculation of MFI values. Naive individuals, light grey bars; LTBI
individuals, dark grey bars. Uninfected cells were used as controls. All images are �40. n � 3. **, P � 0.01 (by t test).
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ated, bacterial RNA was isolated, and the expression profiles were
analyzed and compared for the two groups.

As shown in Table 1, most of the genes located within the
mannose donor biosynthesis pathway (manA, manB, pmmB, and

manC) were highly expressed within granuloma-like structures
from the LTBI individuals. Similarly, there was increased expres-
sion of some genes located within the LAM biosynthesis pathway
(pimA, pimB, and pimF) in granulomas from LTBI individuals

FIG 5 Granuloma-like structures from LTBI individuals produce more robust inflammatory cytokines. PBMCs obtained from LTBI and naive individuals were
infected with M. tuberculosis H37Rv (MOI 1:1) for up to 12 days, and cytokine levels in cell culture supernatants collected at several time points after infection were
determined by ELISA. Naive individuals, light grey bars; LTBI individuals, dark grey bars. Uninfected cells were used as controls. ND, not detected. n � 3 (in
triplicate). *, P � 0.05; **, P � 0.01; ***, P � 0.001 (by t test).

TABLE 1 Expression of M. tuberculosis H37Rv cell wall mannosylated lipoglycan and glycolipid biosynthetic enzymes within granuloma-like
structures from LTBI individuals compared with naive individuals at day 7 postinfectiona

Gene name/gene product (Rv no.) Encoded protein function Metabolic pathway

LTBI versus naive
fold difference
(mean � SD)

manA/mannose isomerase (Rv3255c) Fructose 6P to mannose 6P Mannose donor biosynthesis pathway 2.271 � 1.977**
manB/phosphomannomutase (Rv3257c) Mannose 6P to mannose 1P Mannose donor biosynthesis pathway 9.3 � 9.6*
pmmB/phosphomannomutase (Rv3308) Mannose 6P to mannose 1P Mannose donor biosynthesis pathway 0.95 � 1.012**
mrsA/phosphomannomutase (Rv3441c) Mannose 6P to mannose 1P Mannose donor biosynthesis pathway 0.91 � 1.18
pgmA/phosphomannomutase (Rv3068c) Mannose 6P to mannose 1P Mannose donor biosynthesis pathway 1.08 � 1.5
manC/GDP-mannose pyrophosphorilase (Rv3264c) Mannose 1P to GDP-mannose Mannose donor biosynthesis pathway 2.84 � 1.79*
ppm1/polyprenol phosphomannose synthase (Rv2051c) Transfer mannose molecule Mannose donor biosynthesis pathway 3.9 � 3.4
Polyprenol phosphomannose synthase (Rv3779) Transfer mannose molecule Mannose donor biosynthesis pathway 1.23 � 0.63
ppgS/ polyprenol phosphomannose synthase (Rv3631) Transfer mannose molecule Mannose donor biosynthesis pathway 1.36 � 0.71
pimA/mannosyltransferase (Rv2610c) Lipoarabinomannan biosynthesis Lipoarabinomannan biosynthesis pathway 1.3 � 0
pimB/mannosyltransferase (Rv2188c) Lipoarabinomannan biosynthesis Lipoarabinomannan biosynthesis pathway 1.1 � 0
pimF/mannosyltransferase (Rv1500) Lipoarabinomannan biosynthesis Lipoarabinomannan biosynthesis pathway 0.88 � 0.7
a Each gene was normalized to the rpoB housekeeping gene, and relative expression levels were determined by the 2���CT method. The fold change was determined by comparing
levels of expression within granulomas between LTBI individuals and naive individuals. n � 8 in triplicate. *, P � 0.05; **, P � 0.01 (Student’s t test).
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compared to naive individuals. These data reveal significant dif-
ferences in the levels of bacterial cell wall biosynthesis-related gene
expression within the granuloma-like structures that are depen-
dent on the host immune status.

Expression levels of key metabolic enzymes in M. tuberculo-
sis H37Rv within granuloma-like structures from LTBI individ-
uals differ from those from naive individuals. Previous studies
have shown that M. tuberculosis, which is metabolically flexible
(40, 41), preferentially utilizes fatty acids as carbon and energy
sources during chronic infection in the murine model (42). This
preferential utilization is hypothesized to be due to increased
availability of lipids in the infected host cell (24). Moreover, genes
involved in fatty acid metabolism are required during growth and
persistency in vivo (43–47). These observations provide evidence
that M. tuberculosis is able to switch its carbon source from sugars
to fatty acids during the persistent phase of infection or during
latency. In this regard, it is completely unknown when the switch
to these biosynthetic pathways involving fatty acid metabolism
begins during granuloma formation. We questioned whether fatty
acid metabolism is upregulated in M. tuberculosis early within
granuloma-like structures from LTBI individuals as a result of a
more robust inflammatory response staged against the bacilli.

We examined the transcript levels in day 7 granulomas of se-
lected key genes that are involved in glycolysis (pfkA and ppgK)
and the Krebs cycle (icd1 and sdhC) as well as in fatty acid degra-
dation (fadB, fadE5, and fadE23) and utilization (glyoxylate shunt,
icl and aceA; gluconeogenesis, pckA) (see Table S2 in the supple-
mental material for primer sequences). As shown in Table 2, fatty
acid degradation and utilization genes and Krebs cycle genes were
more highly expressed during M. tuberculosis growth within
granuloma-like structures from LTBI individuals than from naive
individuals. This was also true for the icl glyoxylate shunt gene. In
contrast, transcription of glycolysis genes (pfkA and ppgK) was
more highly expressed during M. tuberculosis growth within
granuloma-like structures from naive individuals.

Our results are consistent with the notion that M. tuberculosis
upregulates metabolic pathways that utilize fatty acids as carbon
and energy sources while downregulating metabolic pathways
that utilize sugars within granulomas from LTBI individuals. The
opposite trend was observed in granulomas from naive individu-
als, where there was higher expression of glycolysis-related genes
at the same time point studied. These results suggest that, even at

this early time point during granuloma development in our
model, there are differences in nutrient and carbon source avail-
ability that depend on the host immune status and that this has a
direct impact on M. tuberculosis metabolism over time.

DISCUSSION

Here we have developed and interrogated an in vitro human TB
granuloma model representing the complex dynamics of early
granuloma formation involving host and bacterial responses that
may dictate the subsequent events within this critical tissue envi-
ronment. Our model shares features with human TB granulomas,
including cell aggregation and formation of multinucleated giant
cells, lymphocytes, a robust and diverse cytokine profile, and al-
tered bacterial growth. Importantly, we demonstrate that LTBI
individuals exhibit a granulomatous response that is significantly
different from that exhibited by naive individuals. We further
demonstrate that M. tuberculosis changes its expression of meta-
bolic pathway genes during early granuloma formation in LTBI
individuals in a manner different from that seen with naive indi-
viduals. Overall, our results present clear-cut evidence that host
immune status directly impacts the early granulomatous response
to M. tuberculosis, providing fundamentally new information
about the potential mechanisms involved during the earliest
phases of granuloma formation and establishment. This informa-
tion will be useful in considering new strategies to control M.
tuberculosis within granulomas, specifically targeting those host
and bacterial parameters that are uniquely regulated in this envi-
ronment. Moreover, this model may prove to be useful for the
study of other infectious and noninfectious granulomatous dis-
eases.

Recent studies have highlighted the importance of studying the
local tissue microenvironment in order to gain a better under-
standing of the cellular and molecular details underlying M.
tuberculosis-host interactions during infection (17, 48, 49). It is
generally thought that M. tuberculosis must adapt to a highly dy-
namic environment within the granuloma, with various levels of
cell death, oxygen tension, acidity, inflammatory cytokines, oxi-
dants, and hydrolytic enzymes. While the significance of some of
these features for M. tuberculosis survival and growth remains un-
clear, it is predictable that M. tuberculosis must adapt to this envi-
ronment to enable its persistence.

A substantial barrier to our understanding of the granuloma-

TABLE 2 Expression of M. tuberculosis H37Rv key metabolic enzymes within granuloma-like structures from LTBI individuals compared with naive
individuals at day 7 postinfectiona

Gene name/gene product (Rv no.) Encoded protein function Metabolic pathway

LTBI versus naive
fold difference
(mean � SD)

pckA/phophoenolpyruvate carboxylase (Rv0211) Gluconeogenic enzyme Gluconeogenesis 6.460 � 5.523
aceA/isocitrate lyase (Rv1915) Glyoxylate bypass (at the first step) Glyoxylate shunt cycle 5.624 � 1.963**
icl/isocitrate lyase (Rv0467) Glyoxylate bypass (at the first step) Glyoxylate shunt cycle 3.07 � 2.49
fadE5/macyl-CoA dehydrogenase (Rv0244c) Involved in lipid degradation Fatty acid beta-oxidation 4.875 � 4.066
fadE23/acyl-CoA dehydrogenase (Rv3140) Involved in lipid degradation Fatty acid beta-oxidation 0.400 � 0.0
fadB/fatty acid oxidation protein (Rv0860) Involved in fatty acid degradation Fatty acid beta-oxidation 3.125 � 3.0
icd1/isocitrate dehydrogenase (Rv3339c) Involved in the Krebs cycle Krebs cycle 5.333 � 4.163
sdhC/cytochrome B-556 of succinate dehydrogenase (Rv3316) Involved in the Krebs cycle Krebs cycle 4.873 � 4.4
ppgk/glucokinase (Rv2702) Catalyzes the phosphorylation of glucose Glycolysis 0.53 � 0.0
pfkA/phosphofructose kinase (Rv3010c) Involved in glycolysis Glycolysis 0.1 � 0.0
a Each gene was normalized to the rpoB housekeeping gene, and relative expression levels were determined by the 2���CT method. The fold change was determined by comparing
expression within granulomas between LTBI individuals and naïve individuals. n � 8 (in triplicate). **, P � 0.01 (Student’s t test). CoA, coenzyme A.
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tous response has been the inability to experimentally mimic the
conditions encountered by M. tuberculosis within human granu-
lomas. Studies have used various in vivo and in vitro models (8),
e.g., the nonhuman primate (50) and zebrafish (20) models. Al-
though it lacks lung structure and thus the full tissue microenvi-
ronmental condition (e.g., parenchymal elements), the human in
vitro granuloma model presented here offers several advantages,
notably the ability to analyze early bacterial and host responses
during the development of granuloma structures, the ability to
characterize each individual’s response by studying that individu-
al’s own PBMCs and sera (thereby allowing the retention of each
individual’s undefined biological parameters), and sample avail-
ability for repeated measures. The most impactful element of the
model, however, is its ability to account for host immune status, a
crucial parameter in dictating the nature of the granulomatous
response.

There are no previous studies on whether the host immune
status has an impact on M. tuberculosis intracellular growth within
in vitro granulomas. We observe that the control of bacterial
growth starts after in vitro granulomas have achieved phase 4 in
the defined scoring index, a level achieved only in individuals with
LTBI, and that this control is maintained thereafter. To generate
protective immunity against M. tuberculosis, a specific tissue mi-
lieu where activated lymphocytes and macrophages work together
in controlling bacterial growth was used that led to local robust
inflammation and host cell proliferation. Future studies are now
enabled to perform more refined analyses on cellular type, antigen
(Ag) presentation, etc. The present report emphasizes the impor-
tance of cell kinetic analyses in granulomatous processes, one as-
pect that is gaining more attention in TB studies (51, 52).

One of the most important factors required for the establish-
ment of infection and bacterial control is the relative abundance of
local pro- and anti-inflammatory cytokines produced. For exam-
ple, TNF and IFN-� are particularly important in promoting the
formation and function of granulomas as well as in bacterial con-
trol, whereas IL-10 acts as negative regulator of this response. It is
notable that most animal and human studies have detected both
cytokines and IL-10 in the immune system host response (53). In
concert, we found that granuloma structures from LTBI individ-
uals express various “protective” cytokines, including IFN-�,
TNF, IL-12p40, and IL-2 but also IL-13 and IL-10. Thus, previous
studies and ours support the concept that optimum protection
(for a healthy individual with LTBI) will be defined as a cytokine
equilibrium generated by a number of cell types in the innate and
adaptive immune systems. Locally produced IL-10 found in gran-
ulomas can explain the presence of multinucleated giant cells (54).

Formation of macrophage LBs is dependent on, among other
factors, the activation of Toll-like receptors (TLRs) by pathogen-
derived agonists and the presence of proinflammatory signals,
such as TNF and CCL2 (26), as well as hypoxia (27). Moreover,
there is an increase in the intracellular accumulation of macro-
phage LBs after M. tuberculosis infection (24–28). In our study,
granuloma-like structures from individuals with LTBI had a much
greater accumulation of macrophage LBs than naive individuals
(see Fig. S3 in the supplemental material). Based on a recent pub-
lication demonstrating that M. tuberculosis can utilize host triacyl-
glycerols to accumulate lipid droplets (27), our finding suggests
that bacilli have greater access to lipids in macrophages within the
in vitro LTBI granuloma environment which could impact their
growth rate and lipid metabolism as discussed below.

The ability of M. tuberculosis to survive within human granu-
lomas requires a specific transcriptional signature with the coor-
dinated expression of numerous bacterial determinants, includ-
ing metabolism genes, persistence genes, and virulence genes
among others (55). The identification of the M. tuberculosis tran-
scriptome within human granulomas is of particular interest, as it
will allow the development of new therapeutic strategies that tar-
get M. tuberculosis factors highly expressed within these struc-
tures. Several large-scale studies profiling the mycobacterial tran-
scriptome in in vitro and in vivo models have been performed
(55–58). However, none have focused on M. tuberculosis gene ex-
pression profiling within the early stages of human granuloma
development or the importance of the host immune response.
Human biopsy specimens from active TB patients give a static,
typically late-stage view of this process and may or may not be
pertinent.

In this study, we were specifically interested in determining
the expression of several genes encoding enzymes for major
M. tuberculosis cell wall mannosylated lipoglycans, including
phosphatidyl-myo-inositol mannosides (PIMs), lipomannan
(LM), and mannose-capped LAM (ManLAM), within the human
in vitro granuloma model given their importance in pathogenesis
(35). PIMs, LM, and ManLAM are synthesized via specific man-
nosyltransferases that use the donors GDP-mannose and
polyprenol-phosphate mannose (PPM) (59). The putative genes
that build these donors in M. tuberculosis include manA (an
isomerase) (60), manB, pmmB, and mrsA (a phosphomannomu-
tase) (61), manC (a GDP-mannose pyrophosphorylase) (62), and
Ppm, ppgS, and Rv3779 (polyprenol-phosphate mannose syn-
thase) (59, 63, 64). Studies have shown that mannose biosynthesis
plays a pivotal role in cell wall synthesis, protein glycosylation
(60), and mannosylation of phospholipids and is essential for vi-
ability of mycobacteria in the host (65). Since our results indicate
that several genes involved in the mannose donor and LAM bio-
synthesis pathways are upregulated in granuloma-like structures
from LTBI individuals compared to naive individuals, we specu-
late that one of the survival strategies M. tuberculosis uses in this
“immune pressured” environment is to more heavily decorate its
cell wall with mannosylated lipoglycans.

We also examined the transcriptional response of M. tubercu-
losis genes predicted to be involved in the stress encountered dur-
ing infection with a specific focus on fatty acid degradation and
utilization, glycolysis, and the Krebs cycle. During persistence, M.
tuberculosis shows a metabolic shift in which bacterial glycolysis is
decreased and glyoxylate shunt activity is upregulated, allowing
the bacteria to use fatty acids as a carbon and energy source when
the availability of primary carbon sources is limited. icl (encoding
isocytrate lyase) was one of the first M. tuberculosis genes shown to
be required for persistency in the TB murine model (66), and the
encoded enzyme is the initial enzyme in the glyoxylate shunt.
Genes involved in fatty acid utilization (glyoxylate shunt, icl; glu-
coneogenesis, pckA) are required for growth and persistence in
vivo (43–47). Our results demonstrate that as early as 7 days
postinfection during granuloma development in LTBI individu-
als, M. tuberculosis shifts metabolically to upregulate expression of
genes involved in the Krebs cycle, fatty acid degradation, glyoxy-
late shunt, and gluconeogenesis and to downregulate expression
of genes involved in glycolysis. This trend is opposite that seen in
the granulomas from naive individuals. Thus, we provide evi-
dence that host immune responses can dictate differences in nu-
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trient and carbon source availability within the granuloma envi-
ronment during the earliest stages of granuloma development
which may impact subsequent events during latency and reactiva-
tion. Our data suggest that, during LTBI, M. tuberculosis’s shift to
lipid metabolic pathways positions it well to access the increased
LBs seen in macrophages within the granulomas. We are begin-
ning a more comprehensive study involving whole-transcriptome
sequencing analysis of M. tuberculosis isolated from in vitro gran-
ulomas, comparing LTBI and naive individuals. Ultimately, it will
be critical to more carefully assess the structures of these complex
molecules within the granulomas using newer, more sensitive bio-
chemical techniques, although this will be challenging.

The host-pathogen interplay during infection with M. tubercu-
losis is incredibly complex and, despite accelerating progress in
research, remains poorly understood, particularly with regard to
the human processes involved. At the heart of these complex in-
teractions is the granuloma, the hallmark pathology of TB but also
of other diseases, such as Crohn’s disease, leprosy, and sarcoidosis
to name a few (67–70). Our report characterizes an in vitro gran-
uloma research model that we reason more accurately represents
the complex interactions that take place inside human TB gran-
ulomas. Clinical correlations between this model and biopsy
studies in humans and/or nonhuman primates will be impor-
tant to pursue in parallel in future work. The development of a
“real-time,” tractable in vitro granuloma model will allow re-
searchers to explore genetic and immunologic variables con-
tributing to TB immunopathogenesis, including the metabolic
state of mycobacteria contained inside human granulomas. In
doing so, our understanding of the pathophysiology of the hu-
man M. tuberculosis granulomatous response will be greatly
improved, thus enabling new ideas for biomarkers, therapy,
and vaccine development.

MATERIALS AND METHODS
Chemicals, reagents, and bacterial strains. All chemicals used were from
Sigma-Aldrich (St. Louis, Mo), unless otherwise specified, and were of the
highest purity available. Dulbecco’s phosphate-buffered saline (PBS) (no
Ca2�, no Mg2�) and RPMI 1640 with L-glutamine were purchased from
Invitrogen Life Technologies (Carlsbad, CA). HyClone Standard heat-
inactivated fetal bovine serum (hi-FBS) was purchased from Thermo
Fisher Scientific (Waltham, MA).

Lyophilized M. tuberculosis H37Rv (ATCC 25618) was obtained from
the American Tissue Culture Collection (Manassas, VA), reconstituted,
and used as described previously (71). For each experiment, aliquots of M.
tuberculosis frozen stocks were plated on Difco Mycobacteria 7H11 agar
plates (BD/Difco) with 0.5% glycerol and 5% Middlebrook oleic acid-
albumin-dextrose-catalase (OADC) enrichment and bacteria were grown
for 9 to 14 days at 37°C in 5% CO2. M. tuberculosis Rv-lux strain was
created by introducing the luciferase-expressing plasmid construct
pmv306hsp � Lux (kindly provided by Brian Robertson of London Im-
perial College) (72) into M. tuberculosis H37Rv. The M. tuberculosis Rv-lux
strain generated contains the entire bacterial Lux operon cloned in a my-
cobacterial integrative expression vector.

Single-cell suspensions of each M. tuberculosis strain were prepared as
we previously described (71). Briefly, bacteria were scraped from agar
plates, suspended in cell culture media, briefly (five 1-s pulses) subjected
to vortex mixing with two glass beads (3-mm diameter), and allowed to
settle for 30 min. The upper bacterial suspension (devoid of clumps) was
then transferred to a second tube and let rest for an additional 5 min to
obtain the final single-cell suspension. Bacterial concentrations were de-
termined by counting using a Petroff-Hausser chamber and subsequent
plating for CFU determinations. The concentration of bacteria was 1 �

108 to 2 � 108 bacteria/ml, and the degree of clumping was �10%. Bac-
teria prepared in this fashion are �90% viable by CFU assay.

Ethics statement. Human blood samples were collected and processed
from otherwise healthy LTBI and uninfected individuals following signed
informed consent using an approved institutional review board (IRB)
protocol. Subjects were limited to healthy adults (18 to 45 years of age),
and both genders were included without discrimination with respect to
race or ethnicity (see demographics in Table S1 in the supplemental ma-
terial). Individuals with LTBI had had a positive test result for M. tuber-
culosis latent infection by the Mantoux screening test and/or interferon-�
release assay (IGRA) within the previous 12 months.

PBMC isolation from human blood and granuloma-like structure
formation. PBMCs were separated on a Ficoll-Paque Plus (GE Health-
care) cushion, retrieved, and cultured in RPMI 1640 medium containing
10% autologous serum in 100-by-15-mm or 24-well tissue culture dishes
at 37°C in a 5% CO2 atmosphere (33). A total of 2 � 106 PBMCs/ml
(containing approximately 2 � 105 monocytes), freshly isolated as de-
scribed above, were immediately infected with M. tuberculosis at a MOI of
1:1 in the presence of 10% autologous serum and incubated for up to
12 days, during which time granulomas were developed and studied. Me-
dia and serum were replenished every 4 days. Use of autologous serum
allowed for retention of the undefined characteristics that were unique to
each individual.

Measuring in vitro granuloma-like formation. The stage of granu-
loma formation was determined semiquantitatively daily (for 12 days in
total) for each experimental group using the following approach. Each
sample was assessed by light microscopy (Olympus IX71 DP71 micro-
scope digital camera). At least 15 separate high-power fields per sample
were evaluated, and at least 3 replicates were used to establish a scoring
index. The score was calculated as the mean of the sum of granuloma
scores for each sample. The scoring system is described in Fig. S1 in the
supplemental material and is based on published literature and estab-
lished models (16, 19, 20), where there is a progressive increase in the size
and specific cell distribution of granulomas.

M. tuberculosis intracellular growth. To assess intracellular bacterial
growth, three different approaches were used. (i) For CFU assays, infected
granuloma-like structures were lysed at different time periods from 0 to
9 days postinfection, as described previously (73). Lysates were serially
diluted, and several dilutions for each group were plated on Middlebrook
7H11 agar plates and incubated at 37°C for determining CFU at 21 days
(73). (ii) For RLU assays, M. tuberculosis Rv-lux-infected granuloma-like
structures were lysed as described above at different time periods from 0 to
9 days postinfection. Lysate (500 �l) from each sample was dispensed in a
12-mm-by-50-mm polystyrene tube and read in a single-tube Sirius lu-
minometer (Berthold). Values are expressed in RLUs. (iii) Acid-fast stain-
ing was performed on infected granuloma-like structures using a Myco-
bacteria fluorescent stain kit (Fluka Analytical/Sigma-Aldrich). Briefly,
granulomas were formed on glass coverslips in 24-well tissue culture
plates and fixed with 4% paraformaldehyde for 20 min, and bacteria were
stained with 0.3% fluorescent auramine-O (in a 3% phenol solution),
incubated in the dark for 15 min, washed three times with distilled water,
and treated with decolorizing solution for 2 min. Then, coverslips were
washed three times with distilled water and 0.1 �g/ml of DAPI DNA stain
(4=,6-diamidino-2-phenylindole; Molecular Probes, Carlsbad, CA)–PBS
was added for 5 min. Finally, the coverslips were washed three times with
distilled water and mounted on glass slides using ProLong Gold Antifade
(Invitrogen Life Technologies, Carlsbad, CA).

Analysis of cell surface antigens by microscopy. Granuloma-like
structures were formed on glass coverslips in 24-well tissue culture plates.
Cells were fixed with 4% paraformaldehyde for 20 min and washed three
times with PBS. When permeabilization was required, cells were treated
with methanol for 5 min and washed three times with PBS. Finally, cells
were incubated with confocal buffer (5 mg/ml bovine serum albumin
[BSA]–10% hi-FBS–PBS) overnight at 4°C. For fluorescence microscopy
analysis, confocal buffer was carefully removed and coverslips were
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washed three times with distilled water. Mouse monoclonal antibody
(H5A4) against CD11b was obtained from the Developmental Studies
Hybridoma Bank (The University of Iowa, Iowa City, IA). Mouse mono-
clonal antibody (UCHT1) against CD3 was obtained from BioLegend
(BioLegend Inc., San Diego, CA). Rabbit monoclonal antibody
(EPR7276) against CD4 was obtained from Abcam (Cambridge, MA).
Goat polyclonal antibody (C-19) against CD8 and rabbit polyclonal anti-
body (H-300) against CD19 were obtained from Santa Cruz (Santa Cruz
Biotechnology Inc., Dallas, TX). Briefly, cells were blocked with 5% goat
serum– 0.5% BSA–PBS for 1 h, incubated with CD11b antibody for 3 h,
washed 3 times with PBS, and incubated with an anti-mouse AF488 (In-
vitrogen) secondary antibody for 1 h, all at room temperature. AF647
anti-human CD3 antibody was incubated for 30 min at 37°C. The nuclei
were stained with 0.1 �g/ml DAPI DNA stain (Molecular Probes, Carls-
bad, CA). Finally, the coverslips were washed three times with distilled
water and mounted on glass slides using ProLong Gold Antifade (Invit-
rogen Life Technologies, Carlsbad, CA).

Measurement of cell proliferation. (i) Cell counts. To count the total
number of cells present per well, a cell enumeration assay was performed
as previously described (34, 74). Briefly, granuloma-like structures were
developed as described above. At different time points, cells were washed
once with PBS and lysed with 1% cetavlon– 0.1 M citric acid– 0.05% naph-
thol blue black (pH 2.2) for 15 min at room temperature. Cell lysates were
loaded on a hemocytometer, and stained nuclei representing cells were
enumerated using phase-contrast microscopy.

(ii) EdU assay. Granuloma-like structures were formed on glass cov-
erslips in 24-well tissue culture plates. Cell proliferation was measured
using a Click-iT EdU Alexa Fluor 488 imaging kit (Invitrogen Life Tech-
nologies, Carlsbad, CA) following the instructions of the manufacturer.
Cells were treated with 10-�M EdU component A for 36 h. Media was
carefully removed, and cells were fixed with 4% paraformaldehyde for
20 min. Cells were washed with 3% BSA–PBS and permeabilized with
0.5% Triton X-100 –PBS for 20 min. Cells were washed twice with 3%
BSA–PBS, and the Click-iT reaction cocktail was added to each well
and incubated for 30 min at room temperature. Finally, cells were
washed with 3% BSA–PBS and then with PBS and mounted on glass
slides using ProLong Gold Antifade (Invitrogen Life Technologies,
Carlsbad, CA).

Cytokine ELISAs. The cytokine content of cell culture supernatants
was measured by ELISA (R&D Systems, Minneapolis, MN) following the
instructions of the manufacturer. The following kits were used: for IFN-�,
DY285; for TNF, DY210; for IL-12p40, DY1240; for IL-2, DY202; for
IL-10, DY217B; for IL-4, DY204; and for IL-13, DY213.

Cytokine gene expression studies using TaqMan qRT-PCR. Host
cellular RNA was isolated using TRIzol reagent (Invitrogen Life Technol-
ogies, Carlsbad, CA) following the instructions of the manufacturer and
established methods (75). RNA purity and quantity were analyzed using a
NanoDrop 1000 spectrophotometer (Thermo Scientific). Total RNA
(100 ng) was reverse transcribed to cDNA by using SuperScript II reverse
transcriptase (Invitrogen Life Technologies, Carlsbad, CA) following the
recommendations of the manufacturer and established methods (75).
Quantitative real-time PCR (qRT-PCR) was performed using human
(IFN-�, TNF, IL-12, IL-10, IL-4, and IL-13) TaqMan gene expression
systems (Applied Biosystems). Negative controls included no-reverse
transcriptase and no-template reactions. All samples were run in triplicate
using a cfx96 real-time system (Bio-Rad) and analyzed by the threshold
cycle (2���CT) method (76). Expression of each gene was normalized to
�-actin as a housekeeping gene (�CT).

Lipid body analysis. Granuloma-like structures were formed on glass
coverslips in 24-well tissue culture plates. Cells were stained with Nile red
dye (Sigma-Aldrich, St. Louis, Mo), incubated in the dark for 15 min, and
washed three times with distilled water. Counterstaining was performed
with 0.1% potassium permanganate, and coverslips were washed three
times with distilled water. Finally, 0.1 �g/ml of DAPI DNA stain (Molec-
ular Probes, Carlsbad, CA)–PBS was added for 5 min. The coverslips were

then washed three times with distilled water and mounted on glass slides
using ProLong Gold Antifade (Invitrogen, Carlsbad, CA). Each sample
was assessed by confocal microscopy (Olympus Fluoview 10i). At least 15
separate high-power fields per sample were evaluated, and at least 3 rep-
licates were analyzed.

Gene expression analysis of M. tuberculosis within granuloma-like
structures. (i) RNA isolation. Isolation of bacterial RNA from within
granuloma-like structures was achieved by using guanidine thiocyanate
(GTC)-based differential lysis solution as previously published (77) and
established methods using lysing matrix B tubes containing 0.1-mm-
diameter silica beads and a FastPrep 24 instrument (both from MPBio)
(39). Total RNA was purified by using an RNeasy Mini Column kit and
treated with DNase I (both from Qiagen, Valencia, CA) to avoid genomic
DNA contamination. RNA purity and quantity were analyzed by using a
NanoDrop 1000 spectrophotometer (Thermo Scientific).

(ii) qRT-PCR. Mycobacterial RNA was reverse transcribed to cDNA
using SuperScript II reverse transcriptase, 10 mM deoxynucleoside
triphosphate (dNTP) mix, 3 �g of random hexamers, and 10 U RNase
inhibitor (all from Invitrogen, Carlsbad, CA) following the recommenda-
tions of the manufacturer and established methods (39). Control reac-
tions were performed in parallel without reverse transcriptase to verify the
absence of genomic DNA contamination. qRT-PCR was performed on
the resulting cDNA using 300 nM custom-made primers with iQ SYBR
green master mix (Bio-Rad) and 4% dimethyl sulfoxide (DMSO). All
samples were run in triplicate using a cfx96 real-time system (Bio-Rad)
and analyzed by the 2���CT method (76). The mycobacterial rpoB house-
keeping gene was used as the reference gene to normalize the CT values of
the target genes, and input bacteria were used as the calibrator. The data
presented are cumulative values (� standard errors of the means [SEM]).
Bacterial gene-specific custom primers are listed in Table S2 in the sup-
plemental material.

Statistics. All experiments were performed at least 3 times in triplicate.
Twenty-eight adult individuals (18 to 45 years of age), comprising 14
otherwise healthy LTBI and 14 uninfected individuals, including both
genders without discrimination of race or ethnicity (see demographics
in Table S1 in the supplemental material), were recruited. For cytokine
ELISAs and qRT-PCR analyses, the magnitudes of response from each
independent experiment differed among the donors; however, the pat-
tern of experimental results was the same from donor to donor. To
account for this variability, we normalized the data to an internal
control (uninfected cells) in each experiment. A t test was used for
comparing the means of the results for two groups, and one-way anal-
ysis of variance (ANOVA) followed by a Bonferroni posttest was used
to test the significance of group differences between more than two
groups. Statistical significance was defined as follows: *, P � 0.05, **;
P � 0.01; and ***, P � 0.001.
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