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Effect of edge pruning on structural 
controllability and observability of 
complex networks
Simachew Abebe Mengiste1,2, Ad Aertsen1 & Arvind Kumar1,2

Controllability and observability of complex systems are vital concepts in many fields of science. 
The network structure of the system plays a crucial role in determining its controllability and 
observability. Because most naturally occurring complex systems show dynamic changes in their 
network connectivity, it is important to understand how perturbations in the connectivity affect the 
controllability of the system. To this end, we studied the control structure of different types of artificial, 
social and biological neuronal networks (BNN) as their connections were progressively pruned using 
four different pruning strategies. We show that the BNNs are more similar to scale-free networks 
than to small-world networks, when comparing the robustness of their control structure to structural 
perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness 
of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control 
structures to different pruning methods could help design strategies to destroy the control structures of 
dangerous networks such as epidemic networks. On the other hand, it could help make useful networks 
more resistant to edge attacks.

Graphs are a powerful conceptual framework to understand the behaviour of complex systems that involve a 
large number of interactions among their constituents1–3. In most chemical, biological, social and to some extent 
in engineering systems (e.g. electrical power grid), the intrinsic dynamics of the nodes is largely fixed, but the 
network structure (node count and edges between nodes) continuously changes due to edge failures, evolution-
ary modifications and activity-dependent short- and long-term plasticity mechanisms. Thus, it is reasonable to 
assume that part of the complexity of a system arises due to the structural perturbations in the underlying network. 
Interestingly, many graph descriptors may remain unaffected by structural perturbations, such as changes in the 
counts of nodes, edges, or the degree of nodes. That is, the invariance of some graph descriptors (e.g. shortest 
path length, global efficiency2) to structural perturbations could be a reason underlying the robustness and error 
tolerance of such complex systems4.

Therefore, there is a growing interest in relating graph properties to the system dynamics. Indeed, several 
graph theoretic descriptors of a complex system are correlated with some important dynamical properties of the 
system3,5–10. Despite this correlation between structure and dynamics, individual graph descriptors are in many 
cases insufficient to relate the structure of the graph to the system dynamics. This was most clearly observed in a 
recent attempt to relate network structure to the dynamics and stimulus response of a network of biological neu-
rons10,11. One possible reason for this could be that a graph provides a static description of the system, in which 
the dynamics of the nodes is often ignored or simplified.

For practical applications, it is important to be able to steer a dynamical system to a desired state by forcing it 
externally (i.e. controllability) and to reconstruct the past dynamical trajectory from the current state of the system 
(i.e. observability). Thus, in a way controllability and observability define our understanding of a dynamical system.

Kalman12 showed that a full rank of the controllability and observability matrices ensures the controllability 
and observability of a system. Lin13 extended the notion of controllability to structural controllability and derived 
conditions that ensure the controllability of a network based only on the knowledge of connections without explicit 
information regarding their weights. Importantly, a minimum set of nodes, called controls, the stimulation of which 
would ensure full controllability of the system, can be obtained from the graph structure14–17. Similarly, the smallest 
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possible set of nodes required to observe the entire system, called sensors, can also be found from the graph. Thus, 
controls (or sensors) may provide a better description of the graph, as they are more closely related to key aspect 
of the system dynamics, than other graph properties.

Here, we studied the effect of structural perturbations in complex networks on their control structure. While 
the robustness of the structural properties of complex networks is well established, it is not clear how their control-
lability changes upon edge deletion. Therefore, we investigated the robustness of control count to deletion of edges 
with or without fragmenting the network. First, we proved the equality of the numbers of controls and sensors 
for a given network. Thus our analysis of controls extend to sensors as well. Next, we developed new edge deletion 
strategies and analyse their performance in different types of networks. Specifically, we compared the effectiveness 
of these pruning strategies in affecting the numbers of controls or sensors in various types of random networks 
(such as Erdos-Renyi, small world, scale-free), social networks and biological neural networks – BNNs (large-scale 
connectivity of the macaque and mouse brains and the neuronal network in C. elegans). By comparing the changes 
in control count for different types of complex networks and BNNs, we show that in terms of their controllability, 
BNNs resemble scale-free better than small-world models. Finally, we introduced the notion of the cardinality 
curve of a complex network, not only to infer the performance of a pruning strategy, but also to extract important 
structural properties of the network and to compare different network structures.

Methods
Kalman controllability. Consider an n-dimensional linear system:
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where x (dimensions n ×  1) is the state vector of the system, A (dimensions n ×  n) is the adjacency or transfer 
matrix of the system, B (dimensions n ×  m) is the input projection matrix, u (dimensions 1 ×  m) is the input vector, 
y (dimensions k ×  1) is the output vector of the system, C (dimensions k ×  n) is the readout interaction matrix of 
the system and D (dimensions k ×  m) is the contribution of input u to the readout. m ≤  n is the number of inputs 
and k ≤  n is the number of readouts of the system.

The Kalman controllability criterion states that a linear system is controllable if the controllability matrix, 
= , , , …, −C B AB A B A B[ ]2 n 1  (dimensions n ×  nm), has full rank12. Similarly, the system is observable if the rank 

of the observability matrix, = ′, ′ ′, …, ( ′) ′−O C A C A C[ ]n 1  (dimensions n ×  nk), is n. The prime mark (′ ) denotes 
the transpose of the referred matrix. From these full rank conditions, we can ensure the observability and control-
lability of the system by appropriately choosing B and C.

Structural controllability. The two matrices A =  (ai,j) and = ( ),A ai j  are called structurally equivalent if they 
have the same pattern of zero entries and non-zero entries. That is,
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A linear system is structurally controllable if there exists a controllable linear system with structurally equivalent 
connectivity and input matrices. Inaccessibility and dilation are two key properties of the network structure that 
determine the structural controllability of the system13 (cf. Fig. 1a). Inaccessibility occurs when a node cannot 
be reached from any input node. Dilation occurs when a parent node is driven to influence two or more children 
nodes at a time. To formally recall its concept on a linear system (interaction and input matrices (A, B)), we can 
consider a subset S of the system nodes and use the term vertex in-cover of S, denoted by T(S), to refer to the set of 
all nodes in A (from fellow nodes) or in B (from external input nodes) that are in-neighbours to at least a node in 
S. A dilation is said to occur in a system if there exists a larger subset S of system nodes than its vertex in-cover (i.e. 
n(S) >  n(T(S))). A network without any dilation and inaccessibility is structurally controllable. One must there-
fore preclude dilation and inaccessibility by providing appropriate input to a set of controls in order to establish 
a control structure in a network.

We use the term controls to describe the smallest set of inputs, {ui(t)} in u(t) =  (u1(t), …, um(t))′  (eq. 1), that 
ensure the controllability of a linear system. The number of controls is denoted by nCN, which is also the number 
of control nodes or nodes in the system that are directly connected to the controls. The term control structure 
refers to a system with controls. Similarly, the sensors refer to the smallest set of outputs, {yi(t)} in y(t) =  (y1(t), …, 
yk(t))′  (eq. 1), that ensure the observability of a linear system. The number of sensors is also the number of sensor 
nodes or nodes in the system that are directly monitored by the sensors. The term observable structure refers to a 
system with a set of sensors.

Maximum-matching extraction algorithm. Because there is no analytical expression available to calculate 
the number of control nodes, we will use the concept of maximum-matching (MM) proposed by Liu et al.14. A 
matching set in a digraph is a set of edges that do not share their source and terminal nodes. In other words, if two 
edges (a, b) and (c, d) belong to a matching set M of a digraph, a ≠ c and b ≠ d. A matching set is called maximal if 
it can allow no other edge from the network. It is called maximum if it is maximal and with the maximum possible 
cardinality18,19. The nodes which are not targets of any edge in a matching set constitute a set of driving nodes 
for the controllability of the system. A similar set of nodes that are associated to a maximum matching (MM) set 
recruit a set of controls14, a set of driving nodes with the minimum possible number.

Here, we used Ford-Fulkerson’s maximum flow algorithm20 to extract MM sets. First, all nodes with non-zero 
out-degree are collected in one pool, while all nodes with non-zero in-degree are collected in another pool, such 
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that a directed bipartite graph could be formed from the first pool to the second. Therefore, a node with out- and 
in-neighbours belongs simultaneously to the two pools. Secondly, a global source node and a global target node 
are added outside the pools, such that the source node is connected to all nodes in the first pool and all nodes in 
the second pool are connected to the target node. Every edge is assigned a unit weight to compute maximum flow. 
The selected edges in a maximum flow correspond to an MM set (cf. Fig. 1b). As a result of the multiple choice 
of edges of many networks for the maximum flow, there are different options of MM sets and hence controls (cf. 
Supplementary Fig. S1).

Models of complex networks. To investigate the performance of the pruning strategies, we used bio-
logical, social and artificial random networks with different topologies. The biological networks includes the 
long-distance regional connectivity of the macaque brain21, the mesoscale connectivity map of the mouse brain22 
and the neuronal network connectivity in C. elegans23. We used Google+ 24, Facebook25, Airport26, Amazon27, 
Peer-to-Peer28,29, EU-email29 and Wikipedia-vote30 networks in the category of social and related networks for 
our demonstration. The artificial networks included random31, small-world23 and scale-free networks (see the 
Supplementary Information: Network generation procedures). To create scale-free networks, three models were 
used; namely, Barabási-Albert, duplication divergence and local attachment models32–36. Table 1 summarizes the 
basic statistical features of the networks.

Edge pruning strategies. We used conditioned and unconditioned pruning methods. In conditioned pruning 
approach, a pruning strategy takes care of keeping the network intact. That is, a pruning strategy will not delete 
an edge if its deletion results in fragmentation of the network. The unconditioned pruning approach does not 
obey this additional condition and could cause multiple components at any stage of pruning. A network of size n 
will have at least n −  1 edges at the end of a conditioned exhaustive pruning strategy, where as it will have no edge 
after an unconditioned pruning strategy. Under each of these two categories, we considered the following four 
exhaustive pruning strategies.

Random pruning. This model selects an edge randomly and removes it from the network (in unconditioned case) 
unless it fragments the network (in conditioned case). The deletion was performed repeatedly until every edge 
was deleted. This is the most intuitive and simple pruning strategy and full network connectivity is not necessary 
to implement it as edges are selected at random for deletion.

Out-pruning. In this pruning model, we started by randomly selecting a node and systematically removed its 
outgoing projections. Once the outgoing edges of the chosen node were exhausted, another node was picked 
randomly to repeat the pruning procedure. Similar to random pruning, the trimming procedure was performed 

Figure 1. Schematic description of dilation, inaccessibility and maximum matching. Red arrows indicate 
the edges that constitute a maximum matching set. Green arrows indicate the external control input. (a) 
Dilation and inaccessibility problems are independent of one another. (a left) Example of dilation: an input at 
n3 could reach every node, but branching causes dilation. (a right) Example of inaccessibility: an input from n4 
could not reach any other node however, there is no dilation. (b) Maximum flow, shown at (b right), is adapted 
to extract maximum matching set of a simple example (b left). The network is represented as a bipartite graph so 
that maximum flow from a global source node s to global target node t identifies a maximum matching set. Note 
that nodes s and t are not part of the original network.
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until no edge is remained in the network (unconditioned) or until a last spanning digraph (conditioned). In this 
procedure, there is no special significance to the pruning of outgoing edges, and similar results would be obtained 
if pruning were performed based on the incoming edges. Like random pruning, we do not need to know the full 
connectivity of the network because pruning is performed on a node by node basis.

Ordered maximum matching (ordered-MM) pruning. This pruning method requires the knowledge of the full 
network connectivity. Here, we first ordered the edges E of the network after exhaustive extraction of maximum 
matching sets. The first maximum matching (MM) set takes all edges into account, while the subsequent ones are 
maximum matching sets of the remaining edges, excluding the already extracted sets.
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−
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Hence, |Ei| ≥  |Ej| if i <  j. Here, A ≤  MM B denotes ‘A is a maximum matching set of B’. Clearly, E1, …, El form a par-
tition of the set of all edges in the network. Each edge in the network belongs to some block, Ek, in the partition. 
The relative rank, rel. rank, of an edge is then defined as the cardinality of the block it belongs to. For edge e ∈  E,

. ( ) = ⇒ ∈ = , . ( )rel rank e r e E E r E Eand for some block of 4k k k

a. Conditioned pruning

Fig. Network nE nV n(d < 3) nCr nCN0

σ±( )⌈ ⌉Mean nCNf

ord. out. rnd. rev.

W-S 

2.a. Small-world, p =  2% 3,000 250 0 0 1 78 ±  3.5 207 ±  3.1 100 ±  3.6 22 ±  3.1

2.b. Watts-Strogatz, p =  10% 3,000 250 0 0 1 123 ±  3.1 198 ±  2.6 102 ±  4.3 21 ±  3.5

2.c. Erdös-Rényi, p =  100% 3,000 250 0 0 1 155 ±  4.4 192 ±  3.3 105 ±  4.8 5 ±  1.4

SF 

2.d. Local attachement 3,250 250 0 35 24 188 ±  3.0 180 ±  3.5 122 ±  3.9 24 ±  0.3

2.e. Barabási-Albert 3,081 250 0 28 39 205 ±  3.2 172 ±  2.9 136 ±  4.2 39 ±  0.0

2.f. Duplication divergence 3,151 250 1 0 146 210 ±  2.6 216 ±  4.1 166 ±  2.9 146 ±  0.0

BNN 

2.j. Macaque21 6,602 360 26 25 39 285 ±  3.3 273 ±  6.5 191 ±  4.5 51 ±  2.9

2.k. Mouse22 4,208 213 0 6 4 175 ±  3.3 172 ±  4.6 102 ±  3.5 20 ±  2.7

2.l. C elegans23 2,345 297 25 24 49 243 ±  3.2 208 ±  5.0 160 ±  4.0 58 ±  2.2

WS and SF 
(N, ρ) 

S4.a. Random, n =  250 (2.c)

S4.b. Random, n =  500 12,584 500 0 0 1 335 ±  5.2 429 ±  3.6 208 ±  4.9 6 ±  2.1

S4.c. Random, n =  1000 50,082 1,000 0 0 1 699 ±  5.6 913 ±  4.1 416 ±  8.5 7 ±  2.3

S4.d. Random, ρ =  2% 1,336 250 3 7 3 147 ±  3.5 156 ±  4.1 106 ±  4.3 7 ±  1.9

S4.e. Random, ρ =  5% (2.c)

S4.f. Random, ρ =  10% 6,301 250 0 0 1 163 ±  3.5 215 ±  2.3 104 ±  3.4 5 ±  1.6

S4.g. Scale-free, ρ =  1% 750 250 0 34 74 157 ±  2.9 129 ±  3.1 121 ±  4.4 74 ±  0.1

S4.h. Scale-free, ρ =  2% 1,250 250 0 35 48 171 ±  2.7 147 ±  3.5 121 ±  4.2 48 ±  0.1

S4.i. Scale-free, ρ =  5% (2.d)

b. Unconditioned pruning

ePDI (in %)

Fig. Network nE nV n(d < 3) nCN0 ord. out. rnd. rev.

Social 

4, 2.g. Google + 24 1,506,896 211,187 121,867 51,680 78.50 42.52 31.51 5.29

4 Amazon27 1,234,877 262,111 12,469 8,458 48.78 49.06 27.94 10.27

4 EU-email29 420,045 265,214 248,706 245,791 92.78 43.08 40.82 2.32

4 Peer-to-peer28,29 147,892 62,586 38,520 46,227 23.09 49.70 13.63 5.53

4 Wikipedia vote30 103,689 7,115 2,960 4,736 60.76 23.11 9.03 1.16

4, 2.h. Facebook25 88,234 4,039 256 568 62.67 47.25 16.35 1.97

4, 2.i. Airport26 30,501 2,939 1,323 872 73.25 42.49 26.81 3.39

Table 1.  Some statistical quantities of the main networks used. The table summarises some graph-theoretical 
properties of the main networks that were investigated in conditioned (a) and unconditioned (b) pruning cases. 
p is the randomising probability of the connectivity of a ring lattice to get the desired Watts-Strogatz network. ρ 
and n are network density and size. nE and nV denote the number of edges and nodes in the network. n(d <  3) is 
the number of nodes in the network with both of their out- and in-degrees less than 3. nCN0 and nCNf represent 
the number of controls before and after exhaustive pruning until a spanning directed tree (STD). σ represents 
the corresponding standard deviation for the 50 realizations. ePDI is an exhaustive pruning damage index. 
⌈x⌉ is the smallest integer that is greater than or equal to x. The columns: ord., out., rnd. and rev. represent 
ordered-MM, out, random and resilient pruning strategies as in the Figure Legends (e.g. Figs 2 and 4). Because 
any unconditioned exhaustive pruning strategies finally result in no edge in the network, nCNf =  nV.
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The deletion was performed in decreasing order of relative rank, i.e. all edges belonging to E1 were the first to be 
trimmed in any order. The procedure was repeated for all partitions according to the order of their indices.

We based this pruning strategy on the procedure we used to extract the controls. To understand, we need to 
recall the notion of cactus as proposed by Lin13. A cactus is a connected digraph consisting of non-overlapping 
buds (directed cycles) and a stem (simple directed path) such that a node in each bud has an incoming edge (called 
distinguished edge) from a distinct node on the stem. That is, two distinguished edges cannot share the same node 
in a cactus. Because a stem is a budless cactus, an isolated node in a network can be included as a degenerate cactus 
by its incoming edge from a control node. To design a control structure with minimum number of inputs, one 
needs to find some minimum spanning cacti (MSC)13 - that is, the smallest possible cacti that together span the 
network. The number of the MSC determines the number of controls. Moreover, all the edges of the cacti excluding 
the distinguished edges form the corresponding MM set to the control nodes, which is equivalent to E1 (eq. 3). 
That is, Ei contains all the edges in all the distinct directed cycles and simple paths in the set of MSCs at the ith stage 
of network pruning (after the edges in ∪ ∪… −E Ei1 1 were removed). Thus, ordered-MM pruning could be 
regarded as an MSC destructor, because it targets edges of high relative rank, thereby forming an extreme case of 
pruning.

Resilient pruning. This pruning strategy is aimed at keeping the controllability profile of the network resilient 
to edge deletion. To this end, we designed three different methods. The first one was similar to the ordered-MM 
pruning but in the reverse order, i.e. in a partition {E1, E2, …, El} of E, where |Ei| ≥  |Ej|wheneveri <  j, the order of 
deletion was performed from El to E1. That is, the edges that were part of the maximum matching set corresponding 
to the original network were pruned only after all other edges were systematically removed. Thus, by definition 
there was no change in the control structure of the network almost for the entire deletion. The supplementary 
information includes a brief description of the three different ways of resilient pruning implementation (see the 
Supplementary Information: Alternative implementations of resilient pruning).

Both ordered-MM pruning and resilient pruning required ordering all edges based on their relative rank (cf. 
eq. 4). According to the partitioning of edges as described in eq. 3, the cardinality of a maximum matching set 
determines the relative rank of the included edges, i.e. the higher the cardinality, the higher the rank order of 
the contained edges. While ordered-MM pruning was performed in decreasing order of relative rank, resilient 
pruning was performed in increasing order. Random pruning and out-pruning, however, required no knowledge 
of the relative rank of network edges. By design, resilient pruning is an extreme case in which a network would 
be sparsened without any change in the control node set, except when deleting the final few edges. By contrast, 
ordered-MM pruning is another extreme strategy that should result in a maximal change in the driver node count.

Because the maximum matching set is not unique (cf. Supplementary Fig. S1) and depends on the initial con-
ditions, we estimate the change in the controllability configuration for 50 different realizations of each pruning 
strategy and for each network type. We mainly performed exhaustive pruning. For each edge deletion, a set of 
controls was extracted m times corresponding to each deletion and their number, nCN, was stored. Therefore, a 
single realization extracts controls m times, corresponding to each deletion. To enhance random sampling, the 
network nodes were reindexed for each realization. In other words, each strategy first chose a random permutation 
matrix P to re-index the connectivity matrix A as P−1AP, such that nodes and edges could have different IDs for 
each realization.

Quantitative measures of pruning
The rate of change of control count (RC). To quantify how fast a pruning strategy changes the number of controls 
nCN, we calculate the slope (RC) with respect to the fraction of deleted edges. RC counts the changes in elevation 
between the initial and final edge deletion stage of interest. The mean slope of the overall performance of a pruning 
strategy is simply the slope from the first to the last deletion.

∑δ=
∆
∆

=
−

− +
=
− +

( − − )
( )=

−R nCN
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nCN nCN
j i j i
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k i

j
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where, ∆L stands for the change in the number of edges. nCNi denotes the number of controls after the deletion 
of i edges. δ refers to the Kronecker delta function.

Pruning Damage Index (PDI). To compare the overall damage caused by any pair of pruning procedures, we 
define the pruning damage index (PDI) for a pruning strategy (ps ∈  Random, Out-, Ord–MM, Resilient), from di 
to df deletion of edges as the normalized area between the pruning curve and the baseline (i.e. the horizontal line 
of the initial control size nCN0) of the network. With ∆ d: =  df −  di +  1 and N: =  size of the network,

∑( , ) =
−
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when di =  0 and df is the number of edges in the network, PDI is referred to as the exhaustive pruning performance 
index (ePDI), to quantify the overall damage of an exhaustive pruning strategy.

Results
Here, we investigated the robustness of various complex networks and BNN to structural perturbation. Specifically, 
we estimated the control structure by the number of controls that ensured structural controllability of the system. 
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While the emphasis is on the controllability, it is directly related to the notion of ‘structural observability’ which 
allows for the reconstruction of system trajectories from a small number of sensors. We first proved that the 
numbers of controls and sensors are equal, thereby, we argue that our results are also valid for the estimation of 
sensors in a complex network.

Equality of optimal number of controls and sensors. Theorem: The numbers of controls and sensors 
required for controllability and observability of a linear system are equal.

The proof follows from the well-known theorem of controllability-observability duality. If we have a pair of 
linear systems as:
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( ) = ( ) ( )
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the duality theorem implies that the controllability grammian ( , )C A B  of the first system (eq. 7) and the observ-
ability grammian ( ′, ′)O A B  of the second system (eq. 8) are equal.

∫ τ( , ) = ′ = ( ′, ′) ( )
τ τ∞ ′C OA B e BB e d A B: : 9

A A

0

Structurally, it further reveals that the number of controls of a linear system with system matrix A is equal to the 
number of sensors of a linear system with A′  as system matrix. It is clear that the numbers of controls of the two 
systems are equal as their system matrices are transposes of each other. Therefore, the number of controls and the 
number of sensors are equal.

This result ensures that any statement made about the optimal number of controls is also valid for the optimal 
number of sensors. Moreover, the number of sensors or controls cannot be less than the number of leaf nodes or 
source nodes of the network. A leaf node or simply a leaf in a network is a node without any outgoing edge, while 
a node in a network is called a source node if it does not have any incoming edge.

Performance of the pruning strategies on complex random networks. To understand how changes 
in the network structure affect the controllability configuration of complex artificial and biological networks, we 
estimated the change in the number of controls (nCN) as we progressively pruned the edges and, thereby, sparsened 
the network. Because, structural controllability requires full accessibility13, it is expected that the number of controls 
will increase as the edges are pruned upon sparsening. However, the maximum matching of an adjacency matrix 
depends also on the probability of pair-wise connections and directed cycles of multiple nodes. In fact, complex 
networks with the same average connection probability show different controllability configurations, depending 
on the structure of the network14,32. Therefore, we estimated the control profile of several different types of complex 
artificial networks for progressive pruning of the edges.

Because there is no standard pruning strategy available, we first designed four different pruning strategies 
(see Methods). Two intentional edge-attack strategies were derived from the procedure we used to extract the 
control nodes (ordered-MM and resilient pruning). These two pruning strategies require knowledge of the full 
connectivity, both to initiate the pruning process and to calculate the controllability profile. When the full network 
connectivity is not available, pruning could be implemented by random deletion of known edges (random pruning) 
or by progressively removing projections of randomly chosen nodes (out-pruning).

We studied the effect of the four pruning strategies on complex networks with average connection probability 
of ≈ 5%. Complex networks with higher connection probability usually have very few controls14 or they show 
no change in the control structure for the first stage of edge deletion. Most complex artificial networks studied 
here showed considerable robustness to random pruning, even if nearly fifty percent of the edges were pruned 
(cf. Fig. 2a–l red traces). In random, small-world and other Watts-Strogatz complex networks with ≈ 5% or more 
average connection probability, there are many more edges which are not included in the maximum matching 
set, and the edges which are part of the maximum matching set could be replaced by other edges (see section MM 
cardinality curve). Therefore, even for up to 50% pruning (average connection probability ≈ 2.5%), the cardinality 
of a maximum matching set remained largely unaffected in these networks. However, as the networks became 
progressively sparser, the network reached a structure where the edges inside the MM set could no longer be 
replaced by other edges, resulting in a sharp increase in the number of controls (see also Supplementary Fig. S2).

While in random pruning, we randomly chose the edges to be pruned, in out-pruning, we randomly selected a 
node and progressively removed its outgoing edges. Out-pruning promoted the formation of leaves without much 
decrease in the average connection probability in the network. If the transpose was considered (‘in-pruning’), many 
sources tended to be formed. Leaves, by definition, cannot control other nodes and, therefore, increase the number 
of controls. Similarly, source nodes, without any incoming edge, are evidently part of any set of controls. Thus, the 
out-pruning strategy is very effective in increasing the control count in complex networks with different topology 
and connection density (cf. Fig. 2). In addition, the efficacy of out-pruning in increasing the control count could be 
further improved if, instead of selecting nodes at random, nodes were chosen based on their out-degree, in-degree 
or degree (cf. Supplementary Fig. S3). These results hold for both conditioned and unconditioned pruning (see 
the section Conditioned pruning).
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Figure 2. Effect of the four pruning strategies in changing the control count in different network types.  
(a) Effect of four different pruning strategies on a small-world network. The green, blue, red and cyan represent 
the effect of out-pruning (out), ordered-MM pruning (ord), random pruning (rnd), and resilient pruning(rev), 
respectively. Each of the curves shows the mean of 50 different realizations bounded by a gray region, 
representing the corresponding standard deviation. For most of them, the gray region is very small narrow to 
be visible. (b–l) Same as in panel (a) but for different types artificial, social and biological networks. The name 
of the network is mentioned on the respective panel. (a–c) Watts-Strogatz spectrum of directed networks with 
respective randomising probabilities of 0.02, 0.1 and 1, hence small-world (S-W), intermediate (W-S) and 
Erdos-Renyi (E-R) random networks. The panels (a–f), refer to artificial networks of size 250 and connection 
density of nearly 5%. (g-i) Social networks from Google+, Facebook and Airport connections. (j–l) BNNs: 
large-scale connectivity of the macaque brain, the meso-scale connectome of the mouse brain and the complete 
neuronal connectivity of C. elegans. The color descriptions of all curves is shown in panel (f) as green, blue, red 
and cyan - it represents the effect of out-pruning (out), ordered-MM pruning (ord), random pruning (rnd), and 
resilient pruning(rev), respectively.
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Different classes of complex networks show different sensitivities to the edge pruning strategies other than the 
resilient pruning. Most networks with power-law or exponential degree distribution (such as local attachment, 
Barabási-Albert) show the highest sensitivity to ordered-MM pruning, as expected (cf. Fig. 2d,e). In scale-free 
networks, ordered-MM pruning is at least as effective as the out-pruning in altering the controllability configuration 
(cf. Fig. 2f). However, in the Watts-Strogatz (WS) spectrum of directed networks, ordered-MM pruning is not the 
most severe in changing the controllability configuration of the networks (cf. Fig. 2a–c). To understand this, it is 
important to remember that small-world networks are essentially ring lattices with a small proportion of rewired 
edges. Ring lattices have giant rings or long paths, which result in multiple disjoint maximum matching sets of 
same cardinality. Continuous extraction of MM sets, therefore, gives rise to many sets of nearly equal cardinality 
and, hence, the control count does not change with ordered-MM pruning. In Erdos-Renyii networks, ordered-MM 
pruning, although performing better than in small-world networks, remains less effective than out-pruning due to 
basically the same reason, that is, the cardinalities of most MM sets are equal or show only little difference (MM 
cardinality curve).

Performance of the pruning strategies on social networks. Among real-world networks, social net-
works rapidly undergo large structural changes. Because most social networks are scale-free, we would expect 
ordered-MM pruning would be most effective in increasing the nCN. To test this, we investigated seven different 
types of social networks (see Methods). Indeed, the effect of different pruning strategies on social networks is sim-
ilar to their effect on artificially constructed scale-free networks. The Gnutella peer-to-peer network (dated August 
31 2002) is not scale-free and, therefore, out-pruning, instead of ordered-MM pruning, was the most effective in 
increasing the nCN count (cf. Table 1, Fig. 3).

Performance of the pruning strategies on BNNs. Biological neuronal networks (BNNs) form another 
class of highly dynamic networks. Activity-dependent structural plasticity, reorganization of synapses during 

Figure 3. The effect of protecting a spanning digraph from deletion. (a) Effect of the conditioned pruning 
strategies on the control node count in macroscopic connectivity of macaque brain. The white circles show five 
different network structures (spanning digraph) which could either be achieved through a specific pruning 
process (when the white circle lies on the four traces) or arbitrarily (when the white circle lies on the four 
traces). (b–f) The effect of pruning process on the original macaque brain network without affecting the chosen 
spanning digraph marked by the white circles. Note that, by preserving a specific spanning digraph, each 
pruning strategy results in same (RC eq. 5), unlike the in panel (a) where we did not care to preserve any specific 
spanning digraph.
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development and learning, and structural modification related to brain disease render the structure of BNNs highly 
dynamic37. Therefore, studying the controllability of BNNs could provide key insights into development-related 
pruning and improve our understanding how network function deteriorates upon loss of synapses in neurode-
generative diseases.

We found that in BNNs random pruning procedure results in an exponential dependence of the number of 
controls on the average degree of the network (cf. Supplementary Fig. S4). In BNNs, independent of the size of the 
network (or the species), both out-pruning and ordered-MM pruning result in similar changes in the controllability 
configuration (cf. Fig. 2g–i). This is similar to the scale-free networks and networks with exponential degree distri-
bution (compare Fig. 2d–i). That is, BNNs are more similar to scale-free networks or to networks with exponential 
degree distribution than to small-world networks in terms of their sensitivities to edge-attacks (cf. Fig. 2d–i).

Conditioned pruning. So far, the four pruning strategies were performed without any additional condition, 
so that the network could ultimately lose all its edges (cf. Fig. 2). We obtained similar results when we imposed a 
restriction on the exhaustive pruning strategies, i.e. not to fragment the networks (compare Supplementary Fig. 
S5 and Fig. 2).

The only difference between the ‘fragment’ and the ‘no fragment’ conditions was that in the former, the pruning 
process continued until the last edge in the network, whereas in the latter, pruning stopped when the network 
became a tree. That is, under the ‘no fragment’ condition, an exhaustive pruning strategy sparsened a complex 
network to one of its spanning directed trees (SDT) as its terminal structure. A spanning directed tree (SDT) of a 
network is a spanning subgraph without any cycle. Moreover, the SDTs resulting from different pruning strategies 
were different in terms of their control structure. For example, a terminal SDT of the macaque brain connectivity 
by the random pruning strategy required more controls than a terminal SDT by resilient pruning (compare the 
end points of the pruning lines in Fig. 3a or Supplementary Fig. S5).

Figure 4. Exhaustive pruning damage index (ePDI) for different complex networks. The overall damage 
indices of the four pruning strategies ordered-MM, out-, random and resilient pruning strategies (ord., out., 
rand., res.) are shown for synthetic (three scale-free (a) and three Watts-Strogatz models (b)) and real networks 
(three biological neuronal networks (c) and seven social and related networks (d)).
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To understand whether the terminal SDT affects the change in the control structure as a function of the pruning 
strategy, we further restricted the pruning criterion and imposed the additional condition that a predefined span-
ning subgraph should be preserved throughout the pruning process, such that all pruning strategies ended with 
that subgraph. Concepts of maximum-leaf spanning tree38 or a tree with minimum vertex cover39 can be used to 
create an SDT of relatively many controls. In contrast, a long SDT with few branches can be chosen for few controls. 
We used the large-scale inter-areal network of the macaque brain for demonstration and applied the four pruning 
strategies towards five different spanning subgraphs (Fig. 3a white circles. The SDT in Fig. 3b is a hub-based SDT 
(cf. Supplementary Information: Hub-based spanning directed tree.) The SDTs in Fig. 3c–d are the preferential 
SDT destinations of the exhaustive random and resilient pruning procedures, respectively. 

Preserving only edges as few as the network size during pruning had a tremendous effect on the overall per-
formance of the pruning strategies. If the network was pruned towards an SDT with more branching Fig. 3b all 
pruning strategies had a stronger effect on the rate of change of the fraction of the control count (RC). If it was 
pruned towards an SDT with long paths Fig. 3d the RC remained low. If an SDT with intermediate structure was 
preserved Fig. 3c RC also became moderate.

We considered two more spanning digraphs with 3,000 edges, visited during random pruning Fig. 3e and 
out-pruning Fig. 3f respectively. In the former, ordered-MM pruning and random pruning were forced to slow 
down and speed up, respectively, to meet the pace of out-pruning. In the latter, both ordered-MM and out-pruning 
were forced towards the random pruning trajectory. If a spanning digraph was selected anywhere along the hori-
zontal part of the resilient pruning curve in (Fig. 3a cyan trace), all edge attacking strategies under the restriction 
of this chosen spanning digraph would end up to be ineffective and overlapped in a horizontal line.

In general, pruning under the restriction of a final network structure often resulted in a consistent order of 
performance. For example, in the macaque network, ordered-MM pruning was the most effective in increasing 
the control count, followed by out-pruning, random pruning and resilient pruning, respectively. However, the 
rate of change of nCN was different for each pruning strategy and the type of the preserved spanning subgraph. 
Importantly, these results also showed that the efficacy of a certain pruning strategy depends on both the initial and 
the final network structure. Unlike previous suggestions, in these networks at any stage of pruning, the number of 
control nodes could not be predicted from the count of strongly connected component (SCC)40 or the nodes with 
degree less than three15 (cf. Supplementary Fig. S6).

To measures the sensitivity of a network control structure to the pruning strategies between any two stages of 
edge attacks, we evaluated the pruning damage indices of three scale-free, a small-world, a random, an intermediate 
W-S, three biological and six social and related networks (cf. Fig. 4). The biological, social and related networks 
studied here show similarity with the scale-free network models with respect to their sensitivity to the pruning 
methods. Gnutella peer-to-peer network (See Table 1 and Fig. 4) exceptionally is more similar to the Watts-Strogatz 
models. It is a good example of a social network that is not scale-free.

MM cardinality curve. In all complex networks studied here, the order of efficacy of three of the four prun-
ing strategies, with the exception of ordered-MM pruning, is preserved for the different networks (cf. Fig. 2, 
Supplementary Fig. S5). To better understand the efficacy of ordered-MM pruning in changing the control structure 
of a network and why it behaves differently from the other three pruning strategies, we designed the cardinality 
curve.

Exhaustive extraction of maximum matching (MM) sets provides a way to partition the set of edges E in a 
network (cf. Methods: ordered-MM pruning) i.e. ∪ ∪ ∪= …E MM MM MMl1 2   , where MM1: =  a maximum 
matching  set  of  E and  ∪= − =

−MM E MM: a maximum matching set ofk i
k

i1
1 . The indices 1, …, l of the blocks 

MM1, …, MMl of the partition indicate the order of extraction. The cardinality of MMk decreases or remains the 
same as k increases, i.e. |MM1| ≥  |MM2| ≥  … ≥  |MMl|. The cardinality curve refers to the cardinalities of MMs 
across their indices.

An edge in a network is critical in structural controllability if in its absence the network requires an additional 
control node14. All the critical edges, if any, belong to any MM set. One can in fact identify all the critical edges of 
a complex network from just an MM set by checking each edge for criticality using a simple algorithm: delete edge, 
check the control count and add the edge back. However, many networks exist without or few critical edges (cf. 
Table 1). Therefore, MM set could be viewed as a generalization of critical edges, a few edges that likely cause high 
increase in the number of controls if removed. Moreover, partitioning the network edges in terms of successive 
MM sets is a way of sorting edges relatively based on their criticality.

Different artificial and biological networks show a decreasing sigmoid cardinality curve, with different threshold 
and slope (cf. Fig. 5a,b). The flat part of the cardinality curve shows that a network has multiple MM blocks of 
equal cardinality. Indeed, if there is a horizontal segment as part of the cardinality curve from j to k stages of MM 
extractions, the length k −  j +  1 of the segment reveals the number of edge-disjoint sets of minimum spanning 
cacti (MSC) in the updated network with edge set ∪ ∪− ( … )−E MM MM j1 1 . This implies that the network 
has different options of controls sets because it can use the disjoint sets of edges, thereby increasing the network 
robustness to ordered-MM pruning (e.g. Fig. 5a, purple and cyan traces). On the other extreme, a monotonically 
decreasing cardinality curve indicates a rapid change in the control count, thereby making ordered-MM pruning 
the most effective as, for instance, observed in scale-free networks (e.g. Fig. 5a, blue and green traces).

A larger size (Fig. 5c) and higher connection density (Fig. 5d) in E-R networks contribute to a longer flat 
beginning of the cardinality curve. The similar decaying part of the cardinality curve indicates that the effect of 
ordered-MM pruning of E-R networks is independent of network size and connection density.

The cardinality curves of the BNNs (Fig. 5c) are similar to those of scale-free networks (D.D. and B.A.). This 
emphasizes once more that BNNs are more similar to scale-free networks than to small-world networks, the car-
dinality curves of which start with a distinct flat part (cf. Fig. 5a,b).
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Figure 5. Cardinality curves. The cardinality curve plots the cardinalities of MM sets against their indices of 
extraction, from earliest to latest order. It enables to compare the performance of ordered-MM pruning with 
that of the other pruning strategies. The steeper the curve, the higher the performance of ordered-MM pruning. 
(a) Cardinality curve of the three scale-free. (b) Same as in (a) for the biological networks. (c) Cardinality 
curve of random networks with different size and fixed connection probability (ρ =  5%). Zero slope implies 
zero effect of ordered-MM pruning on nCN, as in SW (small-world) and random (E-R). (d) Cardinality curve 
of a random network (N =  250) for different connection probabilities (ρ). (e, left) Six basic network types. 
Convex refers to a network whose adjacency matrix is a lower triangular matrix. Divergent also refers to a lower 
triangular adjacency matrix, but with some columns set to zero (i.e. some nodes have zero out-degree). (e, right) 
Cardinality curves of six basic network types. The gray region covers the density of the full network without 
self connections – it helps to compare the connection density of the other networks from the area bounded 
under their cardinality curves. The cardinality curve reveals also important network features such as the degree 
heterogeneity by its steepness, the connection density by the area under it, the existence of hubs by its horizontal 
length, and the existence of long paths or cycles by its height.
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MM cardinality curve reveals structural network properties. In addition to providing an intuitive 
understanding of the efficacy of ordered-MM pruning, the cardinality curve also reveals different structural net-
work properties. In fact, different network motifs result in characteristic cardinality curves (Fig. 5e).

On the one hand, the maximum value of the cardinality curve (CCmax) gives an estimate of the diameter of the 
network graph (Fig. 5e). The diameter of a graph is the maximum finite distance between a pair of nodes in a net-
work41. The number of MMs (NMM), on the other hand, gives an estimate of the maximum in-degree or out-degree 
of the network, whichever is larger. The CCmax and the number of MMs could be as large as the network size, N. 
When the CCmax =  N, there is a giant directed cycle in the network. Moreover, the higher the value of CCmax, the 
smaller the number of source and leaf nodes in the network.

Similarly, NMM provides insights on the degree distribution of the network. If NMM is small compared to the 
network size, all nodes have only few neighbours. If NMM is large, there is at least one hub in the network. Moreover, 
any point on the cardinality curve indicates the number of nodes (y-axis) and their corresponding max (in-degree, 
out-degree) (x-axis). Finally, the area under the cardinality curve reflects the total number of edges and it can, 
hence, be used to estimate the connection density of the network.

The cardinality curve derived from the MM of a network is thus a very useful tool, not only to estimate the 
efficacy of different pruning strategies, but also to infer structural features of the network. It could be used to 
classify different complex networks.

Discussion
To the extent the dynamics of a complex system can be described by linear dynamics, structural controllability 
is a powerful tool to relate the network structure to the activity dynamics. Here, we quantified the robustness 
of complex networks (artificial, social and biological networks) in terms of their controllability. We studied the 
evolution of the control structure as we progressively pruned the network according to each one of four different 
strategies (Fig. 2). We show that the vulnerability of complex networks to edge-attack depends on the pruning 
strategy. Each of the four pruning strategies was performed exhaustively so that we could see not only the effect of 
ordinary or critical edge removal on the control structures of the original networks, but also on the successively 
updated networks. Two of our pruning strategies exploited the backbone of an optimal control configuration, 
minimum spanning cacti. While ordered MM pruning continuously targeted the edges in minimum spanning 
cacti13, resilient pruning preserved them for later stages of deletion. We note that we here focused on minimizing 
the count of the controls. This meant that the identity of the controls could be different at each stage of pruning. 
Our results about the controllability of the network can be extended to their observability, because we have proved 
the equivalence of controls and sensors.

The control profile of most of the networks is robust to random edge deletion. However, it is possible to 
introduce a bigger change in the control profile by removing specific edges. For instance, intentional edge-attacks 
based on targeting the nodes with highest degree42 or higher betweenness centrality43 are more effective in 
changing the control profile than random edge-attacks. However, as we have shown here, it is possible to design 
other forms of intentional edge-attacks that either enhance or preserve the control node count. Resilient and 
ordered-MM pruning strategies are the two extreme forms of intentional edge-attacks, as they are derived from 
the very process that we used to identify the control nodes. While resilient pruning preserves the control node 
count, ordered-MM pruning induces a maximal increase in the control node count, except in the case of networks 
with high small-world index.

After an edge attack, a subset of nodes could still remain controllable given the original set of controls. Such 
nodes could be identified based on their reachability from the original control nodes44. By contrast, after every 
edge attack we re-calculated the set of controls to ensure the controllability of the full network. Another approach 
to restore the controllability of the network could be to add new edges systematically by interconnecting long 
paths and form longer paths45.

The change in the control node count could be transformed to calculate the ‘cardinality curve’. This new tool 
not only helps us quantify the efficacy of a pruning strategy to change the control structure of the network, but it 
could also be used to classify the network as scale-free, Erodos-Renyii, small-world or intermediate.

In fact, our comparison of the sensitivity of various network types to pruning suggests that BNNs are more 
similar to scale-free networks than to small-world networks. In the last decade, a number of studies have sug-
gested that the BNNs in different species resemble the small-world topology46–48. The small-world topology is 
interesting because it improves the network communication while minimising the network wiring length47. 
However, recent analyses suggest that BNNs may not be as similar to the small-world networks as previously 
thought49,50. For instance, the small-world index of BNNs is much smaller than expected for small-world net-
works49,51. In general, classification of directed graphs based on their small-world index is problematic because 
the average path-length is not well-defined for many directed graphs (see Supplementary Information: Network 
generation procedures). The cardinality curve of various networks (Fig. 5) reveals that BNNs are, in fact, 
more similar to scale-free networks or to networks with exponential degree distribution than to small-world 
networks (cf. Fig. 2).

One of the best example of progressive pruning is a BNN which undergoes massive pruning during early 
development52–54 or in degenerative brain diseases such as Alzheimer’s disease (AD)55,56. Because different 
pruning strategies affect the nCN in a different manner, it is likely that the pruning strategy during development 
is different from the pruning that happens in AD. In general, studying the temporal evolution of the structural 
controllability of biological and other physical networks could provide insights into the structural organization 
of the network as well as to devise strategies to control their dynamics. Future work should investigate to what 
extent the predictions from the structural controllability can be extended to the dynamics of the networks 
undergoing structural changes.
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