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Abstract

Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved

in gene regulation, especially enhancers. However, we lack adequate tools to connect the

characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome

Wide Association Study), a new application of the MAGMA software package to identify the

characteristics of enhancers that contribute to genetic risk for disease. RWAS involves

three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features

(e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for

which genome-wide association study (GWAS) summary statistics are available; (iii) per-

form enhancer-set enrichment analyses to identify quantitative or categorical features of

regulatory elements that are associated with the trait. These steps are implemented as a

novel application of MAGMA, a tool originally developed for gene-based GWAS analyses.

Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-

associated AT-rich enhancers that are active in the developing brain and harbor binding

sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes

open-source software, and we provide a comprehensive collection of annotations for tissue-

specific enhancer locations and features, including their evolutionary conservation, AT con-

tent, and co-localization with binding sites for hundreds of TFs. RWAS will enable research-

ers to characterize properties of regulatory elements associated with any trait of interest for

which GWAS summary statistics are available.

Author summary

Enhancers are regulatory regions that influence gene expression via the binding of tran-

scription factors. Risk for many heritable diseases is enriched in regulatory regions,

including enhancers. In this study, we introduce a novel application of the MAGMA soft-

ware tool that enables testing for associations between enhancer attributes and risk, and
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we use this method to determine the enhancer characteristics that are associated with risk

for schizophrenia. We found that enhancers associated with schizophrenia risk are both

evolutionarily conserved and in physical contact with mutation-intolerant genes, many of

which have neurodevelopmental functions. Risk-associated enhancers are also AT-rich

and contain binding sites for neurodevelopmental transcription factors.

Introduction

Non-coding genomic regions such as enhancers and promoters, as well as the transcriptional

machinery that interacts with them, govern the gene regulatory programs underlying the

proper development and function of the body’s tissues and organs [1,2]. Genetic variation

influencing many human traits is enriched in these gene regulatory regions [3–8]. In genome-

wide association studies (GWAS) of diseases such as cardiovascular, autoimmune, and neuro-

psychiatric disorders, more than 90 percent of SNPs in risk loci are non-coding variants [9].

Epigenomic studies over the past decade have mapped tissue- and cell type-specific gene regu-

latory elements in the non-coding genome, opening the door for large-scale exploration of

their contribution to human disease. These studies have demonstrated that disease-associated

genetic variation is concentrated in regulatory regions in a tissue- and cell type-specific man-

ner. For example, rheumatoid arthritis (RA) and Crohn’s disease risk are highly enriched in

regions of accessible (active) chromatin from blood and immune cells, while type 2 diabetes

risk is enriched in open chromatin from endocrine tissue [3]. Disease risk has also been con-

nected to more specific regulatory elements, including enhancers, which are distal gene regula-

tory elements that activate and refine the cell type- and context-specific activity of many

promoters [10].

These findings suggest that much of the genetic risk for complex traits acts through the dis-

ruption of regulatory regions unique to the tissues and cell types that are most relevant in each

trait. However, there remain substantial gaps in our knowledge about the mechanisms by

which variants in specific promoters and enhancers predispose to risk. This is in part because

existing tools, while powerful, are not designed to evaluate the features of specific regulatory

regions that are associated with disease risk. Methods such as H-MAGMA and ABC focus on

predicting the target genes of distal enhancers and use these predictions to predict causal genes

at GWAS risk loci [11,12]. Epigenomic fine-mapping tools such as PAINTOR and RiVIERA

integrate non-coding annotations to predict specific, causal SNPs [13,14]. Stratified Linkage-

Disequilibrium Score Regression (LDSC) performs genome-wide inference of genomic fea-

tures (e.g., open chromatin regions, evolutionarily conserved regions) enriched for disease

risk, but is primarily used to assess binary annotations–rather than quantitative scores–and is

underpowered for annotations representing less than ~1% of the genome [3]. FENRIR tests

for associations between disease risk and networks of enhancers with similar features [15].

Here, we propose RWAS (for Regulome-Wide Association Study) as an application of the

MAGMA software suite to test associations of genetic risk with specific enhancers and

enhancer properties. In the RWAS framework (Fig 1), we first collect enhancer annotations in

a tissue relevant to the trait of interest, then identify specific risk-associated enhancers by

aggregating the effects of all SNPs that overlap the enhancer’s position in the genome. Finally,

we test for associations of enhancer features with disease risk using a regression framework.

RWAS is implemented as a novel application of MAGMA [9], which was originally developed

for gene-based association studies and is widely used for that purpose. RWAS is computation-

ally efficient and readily extensible to any trait for which GWAS summary statistics are
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available. We apply RWAS to characterize enhancers and enhancer features that are associated

with risk for schizophrenia (SCZ), a severe psychiatric disorder for which well-powered

GWAS identified hundreds of risk loci enriched in brain-specific gene regulatory regions [5,

9]. As part of this work, we also compiled a resource of high-quality adult and fetal brain

enhancer maps to identify risk-associated enhancer traits in the brain. Our analyses reveal

novel associations of SCZ risk with AT-rich enhancers in the developing brain and risk-associ-

ated transcription factor networks.

Results

A database of enhancers and enhancer annotations in the human brain

The three elements required for an RWAS analysis are a database of tissue-specific gene regu-

latory elements, annotations describing the attributes of the enhancers for association testing,

and GWAS summary statistics for a trait of interest. Here, as a regulatory element database,

we utilized ChromHMM-derived enhancer predictions in 127 human tissues and cell types

from the ROADMAP consortium [16]. Specifically, we utilized a 25-state model that inte-

grated data from 12 histone marks and related genomic features [17]. Enhancers predicted by

ChromHMM have been extensively validated in independent epigenomic datasets, and their

Fig 1. RWAS workflow overview. In brief, the RWAS workflow involves annotating SNPs to enhancers and other regulatory regions (rather than

genes). Enhancer-level summary statistics are computed for input into association testing. Then, we use the MAGMA linear modeling framework to

compute genetic associations between supplied enhancer-level covariates and these enhancer-based GWAS summary statistics. This approach relies on

high-quality enhancer annotations for the tissue of interest that capture genetic risk for the disorder. To ensure these conditions were met, we first

thoroughly characterized a set of brain-specific enhancers and demonstrated that these enhancers capture genetic risk for schizophrenia.

https://doi.org/10.1371/journal.pcbi.1010430.g001
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tissue-specific activity predicts the expression of nearby genes [17]. A major advantage of the

ROADMAP dataset is that the wealth of different tissues available makes cross-tissue compari-

son easier, enabling an unbiased view of enhancer activity across tissues and cell types. Analy-

ses presented in this paper focus primarily on schizophrenia (SCZ), for which purpose we are

primarily interested in annotations of enhancers in the brain. The dataset contains chromatin

state annotations for 15 brain-related samples, including seven samples from the adult brain,

three from the prenatal brain at mid-gestation, three from embryonic stem cell (ESC)-derived

neuronal progenitors or neurons, and two from neurosphere cultures.

We validated these enhancer annotations by four approaches. First, we tested for overlap of

ChromHMM-predicted brain enhancers with enhancers predicted by ChIP-seq in indepen-

dent samples. Consistent with previous analyses of ChromHMM-derived enhancers, we found

that the enhancers utilized in our analysis were enriched for regions marked by acetylation at

lysine 27 of the histone 3 tail (H3K27ac), which marks active regulatory regions, and depleted

for tri-methylation at lysine 9 on the histone 3 tail (H3K9me3), which marks heterochromatin

(S1 Fig).

Second, we compared enhancer locations in the 127 samples on the basis of summary statis-

tics, including enhancer length, genomic coverage, enhancer number, and AT-richness (S2

Fig). Brain enhancers were largely similar to other tissues in terms of number, length, and cov-

erage (S2A, S2C and S2E Fig). Within the brain, adult brain samples had the highest coverage

and number of predicted enhancers, while samples from fetal brain and models of neurodeve-

lopment had lower coverage and number of enhancers (S2B and S2D Fig). Fetal brain and

neurosphere samples had average enhancer lengths nearly 50 bp longer than those in adult

brain samples (S2F Fig).

Third, we tested whether these enhancer annotations capture an element of tissue specific-

ity. The Jaccard index was used to quantify pairwise similarity among the genomic locations of

enhancers utilized in the 127 samples. As expected, enhancer utilization clustered samples by

organ, as well as by developmental age (S3 Fig). In the brain, we found three groups of samples

distinguished by their enhancer utilization, corresponding to adult brain, fetal brain and cul-

tured neurospheres, and cultured neural progenitors (Fig 2).

Fourth, we tested that our enhancer annotations confirm known associations, focusing on

SCZ [5]. Previous studies have shown that enhancers and other gene regulatory regions active

in the human brain are enriched for heritability in SCZ [3–5]. As expected, stratified LD Score

Regression using summary statistics from schizophrenia GWAS [5] confirmed that brain

enhancers from our analysis were highly enriched for SCZ risk (Fig 3A). The adult brain-spe-

cific enhancer annotation most significantly enriched for SCZ risk was the inferior temporal

gyrus (sample E072, p = 4.6E-14), and the fetal brain-specific enhancer annotation most signif-

icantly enriched for risk was female fetal brain (sample E082, p = 1.28E-9). These enrichments

were comparable in significance to the enrichment of SCZ risk in two sets of adult prefrontal

cortex enhancers from the PsychENCODE consortium (Fig 3B) [18]. In summary, our valida-

tion tests indicate that ROADMAP ChromHMM models provide robust annotations of

enhancers in the fetal and adult brain that capture a tissue-specific element of genetic risk for

SCZ. These analyses define a total of 388,011 non-overlapping enhancer regions and are avail-

able at http://data.nemoarchive.org/other/grant/sament/sament/RWAS.

RWAS reveals enhancers and enhancer characteristics associated with risk

for schizophrenia

We hypothesized that SCZ risk is associated with SNPs that impact specific enhancers that are

active in the brain. To identify these enhancers, we performed an “enhancer-based” GWAS
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analysis of the PGC2 SCZ GWAS, testing for significance of the aggregated SNPs within each

enhancer using the SNP-wise regression model implemented in MAGMA. Fig 4A illustrates

how enhancer-based GWAS annotates signal peaks from a SNP-based GWAS (top) to specific

disease-associated enhancers (bottom). This analysis revealed a total of 2,784 risk-associated

enhancers at a genome-wide significance threshold p< 1.3E-7, which corresponds to

alpha< 0.05 after Bonferroni correction for 388,011 non-overlapping brain-activated

enhancer regions in our database (Fig 4B). 2,001 of these risk-associated brain enhancers are

located within 63 of the 108 risk loci identified in the original (SNP-based) analysis of these

data, while the remaining enhancers are at loci that did not reach genome-wide significance in

the primary analysis. Examination of specific loci indicated that risk-associated enhancers cap-

ture the genetic risk signal at many of the SNP-based risk loci in a tissue-specific manner (Fig

4B). Overall, we found associations of SCZ risk with substantially more brain enhancers than

with enhancers from other cell types. However, we also find loci at which enhancers from

Fig 2. Genome-level Jaccard similarity matrix demonstrates age- and experimental model- specific enhancer patterning. Fetal brain and

neurosphere samples cluster together when the tree is cut at the second level, while adult brain samples, ESC-derived clusters, and astrocytes form

separate groups. Color denotes Jaccard similarity statistic. Groupings determined using hierarchical clustering.

https://doi.org/10.1371/journal.pcbi.1010430.g002
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Fig 3. Genetic risk for schizophrenia is enriched in ChromHMM-derived brain enhancers. A) Partitioned heritability of

enhancer annotations by tissue in schizophrenia. Brain enhancers are enriched for heritability in schizophrenia compared to

other tissues. B) Partitioned heritability of individual brain samples. Adult brain enhancers had the most significant

enrichment, followed by fetal brain enhancers.

https://doi.org/10.1371/journal.pcbi.1010430.g003
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Fig 4. Identification of brain-expressed enhancers associated with genetic risk for schizophrenia. A) Enhancer-based GWAS allows the

aggregation of non-coding SNPs into nearby enhancer regions and captures risk loci as enhancer-level risk associations. Individual points on the top

panel denote SNPs, while the lines on the bottom panel represent enhancer regions. B) Brain enhancers capture risk loci missed by enhancers from

other tissues. Enhancers from primary T cells captured fewer genome-wide significant signals when compared to enhancers from the inferior

temporal lobe of the adult brain. The light gray shaded areas denote loci where a given enhancer annotation has more genome-wide significant

enhancers when compared to the other annotation.

https://doi.org/10.1371/journal.pcbi.1010430.g004
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other tissue and cell types have the strongest p-values, potentially pointing to roles for these

cell types in SCZ risk. For instance, we find associations with certain T-cell specific enhancers,

potentially implicating immune cell types in SCZ risk (Fig 4B).

We compared the SCZ-associated enhancers from our analysis to SCZ-associated enhanc-

ers predicted by an alternative approach, FENRIR. We found that the ChromHMM enhancers

used in our model had more significant enrichment for SCZ risk compared to the FENRIR

networks. According to estimates from Chen et al. 2021, FENRIR brain enhancers had an

LDSC enrichment significance of p = 2.7E-04, which is less significant than all but one of the

10 adult and fetal brain ChromHMM enrichments from our analyses [15]. While there was

not a great deal of overlap between the two enhancer sets, enhancer effect sizes from our analy-

sis correlated strongly with FENRIR scores. For example, 16,761 of the 105,489 male fetal

brain enhancers identified in our analysis had a direct overlap with a FENRIR enhancer, and

the effect size predicted by our model was highly correlated with FENRIR predicted disease

association in schizophrenia (linear regression p<2E-16, beta = 0.035). The top 100 enhancers

from our analysis with an overlapping FENRIR enhancer had FENRIR scores>4x higher than

lower ranking enhancers (0.58 vs. 0.14). These results confirm that SCZ-associated enhancers

identified in our analysis can be reproducibly associated with SCZ by an independent

approach and suggest that our strategy may have greater statistical power.

To further validate SCZ-associated enhancers identified in our analysis, we tested for over-

lap with functionally-validated enhancers from massively parallel reporter assays (MPRA) of

schizophrenia risk alleles [19] and with expression quantitative trait loci (eQTLs) in the pre-

frontal cortex [20]. For example, sixty-six of the SCZ-associated enhancers identified in our

analysis of the fetal male brain contained SCZ-associated SNPs that were functionally validated

to impact enhancer activity by MPRA. Permutation tests suggest that this overlap is substan-

tially more than expected by chance (permutation p-values < 0.05 in all 10 brain samples).

This analysis provided independent evidence for several of the top SCZ-associated enhancers

in our analysis. A fetal brain-specific enhancer at chr1:243555100–243556100 (p = 7.68E-11),

located in an intron of SDCCAG8, contains a SNP (rs77149735) associated with differential

enhancer activation by MPRA. A second fetal brain-specific, risk-associated enhancer from

our analysis, located at chr22:42657000–42658000 (p = 2.4E-9) contained the SNP rs134873,

which was significantly associated with differential enhancer activity in MPRA assays and has

been previously described as an eQTL for the genes FAM109B, NAGA, LINC00634, and

WBP2NL. Similarly, we tested for overlap of SCZ-associated enhancers with cortex-specific

eQTLs from the GTEx collection (v7) [21]. We found a strong positive correlation between

eQTL status and SCZ risk across all 10 brain enhancer sets tested (p< 2e-07). These results

demonstrate that many SCZ-associated enhancers identified in our analysis have strong evi-

dence of regulatory impact in the brain.

Next, we tested the hypothesis that risk-associated enhancers regulate gene sets that have

previously been implicated in neuropsychiatric studies. We used Hi-C data from the develop-

ing brain [22] to predict the targets of risk-associated enhancers. Across all the adult and fetal

brain enhancer annotations, a total of 720 genes were in contact with at least one statistically

significant risk-associated enhancer. These associations were quite reproducible: 648 of these

genes were identified in more than one brain tissue enhancer annotation and 248 were found

in all ten. Using these enhancer-gene maps, we tested for enrichments in 64 gene sets that have

previously been implicated in SCZ risk (Fig 5A). Enhancer targets were enriched for genes that

are intolerant of loss-of-function mutations (p = 2.37E-3, pLI; p = 2.16E-4, LOEUF [see Meth-

ods for definition]). Risk-associated enhancers also disproportionally contact genes that are

bound by the neuron-specific RNA-binding proteins Fragile X mental retardation protein

(FMRP) (p = 3.07E-5) and RBFOX1/3 (p = 3.75E-4), as well as targets of the autism-associated
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chromatin remodeling gene Chromodomain-helicase-DNA-binding protein 8 (CHD8)

(p = 3.99E-4). Rare mutations in FMRP and CHD8 cause neurodevelopmental disorders with

autistic features [23–30] and regulate neurodevelopmental gene networks that have previously

been linked to SCZ in genetic and proteomic studies [31,32]. These findings extend previous

gene-based analyses [33,34].

Next, we tested the hypothesis that risk-associated enhancers differ in their evolutionary

history from other enhancers in the brain. Enhancers with deep evolutionary conservation

may have particularly important functions in the brain. It has also been postulated that risk for

SCZ may involve evolutionarily novel enhancers, some of which regulate human-specific

aspects of brain development [35,36]. Evolutionary conservation within enhancer regions

(defined by GERP phylogeny scores) was positively associated with risk (Fig 5B), with fetal

brain enhancers having the most significant associations (male fetal brain, 1.1E-10; germinal

cortex at 20wk gestation, 5.2E-7; female fetal brain, 5.9E-7; all 10 adult and fetal brain enhancer

annotations significant at FDR< 0.05). By contrast, two categories of evolutionarily novel

enhancers–human accelerated regions (HARs) and human-gained enhancers (HGEs)–were

not significantly associated with schizophrenia risk (Fig 5B), in agreement with previous

results [37]. This finding is unlikely to be due to low power, since 12,501 brain enhancers were

found within 5kb of an HGE and 7,984 were located within a HAR. Therefore, schizophrenia

risk-associated enhancers are older in evolutionary time and are not generally under positive

selection.

Since many enhancers regulate proximal promoter regions, we hypothesized that enhancers

closer to a transcription start site would be more strongly associated with disease risk. How-

ever, we found that distance to the nearest gene was not associated with risk (Fig 5B). This is in

line with the discovery of significant long-range interactions between schizophrenia risk SNPs

and genes with neuronal functions [22].

Fig 5. Features of brain-expressed enhancers associated with schizophrenia risk. A) Risk-associated enhancers are in physical contact with gene sets

previously implicated in risk for neuropsychiatric disorders. Shown here are gene sets with a median p-value across the 10 brain enhancer

samples< 0.05. GWAS = genes at GWAS risk loci. Full description of gene lists available in Methods. B) Evolutionary conservation and AT-richness of

enhancers were associated with schizophrenia risk. HGE/HAR status and distance to the nearest gene TSS were not associated with risk.

https://doi.org/10.1371/journal.pcbi.1010430.g005
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Unexpectedly, one of the enhancer features most strongly associated with SCZ risk was the

percent of adenine-thymidine base pairs (AT richness), which was positively associated with

risk across all brain tissues surveyed (Fig 5B). The most significant association in adult brain

was in prefrontal cortex enhancers (E073, p = 9.1E-7), while the strongest association in the

fetal brain was in the fetal germinal matrix (E070, 20 weeks gestational age; p = 5.68E-6). Over-

all, brain enhancers do not have substantially higher AT richness than enhancers in other tis-

sues (S4C Fig). In addition, we did not find a strong association between AT richness and SCZ

risk within enhancers from other tissues (S5 Fig). Therefore, these results suggest that SCZ risk

is enriched specifically at AT-rich enhancers in the adult and developing brain.

SCZ-associated enhancers are enriched for binding sites for

neurodevelopmental transcription factors recognizing AT-rich sequence

motifs

We hypothesized that the association of AT rich enhancers with SCZ corresponds with occu-

pancy by transcription factors that recognize AT-rich sequence motifs. To test this, we per-

formed an RWAS testing for association between SCZ risk and binding sites for individual

TFs. We used tissue-specific TF binding site predictions for 503 TFs, derived from integration

of DNase-seq footprinting analysis in the human brain with JASPAR2016 vertebrate sequence

motifs [38]. There was a strong association between the AT-richness of a given TF binding site

motif and the effect size in our model (p = 2.0E-15 in female fetal brain). These associations

were also borne out in a meta-analysis performed by combining all 10 adult and fetal brain

enhancer RWAS (p< 2E-16). We also found that TF motifs with positive association with

SCZ risk in our RWAS had higher AT percentages than motifs with a negative association; in

other words, TF motifs that were overrepresented in risk-associated enhancers had higher AT

percentages than TF motifs that were depleted in risk-associated enhancers (Fig 6A).

While the nucleotide composition of promoters and of larger chromosomal segments (iso-

chores,>300 kb on average) has been extensively described, the functional differences

between AT-rich vs. GC-rich enhancers are not well understood. Strikingly, many of the most

positively associated sequence motifs, all of which are AT rich, are recognized by neurodeve-

lopmental TFs, including members of the MEF2 family, the EMX family, and the DLX family

(Table 1). Based on this result, we asked whether AT-richness might be a general feature of

neurodevelopmental TFs. Indeed, TFs annotated to the Gene Ontology term “cell morphogen-

esis involved in neuron differentiation” and related GO terms had higher motif AT percent-

ages than other TFs (Wilcoxon p = 5.0E-5, Fig 6B), and motifs recognized by these

neurodevelopmental TFs were positively associated with SCZ risk in our model (p = 1.64E-3,

Fig 6C). A comparison between the enrichments of this GO term and generic GO terms is

available as S6 Fig.

We further explored the developmental expression patterns of TFs that recognize SCZ-

associated sequence motifs using single-cell RNA sequencing data from prenatal human cortex

[39]. We found that many of the TFs that are highly associated with risk in our model are

expressed in neuronal lineages, including members of the MEF2 family, the EMX family, the

RAX family, and the DLX family (Fig 6D). Taken together, these results suggest a previously

undescribed association between SCZ risk and AT-rich binding sites for neurodevelopmental

TFs in enhancers of the fetal and adult brain.

Discussion

Here, we developed tools and resources for Regulome-Wide Association Studies (RWAS), a

flexible application of MAGMA for post-GWAS analyses of trait-associated enhancers and
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Fig 6. TFs with AT rich motifs are overrepresented in risk-associated enhancers and have neurodevelopmental functions. A) Positive association

between the AT-richness of a given TF binding site motif and the effect size in the RWAS model. B) Higher median motif AT percentage of a given TF

is positively associated with the TF being annotated to the Gene Ontology term “cell morphogenesis during neuron differentiation”. C) TFs with

higher median Z-score in the RWAS analysis are more likely to be annotated to “cell morphogenesis during neuron differentiation.” Grey dashed line

is the median value of the background set of all TFs in our dataset. D) Cell type-specific expression in the prenatal human brain for TFs that recognize

positively associated motifs in the schizophrenia RWAS analysis. The displayed TFs recognize a motif with an RWAS Z-score> 3 in a brain enhancer.

Each cell is colored by expression Z-scores averaged across the specified cell type.

https://doi.org/10.1371/journal.pcbi.1010430.g006
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enhancer properties. Using these tools, we characterized enhancers associated with risk for

schizophrenia.

Our analysis revealed a novel association of SCZ with AT-rich enhancers that are active in

the human brain, many of which contain AT-rich sequence motifs recognized by neurodeve-

lopmental TFs. Functional differences between AT-rich vs. GC-rich enhancers are not well

understood. One previous study using Cap Analysis of Gene Expression showed that many

enhancers actively transcribed in neurons are AT-rich and noted differences in TF occupancy

in GC-rich vs AT-rich enhancers [40]. Our analysis generalizes this observation to a broader

set of enhancers defined by independent epigenomic techniques. Functional differences of

AT-rich vs. GC-rich promoters are better characterized, with AT-rich promoters containing

distinct core promoter elements and serving different functions. For example, Lecellier et al.

demonstrated that AT-rich promoter regions were disproportionately found near genes

involved in the immune response [41]. Large genomic regions of relatively consistent nucleo-

tide composition in the genome, known as isochores, have also been described to contain

genes with shared functions; for example, GC-rich isochores tend to contain housekeeping

genes, while AT-rich isochores tend to contain more tissue-specific genes [42]. To our knowl-

edge, we are the first to report that neurodevelopmental TFs predominantly recognize AT-rich

sequence motifs.

The specific neurodevelopmental TFs whose putative binding sites were enriched at SCZ-

associated enhancers represent promising leads toward mapping the causal gene regulatory

perturbations underlying SCZ. The most significant positive association in our TF RWAS was

MEF2C-MA0497.1. This association is consistent with previous reports that the MEF2C motif

is enriched at SCZ risk loci, and MEF2C target genes in the brain are enriched both for SCZ

risk genes [43,44] and for genes differentially expressed in postmortem brain tissue from SCZ

cases vs. controls. MEF2C itself is a positional candidate at an SCZ risk locus [5]. MEF2C is

highly expressed in developing cortical excitatory neurons and is essential both for cortical

neurogenesis and the modulation of cortical neuronal activity. Haploinsufficiency of MEF2C

is known to cause a syndrome characterized by intellectual disability and neurological abnor-

malities [45]. Another network of interest is LBX2-MA0699.1, a motif recognized by multiple

homeobox TFs. Of particular interest are EMX1 and EMX2, which are highly expressed in the

developing dorsal telencephalon in the lineage leading to excitatory neurons and have well-

established roles in cortical thickness and arealization [46–49]. Similarly to MEF2C, the area

containing the gene for EMX1 is itself a candidate schizophrenia risk locus [5]. Mutations in

EMX2 have been noted in patients with severe schizencephaly [50]. The LBX2-MA0699.1

motif is also recognized by members of the DLX and ARX families. Unlike the EMX factors

that are involved in excitatory neuron development, these TFs are critical for inhibitory neu-

ron development and migration [51, 52]. Mutations in ARX have been linked to cases of X-

linked lissencephaly with abnormal genitalia in humans [53]. A limitation of our analysis is

Table 1. Top 5 strongest positive associations between TF motif networks and schizophrenia risk in brain

enhancers.

TF Motif Z Adj. P Value

MEF2C-MA0497.1 3.54 4.05E-03

ESX1-MA0644.1 3.48 5.08E-03

LBX2-MA0699.1 3.46 5.40E-03

MEF2A-MA0052.3 3.46 5.45E-03

RAX-MA0718.1 3.40 6.79E-03

https://doi.org/10.1371/journal.pcbi.1010430.t001
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that motif-based predictions cannot resolve the specific members of this TF family that occupy

the SCZ-associated enhancers, but the family as a whole merits increased attention in SCZ.

Understanding the gene regulatory mechanisms underlying risk for polygenic traits is a com-

plex task. Our RWAS framework is complementary to existing tools and is uniquely suited to

test associations between the characteristics of specific regulatory elements and disease risk.

While our current approach is focused on testing associations of enhancers with common SNPs

identified through GWAS, annotating gene regulatory consequences of rare non-coding single-

nucleotide variants and copy-number variants represents an important future direction [54].

RWAS is readily applicable to additional traits of interest, as it is implemented with a widely

used software tool (MAGMA) and requires only GWAS summary statistics and enhancer level

annotations. We have made our instructions for running RWAS available at www.github.com/

casalex/RWAS. We have also made available the enhancer annotations for all 127 ROADMAP

samples, and similar enhancer models suitable for RWAS are now available from >800 sam-

ples from the ENCODE consortium, spanning all of the major human organs and tissues [55].

Methods

Enhancer download and processing

Predicted enhancer regions were derived from 25-state ChromHMM [16] chromatin state

models downloaded from the ROADMAP consortium website (https://egg2.wustl.edu/

roadmap/web_portal/imputed.html). We defined enhancers by pooling nine states from these

models: 1) transcribed 5’ preferential and enhancer, 2) transcribed 3’ preferential and

enhancer, 3) transcribed and weak enhancer, 4) active enhancer 1, 5) active enhancer 2, 6)

active enhancer flank, 7) weak enhancer 1, 8) weak enhancer 2, and 9) primary H3K27ac possi-

ble enhancer. Enhancer annotations from the psychENCODE consortium were downloaded

from http://resource.psychencode.org/. The brain enhancers used in the schizophrenia RWAS

analyses were E067 (Brain Angular Gyrus), E068 (Brain Anterior Caudate), E069 (Brain Cin-

gulate Gyrus), E070 (Brain Germinal Matrix), E071 (Brain Hippocampus Middle), E072

(Brain Inferior Temporal Lobe), E073 (Brain_Dorsolateral_Prefrontal_Cortex), E074 (Brain

Substantia Nigra), E081 (Fetal Brain Male), and E082 (Fetal Brain Female).

Enhancer annotations used for partitioned heritability and RWAS analyses were pre-pro-

cessed in a uniform pipeline. Enhancer boundaries are often poorly defined, and MAGMA

and similar tools suffer from length bias wherein long regions with many SNPs have anti-con-

servative p-values (S7 Fig). To overcome these issues, our analyses were conducted using 1 kb

enhancer centroids. Enhancer regions were merged with any directly adjacent annotations,

and the center of each merged region was determined. The boundaries were then extended by

500 bp upstream and downstream of this center, resulting in a 1kb region centered on the mid-

dle of the enhancer region. Any enhancers falling within the MHC region or ENCODE black-

list regions [56] were removed.

Jaccard similarity

In order to compare enhancer similarity across all 127 samples we computed pairwise

genome-wide Jaccard distances using the BEDtools software suite [57]. Groupings were deter-

mined using hierarchical clustering.

GWAS summary statistics

We retrieved GWAS summary statistics for schizophrenia [5] from the Psychiatric Genomics

Consortium data portal (https://www.med.unc.edu/pgc).
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Partitioned heritability

Stratified LD score regression (LDSC version 1.0.1) was applied to GWAS summary statistics

to evaluate the enrichment of trait heritability across the 127 enhancer sets [3]. These associa-

tions were adjusted for 52 annotations from version 1.2 of the LDSC baseline model (including

genic regions, enhancer regions and conserved regions).

Observed versus expected overlaps

We performed three different overlap analyses to determine observed vs expected overlaps of

enhancer annotations. We first took enhancer annotations and shuffled their positions, taking

care to exclude the MHC region and any ENCODE blacklist regions [56]. We then obtained

MPRA SNP locations [19] and ENCODE ChIP-seq peaks from human brain middle frontal

area 46 (H3K27ac, ENCSR554HDT; H3K9me3, ENCSR349III) [58]. These annotations were

overlapped with shuffled and non-shuffled enhancers to obtain expected and observed overlap

counts for each annotation.

RWAS

RWAS was performed using the linear model implemented in MAGMA’s covariate mode.

This was accomplished by using the enhancer sets in place of genes. The processed enhancers

were supplied as a genomic location file format as described in the MAGMA manual, and

enhancer-level attributes were supplied as continuous covariates. GERP hg19 phylogeny scores

were downloaded from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/

and averaged across each enhancer region to yield a conservation score for each enhancer for

association testing. TSS for each gene were taken from a supplied MAGMA gene file (https://

ctg.cncr.nl/software/magma). Distance to the nearest TSS for each enhancer was determined

using the BEDTools “closest” command, and this distance was supplied to MAGMA as a

covariate for association testing. HAR regions were downloaded from Supplementary Table 1

of Doan et al. (2016) [59]. These regions were expanded by 2,500 bp upstream and down-

stream before being intersected with the enhancer regions, yielding a binary measure for each

enhancer indicating if an enhancer overlapped an HAR or not. This was input as a covariate in

the MAGMA analysis. Similarly, HGEs were defined as differentially enriched CREs between

human and rhesus macaque from Vermunt et al. and overlaps were tested for association [60].

Chromosomal contact testing was performed using the set analysis in MAGMA. We used

HiC from the cortical plate of the developing human brain [22] to assign genes to enhancers

that they physically contact. Enhancers that contact genes with a given ontology term were

assigned to the enhancer set for that term, and the resultant enhancer sets were tested for asso-

ciation with risk using MAGMA’s gene set mode. The gene sets are available in S1 Table and

were derived from the following datasets, as we have described previously [61]: genes intolerant

of loss-of-function variants from gnomAD (pLI > = 0.9 or LOEUF deciles 1 or 2) [62]; risk

genes from studies of rare variants in four disorders, including severe developmental disorder

risk genes from the Deciphering Developmental Disorders consortium’s DDG2P database

(Disorders of Brain Development) [63], autism spectrum disorder risk genes from the Autism

Sequencing Consortium (Autism risk [exomes]) [64], bipolar disorder risk genes from the

BipEx Consortium [65]; genes identified from large-scale GWAS, identified by gene-based

analyses with MAGMA [9] (p < 2.77e-6 unless noted as FDR, in which case adj. p< 0.05) for

bipolar disorder [66], major depression [67], and neuroticism [68], differentially expressed

genes in the prefrontal cortex of individuals with schizophrenia, bipolar disorder, and autism

from the PsychENCODE consortium [69] (http://resource.psychencode.org/Datasets/Derived/

DEXgenes_CoExp/DER-13_Disorder_DEX_Genes.csv); genes associated with schizophrenia
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from SCHEMA [70]; target gene networks of the neuropsychiatric risk genes FMRP, RBFOX1/

3, RBFOX2, CHD8, CELF4, and microRNA-137 derived from functional genomics experi-

ments, annotated by Genovese et al. [71]; synaptic genes, including genes from SynaptomeDB;

proteins localized to the axonal growth cone, and genes annotated to the Gene Ontology term

“neuron spine” [72,73]. In-text p-values were derived by taking the minimum p-value across

the 10 brain enhancer annotations and adjusting for the number of annotations.

TF binding site RWAS

Brain-specific DNAse-seq footprints annotated with matching TF motifs were obtained from

our previously described footprint atlas [37]. The HINT atlas was used due to its superior per-

formance in TF binding site prediction. A HINT score cutoff of 55 was used to filter out low-

quality footprints. We limited our analysis to the 503 JASPAR vertebrate core motifs that had

mappings to human TFs. Footprints that fell within the boundaries of a given enhancer were

annotated to that element, yielding a covariate file containing counts of each motif for each

enhancer. A total binding site control was used to control for total binding site number.

MAGMA was run in the covariate mode as described above. Meta-analysis of adult and fetal

brain enhancer RWA analyses was performed by taking the highest absolute value Z-score

from the individual enhancer RWA results for each motif. The resultant p-values were

adjusted for the number of results meta-analyzed (10).

Motif to TF mapping

The footprint-motif pairs were mapped to TFs using a key described in our previous work

[37]. These mappings were restricted to JASPAR motifs, so only these motifs were included in

downstream analyses.

GO term analysis

We used the Wilcoxon rank-sum test as implemented in the R package GOfuncR to test for

association between TF function and scores/attributes from our models.

Single-cell RNA-seq analysis

The single-cell RNA-seq dataset from the prenatal human cortex was downloaded from the

UCSC cell browser (http://cells.ucsc.edu/cortex-dev/exprMatrix.tsv.gz) [38]. Any TF with an

RWAS Z-score that was expressed in > 250 cells in this dataset was included in the analysis.

The expression Z-scores were generated using R’s scale() function, grouped by cell type, then

averaged.

Supporting information

S1 Fig. Observed vs expected epigenetic mark ChIP-seq peak overlaps of 10 chromHMM

brain enhancers A) Enhancer marker H3K27ac peaks from middle frontal area 46 are enriched

in chromHMM brain enhancers B) Heterochromatin marker H3K9me3 peaks from middle

frontal area 46 are depleted in chromHMM brain enhancers.

(TIFF)

S2 Fig. Enhancer annotation summary statistics. A) Genomic coverage by tissue category. B)

Adult brain and astrocyte enhancer annotations had the highest genomic coverage compared

to fetal, neurosphere, and ESC-derived enhancer annotations. C) Enhancer number by tissue

category. D) Adult brain and astrocyte enhancer annotations had the highest enhancer num-

ber compared to fetal, neurosphere, and ESC-derived enhancer annotations. E) Enhancer
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length by tissue category. F) Fetal brain and neurosphere enhancer annotations had the highest

mean enhancer length compared to adult brain, astrocyte, and ESC-derived enhancer annota-

tions. G) Enhancer number and percent genomic coverage are tightly associated (p = 8.1E-59).

H) Enhancer length and genomic coverage are not associated (p = 0.64). I) Enhancer length

and enhancer number are negatively correlated (p = 9.1E-6).

(TIF)

S3 Fig. Jaccard similarity between all 127 chromHMM enhancer annotations. Annotations

are arranged by hierarchical clustering. Differential enhancer utilization between tissues clus-

ters samples by organ. Brain enhancers largely cluster together, with the exception of ESC-

derived cells and astrocytes. Interestingly, while the female fetal brain and male fetal brain

were in the same cluster, the female fetal brain enhancers were slightly more similar to the neu-

rosphere samples than to the male fetal brain samples. This is likely due to technical differ-

ences, as fetal male brain (E081) is the only sample from this cluster where the primary tissue

was from the Broad Institute, while all other neurosphere/fetal samples were from UCSF. The

differences in sample origin did not have a major effect on the overall cluster structure, as

E081 did not cluster with any of the other Broad Institute samples such as H9 derived neuronal

progenitor cultured cells (E009), H9 derived neuron cultured cells (E010), or NH-A Astrocytes

(E125).

(TIF)

S4 Fig. Enhancer annotations vary by length and nucleotide composition. A) Fetal brain

and neurosphere enhancer annotations are underrepresented in the lowest length bins com-

pared to other brain samples. B) Fetal brain and neurosphere enhancer annotations have more

super-long enhancers than other brain enhancer annotations. C) AT percentage of enhancer

annotations by tissue. D) Adult brain enhancer annotations have slightly higher AT richness

compared to fetal brain and neurosphere enhancer annotations. E-F) On average, super-

enhancers in the brain (>10 kb, ‘TRUE”) tend to be more AT rich than enhancers of shorter

length (“FALSE”).

(TIF)

S5 Fig. Association between AT-richness and schizophrenia risk across all ChromHMM

enhancers aggregated by tissue. Brain enhancers had the strongest association, with germinal

matrix (E070) having the most associated individual annotation.

(TIF)

S6 Fig. Reproduction of Fig 6 with null hypothesis GO terms for comparison. A) Higher

median motif AT percentage of a given TF is positively associated with the TF being annotated

to the Gene Ontology term “cell morphogenesis during neuron differentiation” but not general

GO terms (biological processes, cellular components, molecular function) B) TFs with higher

median Z-score in the RWAS analysis are more likely to be annotated to “cell morphogenesis

during neuron differentiation” and are not more likely to be annotated to general GO terms.

(TIF)

S7 Fig. Non-truncated enhancers suffer from length bias in MAGMA gene-set analyses. A.

Z-scores are higher in longer enhancers compared to shorter enhancers in the PGC2 schizo-

phrenia GWAS. B. Z-scores show similar inflation in long enhancers in 75 unrelated UK Bio-

bank traits.

(TIF)

S1 Table. Gene lists for schizophrenia RWAS gene set testing.

(TSV)
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S2 Table. Meta-analyzed and single enhancer annotation TF schizophrenia RWAS results

in the adult and fetal brain.

(XLSX)

S3 Table. Genome-wide significant enhancer hits within SCZ risk loci across 127 human

tissues. Sample names are as described in the ROADMAP epigenomics project integrative

analysis portal: https://egg2.wustl.edu/roadmap/web_portal/meta.html.

(ZIP)

S4 Table. Untransformed LDSC result p-values.

(XLSX)

Acknowledgments

We thank the University of Maryland Medical Scientist Training Program for their ongoing

assistance and mentorship.

Author Contributions

Conceptualization: Alex M. Casella, Seth A. Ament.

Data curation: Alex M. Casella.

Formal analysis: Alex M. Casella.

Funding acquisition: Seth A. Ament.

Investigation: Alex M. Casella, Seth A. Ament.

Methodology: Alex M. Casella, Carlo Colantuoni, Seth A. Ament.

Project administration: Seth A. Ament.

Resources: Seth A. Ament.

Software: Alex M. Casella.

Supervision: Carlo Colantuoni, Seth A. Ament.

Visualization: Alex M. Casella.

Writing – original draft: Alex M. Casella, Seth A. Ament.

Writing – review & editing: Alex M. Casella, Carlo Colantuoni, Seth A. Ament.

References

1. Davidson EH. Gene Regulatory Networks for Development. The Regulatory Genome. Elsevier;

2006. pp. 125–185.

2. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of

DNA elements in the human genome. Nature. 2012; 489: 57–74. https://doi.org/10.1038/nature11247

PMID: 22955616

3. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by

functional annotation using genome-wide association summary statistics. Nature genetics. 2015; 47:

1228–35. https://doi.org/10.1038/ng.3404 PMID: 26414678

4. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. Heritability enrichment of

specifically expressed genes identifies disease-relevant tissues and cell types. Nature Genetics. 2018;

50: 621–629. https://doi.org/10.1038/s41588-018-0081-4 PMID: 29632380

5. Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA, et al. Biological Insights From 108

Schizophrenia-Associated Genetic Loci. Nature. 2014; 511: 421–427. https://doi.org/10.1038/

nature13595 PMID: 25056061

PLOS COMPUTATIONAL BIOLOGY Enhancer properties in schizophrenia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010430 September 7, 2022 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010430.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010430.s010
https://egg2.wustl.edu/roadmap/web_portal/meta.html
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010430.s011
https://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1038/ng.3404
http://www.ncbi.nlm.nih.gov/pubmed/26414678
https://doi.org/10.1038/s41588-018-0081-4
http://www.ncbi.nlm.nih.gov/pubmed/29632380
https://doi.org/10.1038/nature13595
https://doi.org/10.1038/nature13595
http://www.ncbi.nlm.nih.gov/pubmed/25056061
https://doi.org/10.1371/journal.pcbi.1010430


6. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of

common disease-associated variation in regulatory DNA. Science. 2012; 337: 1190–1195. https://doi.

org/10.1126/science.1222794 PMID: 22955828

7. The GTEx Consortium, Welter D, MacArthur J, Morales J, Burdett T, Hall P, et al. The Genotype-Tissue

Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348: 648–60.

https://doi.org/10.1126/science.1262110 PMID: 25954001

8. Freudenberg J, Gregersen P, Li W. Enrichment of Genetic Variants for Rheumatoid Arthritis within T-

Cell and NK-Cell Enhancer Regions. Molecular medicine (Cambridge, Mass). 2015; 21: 180–4. https://

doi.org/10.2119/molmed.2014.00252 PMID: 25794145

9. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS

data. PLoS computational biology. 2015; 11: e1004219. https://doi.org/10.1371/journal.pcbi.1004219

PMID: 25885710

10. Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO Obesity Variant Cir-

cuitry and Adipocyte Browning in Humans. The New England journal of medicine. 2015; 373: 895–907.

https://doi.org/10.1056/NEJMoa1502214 PMID: 26287746

11. Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for

improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles.

Nature Neuroscience. 2020; 23: 583–593. https://doi.org/10.1038/s41593-020-0603-0 PMID:

32152537

12. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, Subramanian V, et al. Activity-by-contact

model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat Genet. 2019;

51: 1664–1669. https://doi.org/10.1038/s41588-019-0538-0 PMID: 31784727

13. Kichaev G, Yang W-Y, Lindstrom S, Hormozdiari F, Eskin E, Price AL, et al. Integrating Functional Data

to Prioritize Causal Variants in Statistical Fine-Mapping Studies. PLOS Genetics. 2014; 10: e1004722.

https://doi.org/10.1371/journal.pgen.1004722 PMID: 25357204

14. Li Y, Kellis M. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments

across multiple complex human diseases. 2016; 44: 1–13. https://doi.org/10.1093/nar/gkw627 PMID:

27407109

15. Chen X, Zhou J, Zhang R, Wong AK, Park CY, Theesfeld CL, et al. Tissue-specific enhancer functional

networks for associating distal regulatory regions to disease. Cell Systems. 2021; 12: 353–362.e6.

https://doi.org/10.1016/j.cels.2021.02.002 PMID: 33689683

16. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nature

methods. 2012; 9: 215–6. https://doi.org/10.1038/nmeth.1906 PMID: 22373907

17. Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for systematic annotation of diverse

human tissues. Nat Biotechnol. 2015; 33: 364–376. https://doi.org/10.1038/nbt.3157 PMID: 25690853

18. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic

resource and integrative model for the human brain. Science. 2018; 362: eaat8464. https://doi.org/10.

1126/science.aat8464 PMID: 30545857

19. Myint L, Wang R, Boukas L, Hansen KD, Goff LA, Avramopoulos D. A screen of 1,049 schizophrenia

and 30 Alzheimer’s-associated variants for regulatory potential. American Journal of Medical Genetics

Part B: Neuropsychiatric Genetics. 2020; 183: 61–73. https://doi.org/10.1002/ajmg.b.32761 PMID:

31503409

20. Hoffman GE, Bendl J, Voloudakis G, Montgomery KS, Sloofman L, Wang Y-C, et al. CommonMind

Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Sci

Data. 2019; 6: 180. https://doi.org/10.1038/s41597-019-0183-6 PMID: 31551426

21. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working

Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH

Common Fund, NIH/NCI, et al. Genetic effects on gene expression across human tissues. Nature.

2017; 550: 204–213. https://doi.org/10.1038/nature24277 PMID: 29022597

22. Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, et al. Chromosome confor-

mation elucidates regulatory relationships in developing human brain. Nature. 2016; 538: 523–527.

https://doi.org/10.1038/nature19847 PMID: 27760116

23. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 Mutations Define

a Subtype of Autism Early in Development. Cell. 2014; 158: 263–276. https://doi.org/10.1016/j.cell.

2014.06.017 PMID: 24998929

24. Stolerman ES, Smith B, Chaubey A, Jones JR. CHD8 intragenic deletion associated with autism spec-

trum disorder. European Journal of Medical Genetics. 2016; 59: 189–194. https://doi.org/10.1016/j.

ejmg.2016.02.010 PMID: 26921529

PLOS COMPUTATIONAL BIOLOGY Enhancer properties in schizophrenia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010430 September 7, 2022 18 / 21

https://doi.org/10.1126/science.1222794
https://doi.org/10.1126/science.1222794
http://www.ncbi.nlm.nih.gov/pubmed/22955828
https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.2119/molmed.2014.00252
https://doi.org/10.2119/molmed.2014.00252
http://www.ncbi.nlm.nih.gov/pubmed/25794145
https://doi.org/10.1371/journal.pcbi.1004219
http://www.ncbi.nlm.nih.gov/pubmed/25885710
https://doi.org/10.1056/NEJMoa1502214
http://www.ncbi.nlm.nih.gov/pubmed/26287746
https://doi.org/10.1038/s41593-020-0603-0
http://www.ncbi.nlm.nih.gov/pubmed/32152537
https://doi.org/10.1038/s41588-019-0538-0
http://www.ncbi.nlm.nih.gov/pubmed/31784727
https://doi.org/10.1371/journal.pgen.1004722
http://www.ncbi.nlm.nih.gov/pubmed/25357204
https://doi.org/10.1093/nar/gkw627
http://www.ncbi.nlm.nih.gov/pubmed/27407109
https://doi.org/10.1016/j.cels.2021.02.002
http://www.ncbi.nlm.nih.gov/pubmed/33689683
https://doi.org/10.1038/nmeth.1906
http://www.ncbi.nlm.nih.gov/pubmed/22373907
https://doi.org/10.1038/nbt.3157
http://www.ncbi.nlm.nih.gov/pubmed/25690853
https://doi.org/10.1126/science.aat8464
https://doi.org/10.1126/science.aat8464
http://www.ncbi.nlm.nih.gov/pubmed/30545857
https://doi.org/10.1002/ajmg.b.32761
http://www.ncbi.nlm.nih.gov/pubmed/31503409
https://doi.org/10.1038/s41597-019-0183-6
http://www.ncbi.nlm.nih.gov/pubmed/31551426
https://doi.org/10.1038/nature24277
http://www.ncbi.nlm.nih.gov/pubmed/29022597
https://doi.org/10.1038/nature19847
http://www.ncbi.nlm.nih.gov/pubmed/27760116
https://doi.org/10.1016/j.cell.2014.06.017
https://doi.org/10.1016/j.cell.2014.06.017
http://www.ncbi.nlm.nih.gov/pubmed/24998929
https://doi.org/10.1016/j.ejmg.2016.02.010
https://doi.org/10.1016/j.ejmg.2016.02.010
http://www.ncbi.nlm.nih.gov/pubmed/26921529
https://doi.org/10.1371/journal.pcbi.1010430


25. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex Targeted Sequencing

Identifies Recurrently Mutated Genes in Autism Spectrum Disorders. Science. 2012; 338: 1619–1622.

https://doi.org/10.1126/science.1227764 PMID: 23160955

26. Wilkinson B, Grepo N, Thompson BL, Kim J, Wang K, Evgrafov OV, et al. The autism-associated gene

chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related

genes. Transl Psychiatry. 2015; 5: e568–e568. https://doi.org/10.1038/tp.2015.62 PMID: 25989142

27. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. CHD8 regulates neurode-

velopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad

Sci U S A. 2014; 111: E4468–4477. https://doi.org/10.1073/pnas.1405266111 PMID: 25294932

28. Kogan CS, Turk J, Hagerman RJ, Cornish KM. Impact of the Fragile X mental retardation 1 (FMR1)

gene premutation on neuropsychiatric functioning in adult males without fragile X-associated Tremor/

Ataxia syndrome: a controlled study. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B: 859–872.

https://doi.org/10.1002/ajmg.b.30685 PMID: 18165971

29. Farzin F, Perry H, Hessl D, Loesch D, Cohen J, Bacalman S, et al. Autism spectrum disorders and

attention-deficit/hyperactivity disorder in boys with the fragile X premutation. J Dev Behav Pediatr.

2006; 27: S137–144. https://doi.org/10.1097/00004703-200604002-00012 PMID: 16685180

30. Bourgeois JA, Cogswell JB, Hessl D, Zhang L, Ono MY, Tassone F, et al. Cognitive, anxiety and mood

disorders in the fragile X-associated tremor/ataxia syndrome. General Hospital Psychiatry. 2007; 29:

349–356. https://doi.org/10.1016/j.genhosppsych.2007.03.003 PMID: 17591512

31. Clifton NE, Rees E, Holmans PA, Pardiñas AF, Harwood JC, Di Florio A, et al. Genetic association of

FMRP targets with psychiatric disorders. Molecular Psychiatry. 2020; 1–14. https://doi.org/10.1038/

s41380-020-00912-2 PMID: 33077856

32. Folsom TD, Thuras PD, Fatemi SH. Protein expression of targets of the FMRP regulon is altered in

brains of subjects with schizophrenia and mood disorders. Schizophr Res. 2015; 165: 201–211. https://

doi.org/10.1016/j.schres.2015.04.012 PMID: 25956630

33. Kasap M, Rajani V, Rajani J, Dwyer DS. Surprising conservation of schizophrenia risk genes in lower

organisms reflects their essential function and the evolution of genetic liability. Schizophr Res. 2018;

202: 120–128. https://doi.org/10.1016/j.schres.2018.07.017 PMID: 30017463

34. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizo-

phrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selec-

tion. Nature Genetics. 2018; 50: 381–389. https://doi.org/10.1038/s41588-018-0059-2 PMID:

29483656

35. Song JHT, Lowe CB, Kingsley DM. Characterization of a Human-Specific Tandem Repeat Associated

with Bipolar Disorder and Schizophrenia. Am J Hum Genet. 2018; 103: 421–430. https://doi.org/10.

1016/j.ajhg.2018.07.011 PMID: 30100087

36. Xu K, Schadt EE, Pollard KS, Roussos P, Dudley JT. Genomic and Network Patterns of Schizophrenia

Genetic Variation in Human Evolutionary Accelerated Regions. Mol Biol Evol. 2015; 32: 1148–1160.

https://doi.org/10.1093/molbev/msv031 PMID: 25681384

37. Won H, Huang J, Opland CK, Hartl CL, Geschwind DH. Human evolved regulatory elements modulate

genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nature Communi-

cations. 2019; 10: 2396. https://doi.org/10.1038/s41467-019-10248-3 PMID: 31160561

38. Funk CC, Casella AM, Jung S, Richards MA, Rodriguez A, Shannon P, et al. Atlas of Transcription Fac-

tor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types. Cell Rep. 2020;

32: 108029. https://doi.org/10.1016/j.celrep.2020.108029 PMID: 32814038

39. Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al. Spatiotemporal

gene expression trajectories reveal developmental hierarchies of the human cortex. Science (New

York, NY). 2017; 358: 1318–1323. https://doi.org/10.1126/science.aap8809 PMID: 29217575
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spectrum quantified from variation in 141,456 humans. Nature. 2020; 581: 434–443. https://doi.org/10.

1038/s41586-020-2308-7 PMID: 32461654

63. Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van Kogelenberg M, et al. Genetic diagno-

sis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data.

Lancet. 2015; 385: 1305–1314. https://doi.org/10.1016/S0140-6736(14)61705-0 PMID: 25529582

PLOS COMPUTATIONAL BIOLOGY Enhancer properties in schizophrenia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010430 September 7, 2022 20 / 21

https://doi.org/10.1038/mp.2016.254
http://www.ncbi.nlm.nih.gov/pubmed/28115742
https://doi.org/10.1016/j.ejmg.2016.05.017
https://doi.org/10.1016/j.ejmg.2016.05.017
http://www.ncbi.nlm.nih.gov/pubmed/27255693
http://www.ncbi.nlm.nih.gov/pubmed/12561075
https://doi.org/10.1016/j.mod.2004.03.013
https://doi.org/10.1016/j.mod.2004.03.013
http://www.ncbi.nlm.nih.gov/pubmed/15147765
https://doi.org/10.3389/fnmol.2016.00098
https://doi.org/10.3389/fnmol.2016.00098
http://www.ncbi.nlm.nih.gov/pubmed/27799894
https://doi.org/10.1038/ng0196-94
http://www.ncbi.nlm.nih.gov/pubmed/8528262
https://doi.org/10.1126/science.278.5337.474
https://doi.org/10.1126/science.278.5337.474
https://doi.org/10.1093/cercor/12.1.75
https://doi.org/10.1093/cercor/12.1.75
https://doi.org/10.1038/ng1009
https://doi.org/10.1038/s41586-021-03209-8
https://doi.org/10.1038/s41586-021-03209-8
http://www.ncbi.nlm.nih.gov/pubmed/34616060
https://doi.org/10.1038/s41586-020-03145-z
https://doi.org/10.1038/s41586-020-03145-z
http://www.ncbi.nlm.nih.gov/pubmed/33536621
https://doi.org/10.1038/s41598-019-45839-z
http://www.ncbi.nlm.nih.gov/pubmed/31249361
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1126/science.1105136
http://www.ncbi.nlm.nih.gov/pubmed/15499007
https://doi.org/10.1016/j.cell.2016.08.071
https://doi.org/10.1016/j.cell.2016.08.071
http://www.ncbi.nlm.nih.gov/pubmed/27667684
https://doi.org/10.1038/nn.4229
http://www.ncbi.nlm.nih.gov/pubmed/26807951
https://doi.org/10.1101/2021.06.02.21258261
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654
https://doi.org/10.1016/S0140-6736%2814%2961705-0
http://www.ncbi.nlm.nih.gov/pubmed/25529582
https://doi.org/10.1371/journal.pcbi.1010430


64. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-Scale Exome

Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of

Autism. Cell. 2020; 180: 568–584.e23. https://doi.org/10.1016/j.cell.2019.12.036 PMID: 31981491

65. Palmer DS, Howrigan DP, Chapman SB, Adolfsson R, Bass N, Blackwood D, et al. Exome sequencing

in bipolar disorder reveals shared risk gene AKAP11 with schizophrenia. medRxiv. 2021;

2021.03.09.21252930. https://doi.org/10.1101/2021.03.09.21252930

66. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association

study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019; 51: 793–803. https://doi.org/

10.1038/s41588-019-0397-8 PMID: 31043756

67. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analy-

sis of depression identifies 102 independent variants and highlights the importance of the prefrontal

brain regions. Nat Neurosci. 2019; 22: 343–352. https://doi.org/10.1038/s41593-018-0326-7 PMID:

30718901

68. Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke T-K, Shirali M, et al. Association analysis in over

329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet. 2018; 50:

6–11. https://doi.org/10.1038/s41588-017-0013-8 PMID: 29255261

69. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-

level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018; 362. https://doi.org/10.

1126/science.aat8127 PMID: 30545856

70. Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizo-

phrenia | medRxiv. [cited 13 Jun 2021]. https://www.medrxiv.org/content/10.1101/2020.09.18.

20192815v1

71. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, et al. Increased burden of

ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016; 19:

1433–1441. https://doi.org/10.1038/nn.4402 PMID: 27694994

72. Pirooznia M, Wang T, Avramopoulos D, Valle D, Thomas G, Huganir RL, et al. SynaptomeDB: an ontol-

ogy-based knowledgebase for synaptic genes. Bioinformatics. 2012; 28: 897–899. https://doi.org/10.

1093/bioinformatics/bts040 PMID: 22285564

73. Poulopoulos A, Murphy AJ, Ozkan A, Davis P, Hatch J, Kirchner R, et al. Subcellular transcriptomes

and proteomes of developing axon projections in the cerebral cortex. Nature. 2019; 565: 356–360.

https://doi.org/10.1038/s41586-018-0847-y PMID: 30626971

PLOS COMPUTATIONAL BIOLOGY Enhancer properties in schizophrenia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010430 September 7, 2022 21 / 21

https://doi.org/10.1016/j.cell.2019.12.036
http://www.ncbi.nlm.nih.gov/pubmed/31981491
https://doi.org/10.1101/2021.03.09.21252930
https://doi.org/10.1038/s41588-019-0397-8
https://doi.org/10.1038/s41588-019-0397-8
http://www.ncbi.nlm.nih.gov/pubmed/31043756
https://doi.org/10.1038/s41593-018-0326-7
http://www.ncbi.nlm.nih.gov/pubmed/30718901
https://doi.org/10.1038/s41588-017-0013-8
http://www.ncbi.nlm.nih.gov/pubmed/29255261
https://doi.org/10.1126/science.aat8127
https://doi.org/10.1126/science.aat8127
http://www.ncbi.nlm.nih.gov/pubmed/30545856
https://www.medrxiv.org/content/10.1101/2020.09.18.20192815v1
https://www.medrxiv.org/content/10.1101/2020.09.18.20192815v1
https://doi.org/10.1038/nn.4402
http://www.ncbi.nlm.nih.gov/pubmed/27694994
https://doi.org/10.1093/bioinformatics/bts040
https://doi.org/10.1093/bioinformatics/bts040
http://www.ncbi.nlm.nih.gov/pubmed/22285564
https://doi.org/10.1038/s41586-018-0847-y
http://www.ncbi.nlm.nih.gov/pubmed/30626971
https://doi.org/10.1371/journal.pcbi.1010430

