
The Application of the Grey Disaster Model to Forecast
Epidemic Peaks of Typhoid and Paratyphoid Fever in
China
Xuejun Shen1,4, Limin Ou2, Xiaojun Chen1, Xin Zhang3, Xuerui Tan1*

1 Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China, 2 Department of Neurology, The

First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China, 3 Laboratory of Molecular Cardiology, The First Affiliated Hospital of

Shantou University Medical College, Shantou, Guangdong Province, China, 4 Shantou University Medical College, Shantou, Guangdong Province, China

Abstract

Objective: The objectives of this study were to forecast epidemic peaks of typhoid and paratyphoid fever in China using the
grey disaster model, to evaluate its feasibility of predicting the epidemic tendency of notifiable diseases.

Methods: According to epidemiological features, the GM(1,1) model and DGM model were used to build the grey disaster
model based on the incidence data of typhoid and paratyphoid fever collected from the China Health Statistical Yearbook.
Model fitting accuracy test was used to evaluate the performance of these two models. Then, the next catastrophe date was
predicted by the better model.

Results: The simulation results showed that DGM model was better than GM(1,1) model in our data set. Using the DGM
model, we predicted the next epidemic peak time will occur between 2023 to 2025.

Conclusion: The grey disaster model can predict the typhoid and paratyphoid fever epidemic time precisely, which may
provide valuable information for disease prevention and control.
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Introduction

Typhoid fever and paratyphoid fever are systemic infections

caused by Salmonella enterica, including S enterica serotype Typhi and

serotypes Paratyphi A, B, and C [1,2]. As a faecal–oral

transmissible disease, in developing countries, it is associated with

economic backwardness, poor sanitation, and unsafe food or

water, whereas in developed countries, incidence is mainly caused

by returned travelers to developing countries [3]. Typhoid and

paratyphoid fever have been effectively controlled in Europe and

North America, in spite of that, the incidence remains high in

some developing countries in Asia, Africa, and South America [4].

It is still an important public health problem [5], to which much

attention has been paid. Based on the previous publications in

recent years, the key points of research still focus on epidemiology

[6–8], pathogenesis [9,10], diagnosis [11–13], treatment [14,15]

and control [16,17]. Incidence of a disease can be used for

predicting the number of new cases in the years to come [18],

which will provide decision references for planning prevention and

control. Herein, time series analysis [19,20], D-R model, GM(1,1)

model [21,22], Markov chain prediction model [23] and multi-

variate linear regression [24] have been used to predict future

trends in some infectious diseases. However, these published

forecasting methods mostly aim at the incidence, prevalence, or

mortality rate (or the number of people) of a disease, rather than

the time when an epidemic peak may occur.

The grey systems theory, established by Julong Deng in 1982, is

a new methodology that chiefly includes the theory of grey system

analysis, modeling, prediction, decision-making and control [25].

It focuses on uncertainty problems with small sample, discrete data

and incomplete information that are difficult for probability and

fuzzy mathematics to handle. Grey prediction is an important

embranchment of grey systems theory, which makes scientific,

quantitative forecasts about the future states of grey systems. Based

on their functions and characteristics, grey predictions can be

grouped into sequence predictions, disaster predictions, seasonal

disaster predictions, stock-market-like predictions, system predic-

tions, etc. And they are realized through establishing grey models

for relevant sequences. Among them, grey disaster prediction is

essentially the prediction for time distribution of abnormal values,

and aims at forecasting the exact moments of the forthcoming

catastrophe to help relevant parties to prepare ahead of time for

the worst condition.

GM(1,1) model is the main and basic model of grey predictions,

i.e. a single variable first order grey model, which is able to acquire

high prediction accuracy despite requiring small sample size (but
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the sample size must be at least 4) [26], while some of the commonly

used prediction methods such as regression analysis rely heavily on

historical data and are required to satisfy a certain typical form of

data distribution. Moreover, the method is straightforward because

little computational effort is needed to constitute the prediction

model. Although GM(1,1) model has been widely used, its

predicting performance still could be improved sometimes. Discrete

grey model (DGM) [27] is one of the most important methods to

improve the precision of the model.

The grey prediction model has been widely applied in

petroleum, geological engineering, medicine, industry, manage-

ment, agriculture and other fields [28–33] and has obtained

successful results. In the field of medicine and public health, the

occurrence, development, and prevalence of a disease is affected

by many uncertain factors, can be regarded as a dynamic

changing grey system, and is an appropriate application for grey

prediction. So far, grey prediction has been widely used in

morbidity and mortality prediction of a variety of infectious

disease epidemics [21,34], parasitic disease, and malignant tumor.

As one of the category B notifiable diseases in China, although

typhoid and paratyphoid fever has been effectively controlled

nationwide, the prevalence in some regions is still high [35]. Taking

into account the characteristics of infectious diseases, we used the

grey disaster model to analyze typhoid and paratyphoid fever

incidence data from 1975 to 2010 and then compared performance

of two methods: the GM(1,1) model and the DGM model. Finally,

the better one was used to extrapolate future trends. We propose

that the grey disaster model is able to define the time distribution of

typhoid and paratyphoid fever in China and the result may provide

useful references for controlled application.

Materials and Methods

Data sources
The typhoid and paratyphoid incidence data was collected from

the China Health Statistical Yearbook of 2011 [36], published by

the Ministry of Health of the People’s Republic of China, which

was open government statistics data.

Methods
The grey disaster prediction modeling process and model test

methods were established according to ‘‘Grey systems:theory and

applications’’ [26] and ‘‘Elements of Grey Theory’’ [37]. Grey

system theory modeling software 3.0 (GTMS3.0) was used for the

statistical analysis.

A. The principle of grey disaster prediction. The basic idea of

grey disaster prediction is to forecast the occurrence time of

abnormal values. By specifying a threshold, abnormal values were

picked out to form a subset series of the original series. Then a

catastrophe date sequence is generated, based on which the grey

prediction model is established to predict the exact moments of the

forthcoming abnormal values. It is not for predicting the

numerical value itself, but rather for predicting the time(s) of one

or several abnormal values to occur.

B. Model construction. Time series data of typhoid and

paratyphoid fever incidence year by year from 1975 to 2010 was

considered as the original seriesX~(x(1),x(2), � � � ,x(n)). Inci-

dence data significantly higher than the normal sporadic level was

defined as an abnormal value and was picked out to form a subset

series of the original series Xf~(x q(1)½ �,x q(2)½ �, � � � ,x q(m)½ �)5X ,

which was assumed to be a catastrophe sequence, and the

corresponding catastrophe date sequence Q(0) = (q(1), q(2), …,

q(m)). The q(m) stood for the mth catastrophe time sequence value

that typhoid and paratyphoid fever outbreak or epidemic during n

years (1!m!n). Then, disaster prediction was made by establish-

ing grey prediction models to forecast the catastrophe date in the

future. In order to get better simulation accuracy, the GM(1,1)

model and the DGM model were used for prediction in this study,

and performances of these two models were compared by testing

their simulation accuracy. According to the characteristics of our

data, this study defined a disease epidemic time as the year when the

incidence increased to a maximum value, and the value was more

than 1.2 times the average of previous three years. That was taking

the peak value of the incidence as an abnormal value.

The general procedure for a GM(1,1) model is derived as follows:

1) Original time sequence with n samples is expressed as

X (0)~(x(0)(1),x(0)(2), � � � ,x(0)(n)), where X (0) is a non-negative

sequence and n is the sample size of the data.

2) First-order accumulative generation operation (1-AGO) is used to

convert chaotic series X (0) into monotonically increasing series:

X (1)~(x(1)(1),x(1)(2), � � � ,x(1)(n))~(
P1
i~1

x(0)(i),
P2
i~1

x(0)(i), � � � ,
Pn
i~1

x(0)(i)).

3) The generated mean sequenceZ(1) of X (1) is defined as:

Z(1)~(z(1)(2),z(1)(3), � � � ,z(1)(n)), where z(1)(k)~0:5x(1)(k)z

0:5x(1)(k{1)(k = 2, 3, …, n)is the mean value of adjacent data.

4) The least square estimate sequence of the grey difference

equation of GM(1,1) is defined as:

x(0)(k)zaz(1)(k)~b

a b½ �T~(BT B){1BT Y , where

Y~

x(0)(2)

x(0)(3)

..

.

x(0)(n)

2
6664

3
7775, B~

{z(1)(2) 1

{z(1)(3) 1

..

. ..
.

{z(1)(n) 1

2
6664

3
7775

5) The whitenization equation is given by:
dx(1)

dt
zax(1)~b

6) Solve the equation, the GM(1,1) forecasting model can be

obtained: x̂x(1)(kz1)~(x(0)(1){
b

a
)e{akz

b

a
7) Predicted value of the primitive data at time point

(k+1) is extracted: x̂x(0)(kz1)~x̂x(1)(kz1){x̂x(1)(k)~(1{ea)

(x(0)(1){
b

a
)e{ak

The establishment of DGM model:

1) The definition of DGM: The equation x(1)(kz1)~

b1x(1)(k)zb2 is called discrete grey model or discrete form

of the grey model.

2) b̂b~(b1,b2)T is a sequence of parameters, and Y~

x(1)(2)

x(1)(3)

..

.

x(1)(n)

2
6664

3
7775, B~

x(1)(1) 1

x(1)(2) 1

..

. ..
.

x(1)(n{1) 1

2
6664

3
7775 then the least squares

estimate sequence of the grey differential equation

x(1)(kz1)~b1x(1)(k)zb2 will satisfied to b̂b~(BT B){1BT Y

3) Set x(1)(1)~x(0)(1), then recursive function is given by

x̂x(kz1)~bk
1x(0)(1)z

1{bk
1

1{b1

:b2, k~1, 2, � � � ,n{1 or x̂x(1)

(kz1)~bk
1 x(0)(1){

b2

1{b1

� �
z

b2

1{b1

, k~1, 2, � � � ,n{1
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Then, the restored values of x̂x(0)(k) can be given by x̂x(0)

(kz1)~a(1)x̂x(1)(kz1)~x̂x(1)(kz1){x̂x(1)(k), k~1, 2, � � � ,n{1

More details for GM(1,1) and DGM modeling steps can be seen

in ‘‘Grey systems: theory and applications’’ [26].

C. Model fitting accuracy test. Model was tested to

evaluate its appropriateness and effectiveness before application.

The mean relative error, absolute degree of incidence, variance

ratio and small error probability were used for testing. Simulation

accuracy of each model was comprehensively evaluated according

to Table 1.

The mean relative error �DD~ 1
n{1

Pn
k~2

Dk~
1

n{1

Xn

k~2

e(k)

x(0)(k)

����
����,

for a given a, when �DDva and Dnva hold true, the prediction

model is supposed to be error-satisfactory.

Let e stand for the absolute degree of incidence between the raw

data X(0) and the simulated values. For a given e0.0, if the

absolute degree of incidence satisfies e.e0, then the simulation

model is regarded to be incidence satisfactory.

C~
S2

S1
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k~1

(e(k){�ee)2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k~1

(x(0)(k){�xx)2

s is the variance ratio. For a

given C0.0, if the ratio of variances C = S2/S1,C0, then the

model is supposed to be variance ratio satisfactory.

If p~P (e(k){�eej jv0:6745S1ð Þ is taken as a small error

probability and for a given p0.0, when p.p0, then the model is

said to be small-error probability satisfactory.

D. Prediction of the Grey Model. The better model that

has passed different tests can be used to make meaningful

predictions of the epidemic peaks of typhoid and paratyphoid

fever.

Results

Incidence of typhoid and paratyphoid fever from 1975 to
2010

Incidence rates of typhoid and paratyphoid fever from 1975 to

2010 were shown in Figure 1 and Table 2. Over a 36-year period,

incidence rates fluctuated, but the overall trend was downwards.

In the chart (Figure 1), 4 peaks (years 1978, 1982, 1988, 2001)

could be found, which might be considered as epidemic peaks.

The first three peaks were more obvious than the fourth one and

there was a 3-to-5-year interval between each of them. So this four

data were initially selected to compare with the average incidence

of previous three years. The results were as follows:

Incidence of year 1978 divided by that of the average of years

1975, 1976 and 1977: 15.58/((9.61+7.68+12.82)/3) = 1.55

In the same way, for year 1982, we got 14.25/

((10.53+11.94+12.72)/3) = 1.21

For year 1988: 14.01/((8.35+9.76+13.02)/3) = 1.35

For year 2001: 5.07/((4.80+4.08+4.19)/3) = 1.16<1.2

Obviously, incidence of years 1978, 1982 and 1988 were all

more than 1.2 times of the average of the previous three years, and

that of 2001 was 1.16 times, close to 1.2. For this set of data, we

believed that the first three peaks could be defined as typhoid and

paratyphoid fever epidemic peaks, and year 2001 could be

considered as a small epidemic. Therefore, there were four

outbreaks or epidemics in 1978, 1982, 1988 and 2001 during the

Table 1. Commonly used scales of accuracy for model testing.

Accuracy scale Mean relative error�DD Degree of incidence e Variance ratio C Small error probability p

1st level #0.01 $0.90 #0.35 $0.95

2nd level 0.01,0.05 0.80,0.90 0.35,0.50 0.80,0.95

3rd level 0.05,0.10 0.70,0.80 0.50,0.65 0.70,0,80

4th level 0.10,0.20 0.60,0.70 0.65,0.80 0.60,0.70

Figure 1. Incidence of typhoid and paratyphoid fever from 1975 to 2010. Sampling points in a circle were selected for analysis.
doi:10.1371/journal.pone.0060601.g001
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past 36 years from 1975 to 2010. Thus, the corresponding

catastrophe date sequence was Q(0) = (4, 8, 14, 27).

Modeling, model fitting accuracy test and comparison

The catastrophe date sequence was Q(0) = (4, 8, 14, 27), then

GM(1,1) model and DGM model were constructed respectively

based on this sequence.

Grey prediction equation constructed by GM(1,1) model was:

q̂q(kz1)~3:9759e0:6071k

Grey prediction equation constructed by DGM model was:

q̂q(kz1)~7:6237|1:8710k{1

The simulative values and errors of GM(1,1) model and DGM

model were shown in Table 3. Then the mean relative error,

absolute degree of incidence, variance ratio and small error

probability could be calculated to evaluate the model fitting

accuracy (see Table 4).

The mean relative error, absolute degree of incidence and

variance ratio of DGM model were all superior to that of GM(1,1)

model, which means that the simulation results of DGM model

were better than that of GM(1,1) model.

Predictions of the Grey Model
Since the simulation accuracy of GM(1,1) model and DGM

model were all at the first level, they all could be used to make

predictions. But according to the simulation results, the DGM

model was finally chosen to make our predictions.

Substituting k = 4 into the model q̂q(kz1)~7:6237|1:8710k{1,

the calculated value was q̂q(5) = 49.93.

The mean relative error of the DGM model derived from the

results in Table 3 was: �DD~
1

n{1

Xn

k~2

Dk~
1

n{1

Xn

k~2

e(k)

x(0)(k)

����
����=

(4.75%+1.86%+1.15%)/3 = 2.59%. In consideration of error rate,

it would be more reasonable to describe the predicted value with

interval numbers. Then the value was 49.936(162.59%) =

(48.64,51.22), which means the predicted interval was 49,51.

This result indicated that the next epidemic peak should occur

between the 49th,51th year (taking 1975 as a base point 1), i.e.

year 2023 to 2025.

Discussion

For the grey disaster prediction model, a given upper/lower

abnormal (or catastrophe) value is commonly determined based on

the actual situation and individuals’ experiences, and the

subsequence is known as the upper/lower catastrophe sequence.

However, the epidemic of infectious diseases has its own

particularities. Epidemic is defined as the occurrence in a

community or region of cases of an illness or other similar event

clearly in excess of normal expectancy [38]. The characteristics of

the illness, the area, the season and certain historical circumstances

all have to be taken into account, so the criteria must be adapted

to different periods. The use of the historical data by the national

outbreak automatic detection and response system of China

supports this concept, too. The system doesn’t take advantage of

all the historical data to enable early warning for the 19 kinds of

infectious diseases, such as typhoid and paratyphoid fever. Instead,

it performs the mobile percentile method, which uses the

referential historic data of the last 3,5 years only as baseline

data, to dynamically correct the early-warning threshold value

[39]. It has been reported that the incidence of 18 kinds of

infectious diseases from 1970 to 2007, including typhoid and

paratyphoid fever, had decreased from 4000,4340/105 to

120,250/105 people [40]. Since the establishment of the People’s

Republic of China, along with the development of the economy,

the improvement of sanitary conditions and the popularity of the

centralized water supply, great achievements have been made in

the prevention and control of typhoid and paratyphoid fever.

Table 2. Incidence of typhoid and paratyphoid fever from
1975 to 2010 (1/105).

Year
Time series
value Incidence Year

Time series
value Incidence

1975 1 9.61 1993 19 7.51

1976 2 7.68 1994 20 7.75

1977 3 12.82 1995 21 6.10

1978 4 15.58 1996 22 5.61

1979 5 10.53 1997 23 4.83

1980 6 11.94 1998 24 4.80

1981 7 12.72 1999 25 4.08

1982 8 14.25 2000 26 4.19

1983 9 11.24 2001 27 5.07

1984 10 9.75 2002 28 4.47

1985 11 8.35 2003 29 4.17

1986 12 9.76 2004 30 3.80

1987 13 13.02 2005 31 2.65

1988 14 14.01 2006 32 1.99

1989 15 10.83 2007 33 1.55

1990 16 10.32 2008 34 1.18

1991 17 10.45 2009 35 1.28

1992 18 7.91 2010 36 1.05

Note: underline data were abnormal values.
doi:10.1371/journal.pone.0060601.t002

Table 3. The simulative values and errors of GM(1,1) model and DGM model.

GM(1,1) model DGM model

Original value Simulative value q̂q(0)(k) Relative error* (%) Simulative value q̂q(0)(k) Relative error (%)

q(0)(1) 4 4.00 -- 4.00 --

q(0)(2) 8 7.30 8.75 7.62g 4.75

q(0)(3) 14 13.39 4.36 14.26g 1.86

q(0)(4) 27 24.57 9.00 26.69g 1.15

Note: * Relative error =
q(0)(k){q̂q(0)(k)

q(0)(k)

����
����|100%

gThe simulative values of DGM model were close to the original values.
doi:10.1371/journal.pone.0060601.t003
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Simultaneously, waterborne typhoid outbreak has been signifi-

cantly reduced. During 1995 to 2004, the number of cases of

morbidity and mortality of typhoid and paratyphoid fever has

decreased annually. Some poverty-stricken areas are still at high

risk because of uneven economic development, and a large

number of typhoid carriers remain after a previous outbreak that

can lead to a fresh outbreak [35]. Therefore, using a single

threshold value to determine the abnormal value of different

historical periods is not quite reasonable. The prevalence of

disease is affected by not only its inherent periodic variation or

long-term trends, but also effective prevention and control

measures by the government. The epidemic trend of most of the

diseases experiences a rise at first, then a decline, and the epidemic

curve is displayed as a multi-peak curve with varying heights. Prior

to 1990, peaks were obviously higher than in the years after 1990.

China began the implementation of the socialist market economy

in the 1990s. We speculated that social civilization and progress of

health conditions caused by this significant economic policy was an

epochal shift for infectious diseases too, which not only changed

the original trends, but also decreased the peak value. Taking all

these aspects and the data features into consideration, we took the

years, when incidence of typhoid and paratyphoid fever rose to the

highest and was 1.2 times higher than the average of previous

three years, as the abnormal points in the application of the grey

disaster prediction model. The peak value of year 2001 was not as

obvious as the other three, but still could be considered as a small

epidemic during a different historic period. The emergence of the

peak might be because of an increase in sporadic cases, or disease

outbreak in some regions. Close attention should be paid to both

situations, especially the second one.

In this study, the GM(1,1) model and DGM model were used to

construct the grey disaster model. The simulation results showed

that the DGM model had better performance. Then we chose the

DGM model to make the prediction and found that the fifth

epidemic peak time will occur between 2023 to 2025.

We used the grey disaster prediction model to analyze the

incidence data of typhoid and paratyphoid fever based on its

special characteristics in China, and demonstrated that application

of grey prediction resulted in satisfactory accuracy. This indicates

that the grey disaster forecast model enables prediction of

epidemic peaks of typhoid and paratyphoid fever. Thus, grey

prediction can be used to provide a foundation for planning and

management decisions to prevent and control this disease.

Although the grey disaster prediction model has yielded good

results, it may not be suitable for other specific situations. The grey

model is more accurate when modeling for short- term forecasting,

but for long-term forecasting, the accuracy may be degraded [22].

In addition, the epidemic of disease is inevitably affected by many

factors, including external factors and health factors that can

change disease progression. By reviewing the recently published

literature for reports that evaluated methods for the detection of

infectious disease outbreaks in public health surveillance data,

Watkins et al. categorized evaluation methods into four main

methods: the descriptive, derived, epidemiological and simulation

approaches, and concluded that no single approach could fulfill all

evaluation requirements [41]. So, the appropriate model should be

selected through comprehensive consideration and conscientious

analysis according to the actual circumstance, and be promptly

adjusted in relation to specific conditions in the community,

changes in the pattern of life and the natural history of disease.

Only after that can we take full advantage of prediction models to

optimize long-term benefits.

Author Contributions

Conceived and designed the experiments: XS XT. Analyzed the data: XS

LO XC XZ. Wrote the paper: XS LO XC XZ XT.

References

1. Whitaker JA, Franco-Paredes C, del Rio C, Edupuganti S (2009) Rethinking

typhoid fever vaccines: implications for travelers and people living in highly

endemic areas. J Travel Med 16: 46–52.

2. Connor BA, Schwartz E (2005) Typhoid and paratyphoid fever in travellers.

Lancet Infect Dis 5: 623–628.

3. Ericsson CD, Hatz C, Basnyat B, Maskey AP, Zimmerman MD, et al. (2005)

Enteric (typhoid) fever in travelers. Clinical infectious diseases 41: 1467–1472.

4. Crump JA, Mintz ED (2010) Global trends in typhoid and paratyphoid fever.

Clin Infect Dis 50: 241–246.

5. Ochiai RL, Acosta CJ, Danovaro-Holliday M, Baiqing D, Bhattacharya SK, et

al. (2008) A study of typhoid fever in five Asian countries: disease burden and

implications for controls. Bull World Health Organ 86: 260–268.

6. Breiman RF, Cosmas L, Njuguna H, Audi A, Olack B, et al. (2012) Population-

based incidence of typhoid fever in an urban informal settlement and a rural

area in Kenya: Implications for typhoid vaccine use in Africa. PLoS One 7:

e29119.

7. Blackstock SJ, Sheppeard VK, Paterson JM, Ralph AP (2012) Typhoid and

paratyphoid fever in Western Sydney Local Health District, NSW, January–June

2011. N S W Public Health Bull 23: 148–152.

8. Neil KP, Sodha SV, Lukwago L, O-Tipo S, Mikoleit M, et al. (2012) A large

outbreak of typhoid fever associated with a high rate of intestinal perforation in

Kasese District, Uganda, 2008–2009. Clin Infect Dis 54: 1091–1099.

9. Barat S, Willer Y, Rizos K, Claudi B, Mazé A, et al. (2012) Immunity to
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