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Post-transplant diabetes mellitus (PTDM) is one of the most common and deleterious
comorbidities after solid organ transplantation (SOT). Its incidence varies depending on
the organs transplanted and can affect up to 40% of patients. Current research indicates
that PTDM shares several common features with type 2 diabetes mellitus (T2DM) in non-
transplant populations. However, the pathophysiology of PTDM is still poorly
characterized. Therefore, ways should be sought to improve its diagnosis and
therapeutic management. A clear correlation has been made between PTDM and the
use of immunosuppressants. Moreover, immunosuppressants are known to induce gut
microbiota alterations, also called intestinal dysbiosis. Whereas the role of intestinal
dysbiosis in the development of T2DM has been well documented, little is known about
its impacts on PTDM. Functional alterations associated with intestinal dysbiosis, especially
defects in pathways generating physiologically active bacterial metabolites (e.g., short-
chain fatty acids, trimethylamine N-oxide, indole and kynurenine) are known to favour
several metabolic disorders. This publication aims at discussing the potential role of
intestinal dysbiosis and dysregulation of bacterial metabolites associated with
immunosuppressive therapy in the occurrence of PTDM.

Keywords: post-transplant diabetes mellitus, type 2 diabetes mellitus, immunosuppressant, intestinal dysbiosis,
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1 INTRODUCTION

Solid organ transplantation (SOT) is the best replacement therapy
in numerous cases of organ failure or end-stage organ dysfunction
(e.g., kidney, liver, heart, or lung). Immune tolerance of the
transplanted organ requires a complex and life-long
immunosuppressive therapy, involving combinations of drugs
from six main classes: 1) anti-proliferative agents (azathioprine,
mycophenolic acid); 2) calcineurin inhibitors (cyclosporine,
tacrolimus); 3) mammalian target of rapamycin (mTOR)
inhibitors (sirolimus, everolimus); 4) co-stimulation blockers
targeting CD80/CD86 (belatacept); 5) anti-lymphocyte polyclonal
or monoclonal antibodies (e.g., anti-thymocyte globulins,
basiliximab); and 6) corticosteroids (e.g., prednisolone) (1, 2).
The immunosuppressive strategy along time consists of: an
induction phase that involves anti-lymphocyte antibodies,
corticosteroids and the use of higher doses of “maintenance”
immunosuppressants such as antimetabolites and calcineurin
inhibitors; a life-long maintenance phase with different
combinations of classes 1 to 4 with or without corticosteroids
(3); and treatment of rejection, using boluses of corticosteroids,
anti-thymocyte globulins, increased doses of maintenance drugs,
and potentially other drugs in case of antibody-mediated rejection
(ABMR) (4). Unfortunately, these therapeutic regimens increase
the risk of opportunistic bacterial, viral, and fungal infections (5)
and expose patients to numerous adverse effects and several
metabolic disorders.

Post-transplant diabetes mellitus (PTDM) is a common and
deleterious co-morbidity, which significantly contributes to
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adverse outcome. PTDM is an endocrine and metabolic disease
characterized by a dysfunction of pancreatic b-cell, insulin
resistance, and high blood glucose. Among the risk factors of
PTDM, several are common with type 2 diabetes mellitus
(T2DM) (e.g., age, abdominal obesity) whereas others are
transplant-specific (e.g., immunosuppressive drugs with
diabetogenic properties, infection, and post-transplant weight
gain) (6, 7). Immunosuppressive drugs can influence gut
homeostasis through an impact on intestinal epithelial cells or
organs associated with the digestive tract and induce changes in
the richness and diversity of the gut microbiota. This drug-
microbiota relationship may directly or indirectly affect the anti-
rejection treatment efficacy as well as disrupt the microbiota
balance and favour the development of metabolic disorders (8).

Although preventative and therapeutic strategies are being
deployed to prevent PTDM, its incidence remains high. To
improve the effectiveness of such strategies, it is necessary to
better understand PTDM pathophysiology. Our hypothesis is
that modifications of the gut microbiome, also named intestinal
dysbiosis, a well-known contributor to type 2 diabetes mellitus
(T2DM) in the non-transplant population, play an even larger
role in the pathogenesis of PTDM. To substantiate this
hypothesis, we herein provide a picture of the impact of SOT
and immunosuppressive therapy on the gut homeostasis
including gut microbiota. Subsequently, we discuss the
potential role of intestinal dysbiosis in the development of
PTDM based on knowledge gained from T2DM and provide
arguments in favour of monitoring the microbiota diversity and
function to decipher PTDM pathophysiology.
July 2022 | Volume 13 | Article 898878
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2 CURRENT KNOWLEDGE ON POST-
TRANSPLANT DIABETES MELLITUS

2.1 Diagnosis and Incidence
PTDM is a one of the most important comorbidities associated
with SOT. The evaluation of its incidence among transplant
patients has suffered from the lack of a consensual definition.
The first international consensus guidelines about new-onset
diabetes after transplantation (NODAT) were published in 2003
(9). A second international consensus conference was held in 2013
to review the criteria and available evidence and proposed an
update to the previous guidance (10). Among many
recommendations, the first was to enlarge the notion of
NODAT to that of PTDM. PTDM encompasses several complex
clinical entities and includes hyperglycemia in the post-transplant
period resulting from known or unknown pre-existing diabetes,
insulin resistance or insulinopenia, transient hyperglycemia, and
NODAT. Therefore, this definition encompasses pre-transplant in
addition to “new-onset” diabetes (10). Currently, the different
diagnostic criteria for PTDM (Table S1) are based on those of the
American Diabetes Association and on the World Health
Organization criteria for non-transplant patients (11).

The incidence of PTDM ranges from 10 to 40% depending on
the transplanted organ. Recently, PTDM has been reported to
occur in 10-20% of kidney, 20-40% of liver or lung, and 20-30%
of heart transplant recipients (6). These large ranges may be
explained by the type of organ, the presence of modifiable and
non-modifiable risk factors, and the follow-up duration (5). The
development of diabetes in transplant recipients is associated
with a higher risk of graft failure, patient death, and other adverse
outcomes (e.g., cardiovascular disease and infection) (12). More
specifically, PTDM is associated with a higher incidence of
cardiovascular disease for liver and kidney transplant recipients
(13, 14). Heart transplant recipients with PTDM present an
increased risk of comorbidities and premature death (15).
Moreover, PTDM in lung transplant recipients is associated
with shorter survival (16).

2.2 Pathogenesis and Risk Factors
PTDM shares common features with type 2 diabetes mellitus
(T2DM) such as insulin resistance, hypertriglyceridaemia,
cardiovascular events, and chronic low-grade inflammation.
Hyperglycaemia in PTDM is associated with pancreatic b-cells
dysfunction and decreased insulin sensitivity (6, 17). Studies in
PTDMpatients reported impaired insulin-mediated glucose uptake
in peripheral tissue, impaired insulin-mediated suppression of
hepatic glucose output (18) and insufficient incretin release
leading to an increase of glucagon release by the pancreas (19).
Pre-existing risk factors common to PTDM and T2DM, such as
age, abdominal obesity, family history, and ethnicity favour the
development of PTDM. The morphotype in the pre-transplant
period could predict to some extent the development of PTDM in
kidney transplant recipients (20). Moreover, several T2DM-
associated single nucleotide polymorphisms (SNPs) in interleukin
genes (e.g., IL-7R, IL-2, and IL-17R) are associated with increased
pro-inflammatory pathways and PTDM development (21, 22).
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Among transplant-related risks factors, numerous studies have
demonstrated the involvement of certain immunosuppressive drugs
in the development of NODAT. Calcineurin inhibitors dysregulate
the function and growth of pancreatic b-cells through the
calcineurin/NFAT signalling pathway. Corticosteroids are known
to decrease the secretion of, and sensitivity to, insulin (23).
Sirolimus favours insulin resistance and decreases pancreatic b-
cell proliferation too (24). Consistently, mTOR inhibitors are
associated with a higher risk of PTDM (25). Above all, recent
analysis pointed toward the contribution of immunosuppressants
to the dysregulation of genes involved in insulin production and
secretion (24). Viral infections are a source of inflammation and
represent yet another risk factor of PTDM. Numerous studies have
reported an increased risk of PTDM in kidney and liver transplant
recipients positive for the hepatitis C virus (HCV) (26–28) or in
kidney transplant recipients positive for the cytomegalovirus
(CMV) (29). Although associations between these viral infections
and PTDM are generally attributed to the promotion of a pro-
inflammatory environment as well as to pancreatic b-cell
dysfunctions, extensive studies are missing.

Actually, the preventative strategies against PTDM involve
lifestyle (e.g., dietary, physical activity) modifications or adapted
immunosuppressive regimens (30). However, the frequency of
PTDM has not decreased significantly over the last decade,
suggesting that current knowledge is not sufficient and that
uncharacterized phenomena contribute to PTDM. Several risk
factors presented above (e.g., obesity, immunosuppression,
infection) are accompanied by an imbalance in the diversity of
the gut microbiome, called intestinal dysbiosis, metabolic
disorders and increased intestinal permeability. These
alterations are well known to favour T2DM in the non-
transplant population (31). Therefore, the drastic dynamic
changes of the gut microbiota during SOT may contribute
even more to the pathogenesis of PTDM.
3 ALTERATIONS OF GUT HOMEOSTASIS
IN SOLID ORGAN TRANSPLANTATION

Gut homeostasis is highly dependent on the intimate crosstalk
between the gastrointestinal tract and the gut microbiota. The
gut microbiota represents the populations of commensal
microorganisms that reside in the gastrointestinal tract and
participate in the intestinal barrier integrity. Recent scientific
advances have underlined the fundamental role of this
microbiota in the regulation of the immune system, as well as
the close relationship between intestinal dysbiosis and the
occurrence of numerous local or systemic diseases (mainly
cardiovascular or metabolic disorders) (32, 33). The gut
microbiota may therefore represent an actionable target to
improve immune tolerance and long-term graft survival. The
diversity, richness, and activity of its resident microorganisms
are constantly being modified under the influence of various
factors (e.g., genetic, dietary, environmental, and therapeutic). It
is worth mentioning that in transplantation, the nature of the
transplanted organ, the various pre- and post-transplant
July 2022 | Volume 13 | Article 898878
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pathologies, and multiple therapies accentuate the gut
microbiota variability. The dynamic changes of the gut
microbiota have been widely studied in some diseases, but very
seldom in transplant patients. We summarize below current
knowledge about the relationships between the gut microbiota
and SOT outcomes (Figure 1A), including the impact of the
immunosuppressive protocol and the occurrence of post-
transplant co-morbidities.

3.1 Dynamic Changes of the Gut
Microbiota in Transplant Patients
The surgical procedure of transplantation which is generally an
abdominal act, represents a high risk of intestinal dysbiosis (34, 35).
Regarding the post-transplantation period, a cohort study in
kidney transplant recipients reported changes in gut microbial
diversity in favour of an increase in Proteobacteria, a phylum that
includes potentially virulent pathogens (e.g., Escherichia coli,
Klebsiella pneumoniae, Pseudomonas aeruginosa) (36). The faecal
microbial diversity was decreased in some patients with post-
transplant complications (diarrhoea, acute rejection, urinary tract
Frontiers in Endocrinology | www.frontiersin.org 4
infection) (37). In addition, the diversity of the gut microbiota was
significantly lower and the levels of Proteobacteria higher with
abundant Escherichia coli in kidney transplant recipients compared
to healthy control (38). In liver transplant recipients, this diversity
transiently decreased two weeks after transplantation and then
gradually increased back to reach the pre-transplantation levels
after 5 weeks (39). Anti-infectious agents used in transplanted
patients to prevent opportunistic infections, mainly antibiotics, are
known to affect the gut microbiota homeostasis and to promote
intestinal dysbiosis (36, 40).

3.2 Effect of the Immunosuppressive
Therapy on the Gut Homeostasis
3.2.1 Interactions Between the Immunosuppressive
Drugs and the Gut Microbiota
A recent review from Gabarre et al. has provided a thorough
overview of the bidirectional interaction between the
immunosuppressants and the gut microbiota (8). The use of the
anti-proliferative agent, mycophenolic acid, initially known for its
antibacterial, antifungal and antiviral properties, is associated to a
A

B

FIGURE 1 | Solid organ transplantation associated pharmacological and non-pharmacological interventions on gut microbiota homeostasis (A) Overview of the
impact of SOT on gut microbiota homeostasis associated with (blue) the surgical procedure, anti-infectious prophylaxis, immunosuppressants, and (orange) SOT-
related co-morbidities. (B) Putative consequences of an imbalance in SCFA-producing bacteria induced by SOT, which favour the development of PTDM. Illustration
created with BioRender.com.
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decrease in the diversity of the gut microbiota in kidney transplant
recipients (38, 41). Further investigations in preclinical models have
revealed an alteration of the intestinal microbiota in mycophenolic
acid-treated mice with an expansion of bacteria belonging to the
Proteobacteria phylum (42, 43). In addition, a decrease of bacterial
metabolites was also observed in a mouse model of mycophenolate-
induced enteropathy (44). Mycophenolic acid is thought to
selectively promote the expansion of b-glucuronidase-expressing
bacteria of Enterobacteriaceae family (42, 43). The bacterial b-
glucuronidase activity promotes enterohepatic recirculation of
mycophenolic acid and increases its exposure to intestinal
epithelial cells that could probably explain the occurrence of
gastrointestinal adverse effects. Regarding corticosteroids, rats
treated orally with dexamethasone sodium phosphate showed a
decrease in the richness and diversity of their gut microbiota (45).
Prednisolone-treated mice showed a reduction in the population of
Bacteroidetes and an increase in Firmicutes in faecal samples (46).
For calcineurin inhibitors, a study reported altered microbiota in
high-dose tacrolimus-treated mice (8, 47). Another study based on
intraperitoneal injection of tacrolimus in rats showed that the
relative abundance of several bacterial species in the faeces was
decreased (48). The composition of the gut microbiota can affect the
metabolism of tacrolimus as some commensal gut bacteria (e.g.,
Faecalibacterium prausnitzii) have been shown to convert it to less
potent metabolites (49).

These studies showed in the one hand, that several
immunosuppressive drugs induced intestinal dysbiosis leading to
change inmicrobial diversity favouring the increase of opportunistic
pathobionts and in other hand, that the gut microbiota influenced
the immunosuppressive drugs metabolism and efficacy. However,
the characteristics of gut microbiota changes differ across drugs and
studies and systematic and longitudinal investigations that could
provide insight into these trends are still lacking. However, the
above-mentioned review lists the immunosuppressants inducing
intestinal dysbiosis and provides an overview of the related changes
in the microbiota (8).

3.2.2 Immunosuppressive Drugs Impacts on
Intestinal Barrier Integrity and Pancreas
Homeostasis
In transplant patients, immunosuppressive drugs can alter the
intestinal barrier integrity and favour intestinal permeability.
Intestinal permeability is characterized by a loss of the gut
epithelial wall integrity allowing different sizes of compounds to
enter the systemic circulation (food antigens, commensal or
pathogens bacteria, and their metabolites) (50). By using an
intestinal epithelial cell line, Qasim et al. have demonstrated the
potential of mycophenolic acid to alter tight junction proteins
expression and distribution and induce intestinal permeability
that may be responsible for gastrointestinal adverse effects
observed in transplant patients (51). This intestinal permeability
could also have deleterious consequences such as chronic systemic
inflammation (52). Another study has demonstrated that
tacrolimus and sirolimus by inhibiting cell viability and inducing
reactive oxygen species formation, can promote major changes in
intestinal barrier function (53).
Frontiers in Endocrinology | www.frontiersin.org 5
The immunosuppressive drugs can also alter the homeostasis
of organs associated with the digestive tract. We herein only focus
on the influence of the pancreas homeostasis as it plays a key role
in the regulation of nutrient digestion by releasing digestive
enzymes and glucose homeostasis (54). Some rare cases of drug-
induced pancreatitis have been reported under tacrolimus (55) or
mycophenolic acid (56) treatments. However, there is no strong
evidence of the direct impact of the immunosuppressive drug on
the pancreas homeostasis that could rationalize the occurrence of
PTDM. Therefore, the whole impact of the environment (i.e.,
dysbiosis, immunosuppressive therapy, co-morbidities) could
account for the development of PTDM.

3.3 Impact of SOT-Related Co-Morbidities
on the Gut Microbiota
In the first months post-transplantation, patients are at high risk
of developing infections due to a weakened immune system.
Serious infections can be caused by commensal or nosocomial
bacterial (e.g., Pseudomonas, Klebsiella, Escherichia), viral (e.g.,
cytomegalovirus, Epstein-Barr virus, influenza) or fungal (e.g.,
Candida or Aspergillus species) pathogens (57). Clostridium
difficile, a frequent perpetrator of nosocomial infection (7.4%
prevalence in SOT patients), is linked with the emergence of
intestinal dysbiosis (58, 59). Gut microbiome alteration is
frequently associated with these infections and is characterized
by an enrichment of opportunistic pathogens and a depletion of
beneficial commensals (60, 61). For example, a preclinical study
has reported variations in gut microbiota diversity in
cytomegalovirus-infected mice (62).

The main metabolic complications after SOT include PTDM,
non-alcoholic fatty liver disease, dyslipidaemia, and obesity. These
metabolic disorders may increase the risk of cardiovascular events
(hypertension, coronary artery disease, stroke, arteritis) and affect
post-transplant graft outcomes (63–66). For instance, non-alcoholic
fatty liver disease is associated with an increase in Proteobacteria,
leading to gut dysbiosis (67, 68). Immunosuppressive drugs such as
corticosteroids and calcineurin inhibitors can favour hypertension
and weight gain (69). This weight gain of SOT patients is critical in
post-transplant period, since obesity has been significantly
associated with a higher overall mortality and reduced allograft
survival particularly in renal transplant patients (70). These
metabolic complications can have a deleterious effect on gut
microbiota homeostasis. Obesity affect the diversity of intestinal
microbiota, with an increase in Firmicutes and a reduction of
Bacteroidetes in a mice model (71). Intestinal dysbiosis has been
observed in obese people, with an increased Firmicutes-to-
Bacteroidetes ratio (72).

In summary, SOT therapy is accompanied by intestinal
dysbiosis arising from a combination of factors including
lifestyle and dietary changes, surgical procedure, and
pharmacological treatments (e.g., anti-infectious prophylaxis,
immunosuppressant). Regarding the gut microbiota-diabetes
relationship, several studies have demonstrated a huge diversity
imbalance in diabetes patients (31). Given the predominant role
of this dysbiosis in the pathogenicity of T2DM, the hypothesis of
its involvement in PTDM seems strong.
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4 POTENTIAL INVOLVEMENT OF
INTESTINAL DYSBIOSIS TO THE
PATHOPHYSIOLOGY OF PTDM

In this section, we will put an accent on the gut microbiome
changes observed in transplant recipients that are common with
non-transplant T2DM. In this context, we will describe the putative
impact of intestinal dysbiosis on the bacterial metabolites andmore
precisely on short-chain fatty acids (SCFA) and their possible role
in the development of PTDM (Figure 1B).

As previously mentioned, several immunosuppressive drugs
induce intestinal dysbiosis, generally characterised by a reduction
in the phylum of Bacteroidetes, contrasting with an expansion of the
phylum of Firmicutes (73). The same tendency has been observed in
T2DM patients (74). This increased Firmicutes-to-Bacteroidetes
ratio was associated with an impairment of nutrient absorption
and glucose tolerance, which pave the way for T2DM (73).
Moreover, the relative abundance of Proteobacteria is increased in
kidney and liver transplant recipients (36, 38), similarly to T2DM
patients (74, 75). Some bacterial strains belonging to this phylum
are known to favour pathogenic infections (e.g., Escherichia coli,
Klebsiella pneumoniae, Pseudomonas aeruginosa) (36, 38). Gut
microbiome changes can induce global metabolic disorders.
Indeed, the gut bacterial ecosystem ensures the production of
microbial metabolites (e.g., SCFA, trimethylamine N-oxide, indole
and kynurenine). These metabolites constitute the communication
system of the host-microbiome crosstalk (76). Among them, SCFA
are the most commonly studied small metabolites produced by the
gut microbiota and they represent a robust link between the
microbiota and systemic inflammatory diseases, as demonstrated
by recent studies (33, 75).

SCFA, and more precisely acetate, propionate, and butyrate,
come from the fermentation of indigestible carbohydrates. SCFA
are pharmacologically active and can exert their numeral
pharmacological functions by either stimulating G-protein-
coupled receptors (GPCR41/43/109A) or can be absorbed by
colonocytes through multiple monocarboxylate transporters
(e.g., sodium-coupled monocarboxylate transporters (SMCT1),
monocarboxylate transporter (MCT1/4/5) (77). In the systemic
circulation, they can participate in the regulation of several organs
(e.g., liver, lung, brain) (33, 78, 79). For example, they can decrease
allergic inflammation in the lungs, or can be used as a source of
energy by the kidneys, the myocardium and other muscles (80).
SCFA facilitate IL-10 synthesis through the polarization of T-cells
towards regulatory T-cells, which exhibits anti-inflammatory
properties (81). They also exert a positive effect on intestinal cell
homeostasis through the maintenance of the epithelial barrier
function through the expression of tight junctions that decrease
intestinal permeability (82).

Alteration of SCFA profiles has been observed in T2DM
patients, with a significant reduction of faecal propionate and
butyrate concentrations as compared to control subjects (83).
Moreover, a metagenome-wide association study showed a
decrease in the abundance of some universal butyrate-producing
bacteria in T2DM patients such as those observed in transplant
recipients (8, 47, 84). A European cohort study reported the
Frontiers in Endocrinology | www.frontiersin.org 6
decrease of butyrate-producing bacteria (such as Roseburia
species and Faecalibacterium prauznitzii) in the gut microbiota
of women with T2DM (85). These studies provide evidence that
T2DM and SOT have in common SCFA-producing taxa
alterations leading to decreased SCFA production. Butyrate and
propionate influence glucose metabolism through the activation of
intestinal gluconeogenesis, while acetate and propionate are
substrates for gluconeogenesis and lipogenesis in the liver (86).
SCFA play a role in blood glucose concentration by favouring the
secretion of incretin hormones, as demonstrated by the butyrate-
induced secretion of glucagon-like peptide 1 (GLP1) in a pre-
clinical model (87). At the cellular level, the binding of SCFA to
GPR41 and GPR43 in the enteroendocrine L-cells leads to
increased GLP1 and peptide YY levels, which improve cell
sensitivity to insulin and promote satiety. Furthermore, SCFA
play a protective role against obesity and insulin resistance (73, 88)
and have anti-inflammatory properties, especially butyrate. A
decrease of butyrate-producing bacteria may favour metabolic
inflammation, which in turn clearly induces insulin resistance
and foster T2DMdevelopment (75). At the opposite, incubation of
neutrophils with SCFA in vitro suppressed pro-inflammatory
makers increased in T2DM, such as IL-6 and TNF-a (89). A
recent experimental study showed that butyrate and acetate
protected pancreatic b-cells against stressful conditions and
alleviated metabolic stressor-induced apoptosis, mitochondrial
dysfunction and ROS overproduction (88). Moreover, by
stimulating their receptors, SCFA have been involved in the
regulation of pancreatic b-cells function and insulin secretion
(90). Overall, these studies demonstrated the important role of
SCFA in the pathophysiology of diabetes through various
mechanisms of action, which have been well detailed in a recent
review (89). The decreased richness of SCFA-producing bacteria
in SOT may therefore promote and/or contribute to the
development of PTDM.
5 CONCLUSION

This article provides hints in favour of a possible association
between intestinal dysbiosis and PTDM, based on complementary
and coherent scientific evidence. Further investigations are required
to reinforce the descriptive data available for SOT. Characterising
gut microbiota composition would help to understand the
mechanisms and/or to identify predictive biomarkers of PTDM.
Themeasurement of SCFA concentrations in blood and/or faeces as
indicators of the gut microbiota functionality in the pre- and post-
transplant periods could also make the case stronger. Moreover,
dietary supplementation with SCFA as a postbiotic could restore the
gut microbiota homeostasis and constitute a complementary
therapy for glucose lowering in PTDM. A recent paper stressed
that the implementation of an effective PTDM prevention strategy
requires relevant identification of at-risk patients, solid knowledge
of its pathogenesis and early detection tools (30). Monitoring the gut
microbiota in SOT would comply with these objectives since it
could help decipher the pathophysiology PTDM and detect patients
at increased risk early.
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