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Abstract

Oncolytic virotherapies, including the modified herpes simplex virus talimogene laherparep-

vec (T-VEC), have shown great promise as potent instigators of anti-tumour immune

effects. The OPTiM trial, in particular, demonstrated the superior anti-cancer effects of T-

VEC as compared to systemic immunotherapy treatment using exogenous administration of

granulocyte-macrophage colony-stimulating factor (GM-CSF). Theoretically, a combined

approach leveraging exogenous cytokine immunotherapy and oncolytic virotherapy would

elicit an even greater immune response and improve patient outcomes. However, regimen

scheduling of combination immunostimulation and T-VEC therapy has yet to be established.

Here, we calibrate a computational biology model of sensitive and resistant tumour cells and

immune interactions for implementation into an in silico clinical trial to test and individualize

combination immuno- and virotherapy. By personalizing and optimizing combination oncoly-

tic virotherapy and immunostimulatory therapy, we show improved simulated patient out-

comes for individuals with late-stage melanoma. More crucially, through evaluation of

individualized regimens, we identified determinants of combination GM-CSF and T-VEC

therapy that can be translated into clinically-actionable dosing strategies without further

personalization. Our results serve as a proof-of-concept for interdisciplinary approaches to

determining combination therapy, and suggest promising avenues of investigation towards

tailored combination immunotherapy/oncolytic virotherapy.

Author summary

The advent of biological therapies for anti-cancer treatment has had a significant impact

on patient outcomes. Targeted xenobiotics, including oncolytic viruses, in combination

with existing, more general, immunotherapies like exogenous cytokines show great prom-

ise for continuing to improve cancer care. However, determining optimal combination

regimens can be difficult, given that testing proposed schedules would require large
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cohorts of patients enrolled in clinical trials. Fortunately, computational biology can help

to address treatment scheduling while simultaneously helping to unravel the mechanisms

driving therapeutic responses. In this work, we integrate a mathematical model of GM-

CSF and talimogene laherparepvec (T-VEC) oncolytic virotherapy into a virtual clinical

trial to optimize their administration in combination. Using this platform, we inferred a

clinically-actionable combination schedule for patients with late-stage melanoma that sig-

nificantly improved virtual patient outcome when compared to GM-CSF and T-VEC

monotherapies, and a standard combination strategy. Our results outline a rational

approach to therapy optimization with meaningful consequences for how we effectively

design and implement clinical trials to maximize their success, and how we treat mela-

noma with combined immuno- and virotherapy.

Introduction

Modern cancer treatments increasingly incorporate a broad class of biological therapies

known as immunotherapies to activate the immune system against cancer cells in a general-

ized or targeted way [1, 2]. These therapies seek to exploit existing tumour-immune interac-

tions to more effectively recognize and destroy tumour cells with the goal of minimizing off-

target and detrimental side effects. Current and investigational immunotherapies include

immune-checkpoint inhibitors, monoclonal antibodies, CAR-T cells, and the exogenous

administration of cytokines. One such cytokine, granulocyte-macrophage colony-stimulating

factor (GM-CSF), is a white blood cell growth factor responsible for stimulating granulocyte

production, and orchestrating innate inflammatory responses. GM-CSF has been used to

increase the efficacy of monoclonal antibodies, and has also been administered during B-cell

lymphoma treatment to activate certain immune cell subsets [2].

Another older idea, recently adopted in clinical applications, is to use oncolytic viruses to

destroy tumour cells [3, 4] and activate an immune response. Oncolytic viruses are genetically

engineered to preferentially attack and infect cancerous cells [5, 6], forcing infected cells to

undergo lysis and release tumour specific antigens that signal the immune system to mount an

anti-tumour response [7, 8]. This double effect against tumour cells has encouraged the study

of oncolytic viruses as a treatment against a variety of malignant solid tumours. In 2015, the

modified herpes simplex virus talimogene laherparepvec (T-VEC) was the first oncolytic virus

to be approved by the Food and Drug Administration in the United States for use in patients

with non-resectable melanoma [9–11]. T-VEC is specifically engineered to enhance expression

of GM-CSF after viral infection of tumour cells [9]. However, despite much promise, the effi-

cacy of oncolytic virus monotherapy has been limited [8, 12, 13]. As it is reasonable to expect

that immunotherapy and virotherapy could act synergistically to instigate an immune

response against tumour cells [14–16], recent efforts have focused on determining the antici-

pated benefit to their use in combination with a variety of immunotherapies [17, 18]. To that

end, GM-CSF has been considered as an immune stimulant during oncolytic virotherapy [2].

Combination therapy can carry a high therapy burden and may increase overall toxicity

[13, 18]. Unfortunately, running clinical trials for all possible (dose, time)-pairs of a proposed

combined treatment to determine efficient and safe scheduling is both time and cost prohibi-

tive. Consequently, regimen scheduling of combination immuno-/oncolytic virotherapy

remains an open problem. There is an established history of applications of modelling-based,

computational biology approaches to the in silico determination of potential therapeutic

schedules that concretely improve patient outcomes [19–22]. In a closely related recent paper,
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an in silico clinical trial approach to anti-CTLA-4 and anti-PD-L1 scheduling in breast cancer

demonstrated how systems pharmacology can be leveraged for therapy individualization, sub-

sequently increasing our understanding of the optimization of combination immunotherapy

treatment [23]. Similarly, by employing a straight-forward evolutionary game theory model to

determine adaptive treatment schedules, Zhang et al. [24] reported significant improvements

to prostate specific antigen in comparison to the standard-of-care in an on-going phase I clini-

cal trial. These and other [25] successes motivate the continued application of interdisciplinary

approaches in personalized oncology. Perhaps the most significant impact made by quantita-

tive methodologies is the identification and translation of the underlying determinants of

treatment success into actionable therapeutic strategies [26, 27].

To that end, here we detail the rationalization of combination immuno-/virotherapy sched-

uling for patients with late-stage melanoma by implementing an in silico clinical trial. By inte-

grating our previous computational biology model of sensitive and resistant tumour cells and

their interactions with the immune system into our virtual trial platform, we generated identi-

cal virtual patient cohorts to determine optimal, individualized treatment regimens for com-

bined GM-CSF immunotherapy and T-VEC. We used the results of the personalization to

infer a logical and clinically-actionable dosing scheme that significantly improved overall sur-

vival and progression free survival while substantially reducing drug burden. Crucially, we

identified key mechanisms that determine therapy success, which allowed us to define a suc-

cessful regimen in a new cohort of virtual patients. Our results highlight the potential and

potency of rational regimen prediction using a computational biology approach, and serve as a

proof-of-concept for future quantitative studies in oncology.

Methods

Computational biology model

To establish the synergistic interactions elicited between immunotherapy (exogenous

GM-CSF) and oncolytic virotherapy, we adapted our previous mathematical model [28]

describing the instantaneous change in tumour size, phagocyte numbers and cytokine concen-

trations over time. Here, GM-CSF acts as a cipher for a generic immunostimulatory cytokine,

selected to investigate the role of immunostimulation on therapy success, given its specific role

in T-VEC administration (namely that T-VEC is modified to enhance GM-CSF secretion).

The model (Eq (1)) tracks both immuno-susceptible and immuno-resistant tumour cell popu-

lations as they progress through the cell cycle. Quiescent immuno-susceptible tumour cells

(denoted by Q(t)) can be cleared through either random death or immune pressure at rates d1

and φQ respectively, or transit into the G1 phase to begin reproduction at rate a1. Cells in G1,

denoted by G1(t), are also subject to random death and immune clearance at rates d2 and φG
respectively before beginning the mitotic process at rate a2. Cells in G1 or the mitotic portion

of the cell cycle are susceptible to infection by the oncolytic virus at rate η. After completing

division, mitotic cells return to quiescence. While we do not explicitly consider mutations that

may increase immune recruitment, mitotic cells may mutate at rate μ into an immuno-resis-

tant cell type with a low probability. This immuno-resistant lineage maintains the same cell

cycle behaviour of non-resistant tumour cells, but evades immune pressure and is therefore

not subject to any immune interactions. We do not distinguish between different types of

immune cells in the tumour microenvironment, but rather model all phagocytes as a single

population denoted by P(t). These immune cells interact with the susceptible tumour cell pop-

ulation and produce a pro-inflammatory cytokine (e.g. interleukin-12, tumour necrosis factor,

interferon gamma, GM-CSF etc.) to recruit other phagocytes to the tumour site. Here, we

denote the pro-inflammatory cytokine concentration by C(t). The mathematical model

Determinants of combined GM-CSF and T-VEC success defined by in silico clinical trial

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007495 November 27, 2019 3 / 16

https://doi.org/10.1371/journal.pcbi.1007495


includes a distributed delay term that represents the heterogeneous cell cycle duration of

cancerous cells, and is derived in Cassidy and Humphries [28]. The various interactions

described above are schematized in Fig 1.

d
dtQðtÞ ¼ 2ð1 � mÞ

Z t

� 1

�

exp �
Z t

s

d̂K þ ZðUðxÞÞ þ cGðUðxÞÞdx
� �

�a2G1ðsÞKðt � sÞ
�

ds � ½a1 þ d1 þ cQðUðtÞÞ�QðtÞ

d
dtG1ðtÞ ¼ a1QðtÞ � ½a2 þ d2 þ ZðVðtÞÞ þ cGðUðtÞÞ�G1ðtÞ

d
dtQRðtÞ ¼ 2m

Z t

� 1

�

exp �
Z t

s

d̂K þ ZðUðxÞÞ þ cGðUðxÞÞdx
� �

�a2G1ðsÞKðt � sÞ
�

ds � ½a1 þ d1�QRðtÞ

þ2

Z t

� 1

exp �
Z t

s

d̂K þ ZðUðxÞÞdx
� �

a2G1;RðsÞKðt � sÞds

d
dtG1;RðtÞ ¼ a1QRðtÞ � ½a2 þ d2 þ ZðVðtÞÞ�G1;RðtÞ
d
dt IðtÞ ¼ ZðVðtÞÞ½G1ðtÞ þ G1;RðtÞ þ NðtÞ� � dIðtÞ
d
dtVðtÞ ¼ DoseVðtÞ � ZðVðtÞÞ½G1ðtÞ þ G1;RðtÞ þ NðtÞ� þ a½dIðtÞ� � oVðtÞ
d
dtCðtÞ ¼ DoseCðtÞ þ CprodðUðtÞÞ � kelimCðtÞ
d
dtPðtÞ ¼ φðCðtÞÞ � gpPðtÞ:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
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Model predictions are obtained by reducing the distributed DDE to an equivalent finite

dimensional system as previously described [28, 29]. Full details are provided in the Supple-

mentary Information file S1 Text.

Generation of in silico individuals and patient cohorts

To calibrate the model to available data, we adopted a sequential fitting procedure to parame-

terization. We used time series data from a number of experimental settings to estimate the

different model parameter values. We began by determining the parameters of the delay kernel

K(t − σ) using data from a cervical cancer cell line [30], before fitting the remaining parameters

in a sequential manner. First, data from tumour growth in immuno-compromised mice was

used to fit the tumour growth parameters [31]. Next, we fit the viral kinetic parameters using a

combination of in vitro data from Toda et al. and Randazzo et al. [32, 33]. Finally, we used data

from GM-CSF concentrations following administration of a T-VEC precursor in mice to fit

the parameters for the cytokine compartment. In each case, we reduced the mathematical

model to replicate the experimental set up, and minimized the least-squares error between

simulations and experimental data (S1 Text).

To reflect the inter-individual variability and heterogenous nature of patient cohorts, we

individualized the model by generating a unique set of parameters to represent a single patient.

To create individuals in the in silico clinical trial, we sampled the model’s parameters from a

generated normal distribution with mean m̂ determined in the sequential fitting procedure.

We defined p to be the vector of fitted parameter values and parameterized the normal distri-

butions so that 99.7% of patients fall within ½m̂ � 3s; m̂ þ 3s� ¼ ½0:5p; 1:5p�. If empirical infor-

mation about a parameter’s distribution was available, this measurement was used in lieu of

the previously described procedure. Virtual individuals are then created by sampling each
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model parameter from this distribution. We confirmed that using this methodology created

virtual patients with parameter values following an approximately normal distribution about

the mean empirical or fitted value (S4 Fig). The distribution of parameters approximates the

empirical distribution used to define the virtual population, indicating that this virtual patient

generation procedure produces a representative sample of the possible virtual population (and

not multiples of the same individual).

To further protect against the creation of nonrealistic virtual patients, we imposed selection

and inclusion criteria on each generated individual by verifying that each virtual patient

responds in a physiologically-realistic way without and with treatment [19]. Specifically, we

compared the predicted response of each virtual patient to currently approved oncolytic vir-

otherapy for stage IIIb or IV non-surgically resectable melanoma [8, 9]. Moreover, we assessed

whether the predicted tumour doubling time of each individual corresponded to clinically rel-

evant tumour doubling times [34], and used this comparison as the sole inclusion criterion for

subsequent enrolment in silico clinical trial simulations. To ensure that we were sampling

from the entirety of the physiologically realistic portion of parameter space [19], we performed

a local sensitivity analysis to determine the impact of parameter variation on model output

(S1 Text).

We accepted a total of 300 virtual patients generated by the parameter sampling and selec-

tion processes outlined above. Each virtual patient was then reproduced into n identical clones,

and each resulting clone was subsequently assigned to one of n separate cohorts (for example,

Fig 1. Pictorial representation of the tumour growth model. Quiescent cells activate to begin division by transiting

into the G1 phase of the cell-cycle. Cells exit G1 to enter the active phase and complete division. Most susceptible cells

in the active phase re-enter quiescence after mitosis, however certain dividing cells may mutate into an immuno-

resistant lineage (red dotted arrow). Immune interactions are driven by phagocytes who come into contact with

quiescent and G1 phase susceptible cells (dashed yellow lines). Tumour-immune interactions increase pro-

inflammatory cytokine concentrations to recruit additional phagocytes to the tumour site (blue dotted line). Cells and

cytokine are denoted by circles, processes by squares, and rates by arrows.

https://doi.org/10.1371/journal.pcbi.1007495.g001
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a treatment free control group, a mono-immunotherapy group, and an oncolytic virotherapy

group, for a total of n = 3 cohorts). In this way, the total number of participants is 300 times

the total number of simulated investigational arms, or 300n. For each of the 300n virtual

patients, we simulated the mathematical model to determine disease progression during treat-

ment (see S1 Text for simulation details). The in silico trial generation and simulation pro-

cesses are schematized in Fig 2a and 2b. As cohorts are identical, we are able to establish a

causal relationship between changes in treatment strategy and increased survival time.

Recapitulation of previous trial data

Using three identical cohorts, we evaluated patient outcomes when they received no treatment

(Cohort 1), immunotherapy (Cohort 2), or oncolytic virus monotherapy (Cohort 3) to mimic

the T-VEC OPTiM trial, where individuals were randomized to receive either intralesional

T-VEC or subcutaneous GM-CSF [9].

In both the in silico immunotherapy and oncolytic virus monotherapy cases, the dosing

schedules were identical to the ones used in OPTiM [9]: patients in the T-VEC arm received a

priming dose of 106 plaque forming units pfu/mL, followed by 108 pfu/mL doses to a maximal

total administration of 4 mL per treatment. T-VEC was administered every 14 days. Patients

in the GM-CSF arm received 125 μg/m2 of subcutaneous GM-CSF administered on 14

Fig 2. Summary of in silico clinical trial platform. a) Individual in silico patient parameter values are sampled from a

normal distribution of values based on an average parameterization. The model is then simulated for each individual

and predictions are tested for physiological relevance. If realistic, the virtual individual is cloned n times and each clone

is assigned to n separate cohorts. b) Each cohort undergoes a different treatment protocol, from which summary

statistics are collated and compared between other cohorts. Cohorts may also undergo therapy optimization (see

Methods) from which an empirical distribution for the probability of administering a given dose is inferred. c) The

probabilistic treatment protocol is based on probability distributions inferred from the individualization based on

procedures in a and b.

https://doi.org/10.1371/journal.pcbi.1007495.g002
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consecutive days followed by 14 days of no treatment. In both arms, treatment continued for

up to 12 months but could be discontinued due to disease progression, intolerability, or the

disappearance of injectable lesions. The median treatment length for the T-VEC and GM-CSF

arms were 23 and 10 weeks respectively.

The amount of T-VEC administered in the OPTiM trial was patient and physician

dependent [9]. In the simulated trial, we fixed an oncolytic virotherapy dose of 250 × 106

virions, corresponding to roughly 1 × 106 pfu [35]. Note that the units between the OPTiM

trial [9] and our in silico trial differ owing only to the units of the mathematical model’s

parameters and the conversion of pfu to infectious virions. Individuals receiving GM-CSF

immunotherapy in the in silico trial were administered 125 μg/m2 of GM-CSF daily for 14

days in 28 day cycles. For both arms, we simulated the model over a fixed treatment time of

6 months.

Late stage melanoma has a low survival rate [36]. Mortality as a function of tumour dou-

blings has been estimated to occur between 40 and 45 tumour doublings [34, 37, 38]. Given

that roughly 30 doublings occur before clinical presentation [38], we estimated that there are

approximately 10 and 15 tumour doublings between diagnosis and death. In silico patients

were therefore removed from the simulated trial after their predicted tumour size reached 2λ,

where λ denotes the removal number of tumour doublings for each individual. For each indi-

vidual, λ was obtained by sampling uniformly from the interval [10, 15], or the set of possible

tumour doubling values between diagnosis and death. The incorporation of different disease

stages within the OPTiM cohorts in our population approach is discussed in further detail in

the Supplementary Information file S1 Text.

Optimization routine for combined immuno- and oncolytic virotherapies

Adverse effects reported in the OPTiM trial including fatigue, chills and other flu like symp-

toms. Grade 3 adverse effects occurred in 36% and 21% of patients receiving T-VEC and

GM-CSF, respectively. Our model does not specifically address adverse effects. To provide

maximal therapeutic benefit with the lowest possible treatment burden, we defined individual-

ized dosing regimens to be the schedule that minimizes the cumulative tumour burden (the

area under the total tumour curve) over an individualization period of ten weeks and the

cumulative dose (the total amount of therapy administered over the treatment time). Thus, we

minimized the objective function

FðDoseÞ ¼ Cumulative Tumour Burdenþ aCumulative Dose;

where the positive scaling coefficient α weighted the importance of maximizing the therapeutic

effect versus the need to minimize treatment burden. This weighting values takes the need for

a treatment to be simultaneously effective and tolerable into account.

Tolerability of combined therapy was attained by bounding the permissible dose size to be

four times the standard dose amount, consistent with the maximum dose for T-VEC in the

OPTiM trial. In a clinical setting, it is preferable to administer discrete amounts of a drug, typi-

cally limited to be some multiple of the available vial size. We constrained the dose size to be

1–4-times the standard dose size for both immunotherapy and virotherapy. We allowed for

daily immunotherapy dosing and restricted virotherapy administration to days 7, 14, 21, 28,

35, 42, 49, 56, 63, 70 so that virotherapy defined the beginning of a week-long treatment cycle.

In total, 300 virtual patients underwent ten treatment cycles meaning there are 3000 total pos-

sible treatment cycles. Note that the schedule described above is potentially denser than what

was administered by Andtbacka et al. [9]. We allowed for increased treatment frequency to

measure its impact on improved clinical outcomes, under the constraint that the cumulative
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dose administered in the optimal treatment regimen must be less than the cumulative dose

administered during the OPTiM trial [9].

To determine personalized dosing regimens, the optimal function F(Dose) was mini-

mized over a ten-week treatment period using Matlab’s genetic algorithm function ga [39].

Genetic algorithms are heuristic global optimization routines inspired by natural selection

[40–42] that are frequently employed to estimate parameters in computational biology mod-

els. They have also previously been applied to study optimal dosing routines in immunology

[42].

We then generated personalized schedules for each of the 300 individuals in the optimal

combination cohort. These schedules determined an empirical distribution of the probability

of administering a dose of either immuno- or virotherapy on a given day of the treatment

period. Sampling from this distribution, we next determined the probability that immunother-

apy (PI(Dayi)) or virotherapy (PV(Dayi)) is administered on Day i of therapy to determine a

probabilistic treatment schedule that replicated the results of the treatment optimization on

the population-level (Fig 2b).

Inference and validation of optimal treatment schedule

We first determined whether a dose of immunotherapy was to be administered on the i-th

day of treatment by sampling from a Bernoulli distribution with probability given by

PI(Dayi) (see Table 1). If the sampling returns a success, a dose of immunotherapy was

administered. To determine the size of the immunotherapy dose, we sampled from the

empirical distribution inferred from the optimization step given in Table 1 (i.e. the probabil-

ity of giving a dose of size n given that immunotherapy is administered on day i). If the i-th

day is the beginning of a new treatment cycle, then virotherapy may be administered (Fig

2c). Whether a dose of oncolytic virus is administered and, if so, the dose size is determined

in precisely the same way as for immunotherapy, using the empirical distribution for vir-

otherapy given in Table 2.

To test the effectiveness of the probabilistic dosing schedule, we created and cloned 200

new virtual patients, and separated them into three trial arms. The first cohort received the

combined immuno- and virotherapy of 125 μg/m2 of GM-CSF daily for 14 days in 28 day

cycles and 1 dose of virotherapy every 14 days corresponding to a combination of the standard

of care reported in the OPTiM trial [9]. A maintenance therapy schedule was derived from the

results of the therapy optimization and was followed for the second cohort (see Results).

Finally, the probabilistic dosing regimen determined from the population optimization was

applied to the third arm. In all three arms, virtual patients received treatment for the median

treatment duration of the OPTiM trial. Mortality and removal from the trial followed the same

procedure described in theModel Calibration section above.

Table 1. Inferred probability distribution for GM-CSF scheduling. The probability of administering immunotherapy (PI(Dayi)) in each day of the treatment cycle and

the conditional probability PI(n|Dayi) of administering n doses of immunotherapy for n = 1, 2, 3, 4.

Dayi -3 -2 -1 Start of Cycle 1 2 3

PI(Dayi) 0.2043 0.2020 0.2037 0.2027 0.2200 0.2047 0.2057

PI(1|Dayi) 0.3719 0.3762 0.3519 0.3799 0.3803 0.3583 0.3387

PI(2|Dayi) 0.1599 0.1419 0.1702 0.1694 0.1439 0.1482 0.1929

PI(3|Dayi) 0.1550 0.1733 0.1637 0.1217 0.1348 0.1678 0.1378

PI(4|Dayi) 0.3132 0.3086 0.3142 0.3289 0.3409 0.3257 0.3306

https://doi.org/10.1371/journal.pcbi.1007495.t001
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Results

Computational biology model successfully predicts existing therapy results

We first compared the model predictions to the OPTiM results [9] to evaluate the computa-

tional biology model’s ability to accurately represent the outcomes for patients receiving either

GM-CSF or the oncolytic virus monotherapy T-VEC (Fig 3A) [9, 11]. No untreated virtual

patient survived to the end of the trial (S2 Fig) and both of the treated cohorts display

increased survival when compared to no treatment. Patients receiving virotherapy were the

most likely to survive until the end of the in silico trial, with a median survival time of 39.0

months, as compared to the reported median overall survival time of 41.1 months for patients

with stage IIIB, IIIC, or IVM1a melanoma in OPTiM. The median survival time for patients in

the GM-CSF arm of the in silico clinical trial was 31.3 months, just outside of the 95% confi-

dence interval of 17.4 to 29.6 months of the OPTiM trial. In both OPTiM and our in silico clin-

ical trial, the null hypothesis that T-VEC and GM-CSF have the same efficacy was rejected

with p< 0.001 using a log-rank test.

We considered the time from beginning of treatment until the tumour contains twice the

initial number of tumour cells as the time from treatment initiation to failure. The median

time to treatment failure was then predicted to be 2.9 (OPTiM trial: 2.9 with 95% confidence

interval of 2.8-4.0) and 13.9 months (OPTiM trial: 8.2 with 95% confidence interval of 6.5-9.9)

in the GM-CSF and T-VEC arms, respectively.

Table 2. Inferred probability distribution for T-VEC scheduling. The probability of administering virotherapy on

each 7th day of the treatment cycle (PV(Day7)) and the conditional probability PV(n|Day7) of administering n doses of

virotherapy for n = 1, 2, 3, 4.

PV(Day7) 0.5487

PV(1|Day7) 0.1592

PV(2|Day7) 0.1200

PV(3|Day7) 0.1597

PV(4|Day7) 0.5611

https://doi.org/10.1371/journal.pcbi.1007495.t002

Fig 3. Treatment with oncolytic virus provides improved outcomes over immunotherapy in virtual clinical trial. A) Kaplan-Meier curves

for patients in the immunotherapy and virotherapy arms of the virtual trial; B) The relative survival benefit for identical virtual patients. The

ratio of survival time on T-VEC against survival time on GM-CSF for identical virtual patients (line of best fit, slope = 0.0035) establishes a

causal relationship between treatment type and survival time, indicating that oncolytic virus therapy provided slightly larger survival gains in

those with longer doubling times when compared to GM-CSF.

https://doi.org/10.1371/journal.pcbi.1007495.g003
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The relative treatment benefit of virotherapy vs. immunotherapy was established by order-

ing virtual patients according to their untreated tumour doubling time (Fig 3B), with longer

doubling time indicating slower disease progression and less aggressive disease. A line of best

fit with positive slope suggests that oncolytic virus therapy provided larger survival gains in

those with longer doubling times when compared to GM-CSF, consistent with the increased

survival fraction of patients with stage 3 melanoma in Figure 4(f) of Andtbacka et al. [9].

“All or nothing” virotherapy dosing strategy

We expected that treatment with GM-CSF would be used to either prime the immune system

before virotherapy, or to support the immune response directly following administration of

the oncolytic virus. However, as seen in Fig 4, no structure is easily discerned. To better under-

stand the the structure of the underlying distribution of the individualized treatment sched-

ules, we used the 3000 optimized treatment cycles (300 patients times 10 cycles) as a sample to

define an empirical distribution of individualized treatment schedules. Then, from this empiri-

cal distribution we calculated the probability that any immunotherapy would be administered

Fig 4. Optimal personalized dose scheduling for each of the 300 virtual patients. Dose size presented as a multiple

of the standard dose with immunotherapy in shades of purple, and virotherapy in shades of green. The nth horizontal

row corresponds to the nth virtual patient, while them-th vertical column corresponds to the dose administered on

daym.

https://doi.org/10.1371/journal.pcbi.1007495.g004
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on each of the seven treatment cycle days of the optimized therapy regimen, as described in

the Methods section (Optimization Routine for Combined Immuno- and Oncolytic Virother-
apy). If a dose was given, we computed the conditional probability of administering a dose of

one, two, three or four multiples of the standard dose (Table 1). We found that the probability

of administering a dose of immunotherapy for a given treatment day is roughly constant at

20% throughout the treatment cycle. Interestingly, our results indicate that the immunother-

apy dose given is expected to be either the smallest or the largest permitted, suggesting that

immunostimulation is most useful as an additional instigator of immune recruitment when

virotherapy does not elicit a sufficient immune response, or to otherwise maintain the immune

response initiated by successful viral infection and lysis.

Contrary to the mono-immunotherapy dosing schedule, the conditional probabilities

PV(Dayi) for viral dose size are heavily skewed to the maximal tolerable dose (Table 2). Given

that we assumed that oncolytic viruses induce anti-tumour activity through direct infection of

tumour cells and secondary stimulation of an anti-tumour immune response, administering a

large dose of oncolytic virus will improve outcomes in our model. Put differently, an “all or

nothing” approach of dosing infrequently, but for maximal therapeutic benefit, is optimal, in

contrast to the logic of the immunotherapy case.

These results suggest that administering immunotherapy between administrations of vir-

otherapy serves mainly to maintain immune recruitment [43]. To test this hypothesis, we

defined Maintenance Therapy to be the administration of virotherapy once every 14 days with

immunotherapy administered evenly throughout on days 3, 6, 9, and 12 of each virotherapy

treatment cycle. Dose size was calculated based on the cumulative expected weekly dose of

immunotherapy (8 doses over 14 days) from the optimized regimen. Two doses of immuno-

therapy were therefore administered on days 3, 6, 9, and 12 to replicate the total expected

immunotherapy dose. The same procedure was used to determine virotherapy doses.

Maintenance and probabilistic combination therapies improve virtual

patient survival

Despite the shorter treatment period, both the maintenance and probabilistic combination

immuno- and oncolytic virotherapies improved overall survival times as compared to the sim-

ulated OPTiM trial (Fig 5). Maintenance therapy similarly significantly increased mean sur-

vival time against mono-virotherapy (47.5 months vs. 35.36 months, two-sided t-test p-value

of 1.02 × 10−6). The maintenance therapy and optimal dosing regimens also outperformed the

standard combination therapy: on average, the mean survival time for patients receiving stan-

dard combination therapy was 26.1 months, while patients receiving the maintenance therapy

or probabilistic dosing survived for 47.5 or 46.6 months respectively (two-sided t-test p-values

of p< 0.001 in both cases). The hypothesis that the two treatments were equally efficacious

was rejected with p< 0.001 using a log-rank test.

Minimizing the number of treatment days provides an additional measure of therapy

tolerability. In the standard combination schedule, patients received 2 administrations of vir-

otherapy and 14 doses of immunotherapy per 28 day cycle, requiring 15 total days of drug

administration per 28 day cycle. The maintenance therapy schedule required a total of 11 treat-

ment days per 28 day cycle (9 administrations of immunotherapy and 2 administrations of vir-

otherapy), whereas patients given the optimized treatment schedule were administered an

expected 5 immunotherapy doses and 2 virotherapy doses per 28 day cycle, for a total of 9

expected treatment days.

Crucially, the results of the individualized therapy can be translated into a clinically-action-

able therapeutic strategy that significantly improves simulated clinical outcomes (maintenance
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schedule). Mean survival times between patients receiving the maintenance therapy and the

probabilistic therapy were not significantly different (47.9 months vs 46.7 months, two-sided

t-test p-value of 0.754). While for a given patient, improved outcomes from optimized and

individualized regimens may be expected, leveraging the insights gained from the individual-

ized cohort to produce population-wide improvements on a new cohort is a compelling

achievement of our approach.

In summary, in terms of both end-points and dosing burden, immune maintenance ther-

apy outperforms the standard-of-care combination therapy. Given the equivalent mean sur-

vival times between the maintenance and probabilistic schedules, our results also motivate

rational therapy scheduling via in silico clinical trials to better establish the key mechanisms

regulating treatment success prior to clinical trial enrolment.

Discussion

Improving patient end-points and decreasing the drug burden during anti-cancer treatment

are crucial components of cancer care. The introduction of new and advanced therapy modali-

ties is critical to this goal. The approval of T-VEC, the first FDA approved, genetically modified

oncolytic virus, was an important step forward for the treatment of late-stage melanoma that

significantly improved patient survival over mono-immunotherapy GM-CSF administration.

However, the question of whether combined immunotherapy and virotherapy will provide

further benefits for patients and, if so, the optimal strategy for such combination therapy,

remains. Running clinical trials is an expensive and onerous process. Trial failures are disap-

pointing for patients, clinicians, and researchers, and contribute to overall attrition along the

drug development pipeline. Here we have outlined a rational approach to therapy optimization

that has significant consequences for how we effectively design and implement clinical trials to

Fig 5. In silico clinical trial predicts improved outcomes for both probabilistic dosing strategies and maintenance

therapy versus standard combination therapy. Kaplan-Meier curves for Arm 1: patients receiving Standard

Combination Therapy (dotted turquoise line), Arm 2: Maintenance Treatment (solid light blue line), Arm 3:

Probabilistic dosing regimen determined through the in silico clinical trial (dashed dark blue line).

https://doi.org/10.1371/journal.pcbi.1007495.g005
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maximize their success, and how we treat melanoma with combined immuno- and

virotherapy.

Leveraging our previous computational biology model, we developed an in silico clinical

trial by creating virtual individuals based on a realistic distribution of model parameter val-

ues. Each generated individual was cloned and assigned to different trial cohorts. This inno-

vative strategy enabled us to analyze the effects of distinct therapy procedures on the same
person, something which is clearly infeasible in the real world. Personalization of treatment

regimens was achieved by simultaneously minimizing cumulative tumour and drug bur-

dens. A probabilistic dosing regimen was subsequently defined based on the resulting per-

sonalized treatment schedules. Incorporating clinical realities, we determined that standard

combination therapy was improved upon by both a maintenance strategy (where immuno-

therapy is administered evenly throughout each virotherapy cycle) and this probabilistic

dosing strategy. It is worth noting that the maintenance type therapy performed equivalently

in terms of endpoints than the optimized scheduling, illustrating the utility of model-based

optimization techniques in identifying and developing improved, clinically-actionable ther-

apeutic strategies.

There are differences between OPTiM and our in silico trial. First, while we can broadly rec-

reate the number of individuals in each stage of disease, we cannot identically reproduce the

underlying distribution of patients. Accordingly, our results are highly dependent on the vir-

tual patients selected for participation based on their tumour doubling time, and would be

improved through the incorporation of detailed staging and patient distribution data. Second,

the administration of an oncolytic virus can lead to an anti-viral adaptive immune response

and a decrease in treatment efficacy that is currently not accounted for in the model. Our

approach does not currently address therapy side effects, however addressing the development

of immune tolerance to OVs is an area of future investigation. Last, our computational model

simplifies tumour-immune interactions by consolidating all immune cells into a single phago-

cyte population. We also considered a single cytokine as a cipher for all pro-inflammatory

responses induced by tumour-immune communication. We believe that these considerations

do not significantly impact on our general results, but they should be addressed in future work

to increase the precision of the predicted personalized regimens. Ideally, empirically deter-

mined distributions for the model’s parameter values would be available to strengthen the

model’s predictions. Fortunately, notwithstanding the general unavailability of such data, our

parameterization successfully recapitulated the OPTiM trial results.

Despite these limitations, our results underline the contribution of computational biology

to understanding the determinants of improved clinical care and support continued efforts

towards rational therapy design. Significantly, this computational biology study suggests

promising avenues of investigation towards tailored combination immunotherapy/oncolytic

virotherapy for patients with late-stage melanoma.
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