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Abstract: Proper regulation of energy metabolism in the brain is crucial for maintaining brain
activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex
pathophysiology which includes perturbations in the brain energy metabolism processes which can
contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk
factors and comorbid conditions for ischemic stroke which have also been associated with disruptions
in brain energy metabolism. Simultaneous presence of these conditions may further alter energy
metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this
review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization
and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy
metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and
mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes,
which would provide further insights on the pathophysiology of these comorbid conditions and
facilitate the development of therapeutic interventions.
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1. Introduction

The human brain is capable of planning and executing complex behaviors, making
decisions, and processing emotional and social conditions, for which the brain requires
large amounts of energy [1]. Glucose plays a key role as a main energy substrate for both
an adult brain and a developing brain. Oxidative metabolism supplies most of the energy
required for maintaining brain activities [2]. Enhanced neuronal activity triggers increased
energy consumption which may cause compensatory metabolic and vasculature changes
to help maintain enhanced neuronal function [3]. Therefore, normal brain function needs
tightly controlled energy metabolism both temporally and spatially from a regional level
down to the level of a single synapse [4]. The neurovascular unit (NVU) is a recently
developed concept in neuroscience which depicts the complex structural and functional
relationship between brain and cerebral blood vessels [5]. A NVU consists of neurons, glial
cells (astrocytes, microglia, and oligodendrocytes), and vascular cells (pericytes, endothelial
cells, and vascular smooth muscle cells) [6,7]. Although neurons and astrocytes are key
players in brain energy metabolism, the vascular cells of the NVU also play a crucial role
in regulating brain energy metabolism. Glycolysis and oxidative phosphorylation are
the preferred energy metabolism pathways for neurons and astrocytes, respectively. It
has been observed in different studies that brain metabolic alteration is associated with
the progression of different neurodegenerative disorders such as Alzheimer’s disease,
amyotrophic lateral sclerosis, Parkinson’s disease, and Huntington’s diseases [8]. Moreover,
a reduced level of glucose oxidation in post-ischemic brain tissue has been reported [9].
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Another study demonstrated that energy-dependent neuronal processes comprise the
delicate vulnerability of the brain to ischemia [10]. Therefore, it is evident that a disruption
in brain energy metabolism may contribute to cerebrovascular and neurodegenerative
dysfunctions including ischemic stroke.

Stroke is considered to be one of the leading causes of adult disability in developed
countries and is the fifth leading cause of mortality in the Unites States (USA). In the USA,
more than 795,000 people suffer from stroke each year and one person dies from stroke
every four minutes [11]. Mainly, there are three types of strokes: ischemic, hemorrhagic,
and transient ischemic attack, among which 87% strokes are ischemic [12]. Ischemic
stroke can be caused by a major cerebral artery occlusion due to an embolus or clot which
leads to temporary or permanent blood flow obstruction to the brain [13]. Impaired
energy metabolism is a key pathological hallmark of ischemic stroke [14,15]. A reduction
in glucose and oxygen supply results in severe loss of ATP production in an ischemic
brain. Cerebral ischemia disrupts mitochondrial oxidative metabolism and enhances
mitochondria-mediated oxidative stress. Neurons are more sensitive to ischemia, and
they are depleted of ATPs more quickly than astrocytes [16]. Glial cells (astrocytes and
microglia) are rapidly activated after ischemic stroke and they play an important role to
regulate neuroinflammation [17].

There are several modifiable and non-modifiable risk factors associated with ischemic
stroke. Among the modifiable risk factors, smoking and type 2 diabetes are the most
common comorbid conditions for increased risk and poor outcome of stroke [13]. Tobacco
smoke is a serious public health concern which is the leading cause of preventable disease
and death in the USA [18]. Tobacco smoking can worsen ischemic stroke prognosis by
increasing the permeability of the blood-brain barrier (BBB) and disrupting ion transporter
function, thereby, enhancing edema formation in the brain [19,20]. Another risk factor
underlying the pathogenesis of a stroke is diabetes which is the seventh leading cause of
death in the USA. It has been demonstrated that diabetes is related to enhanced stroke-
induced mortality rate [21]. Hyperglycemia can also worsen ischemic brain injury, edema
formation, and post-ischemic seizures by enhancing oxidative stress and mitochondrial
dysfunctions [22,23].

Several studies have shown that smoking/nicotine as well as diabetes may play
pivotal roles in brain energy metabolism. Acute nicotine treatment has been shown to
alter brain glucose utilization in most of the brain regions [24–27]. Additionally, nicotine
may dysregulate mitochondrial function by generating reactive oxygen species (ROS) and
increasing oxidative stress, which could be associated with the pathogenesis of cerebrovas-
cular diseases including ischemic stroke [28]. In addition, the role of diabetes in brain
energy metabolism has been investigated in several studies and it has been found that
diabetes may decrease brain glucose utilization and cause neurological damage by altering
BBB function, neurotransmitter metabolism, cerebral blood flow (CBF), and microvascular
function [29,30]. Diabetes may downregulate glucose transporter 1 (GLUT1) expression
and function at the BBB and decrease astroglial glucose metabolism, as observed in preclin-
ical diabetic models [31,32]. Oxidative stress [33] and mitochondrial dysfunctions [23] are
key factors contributing to hyperglycemia-induced enhanced ischemic brain injury. Thus,
smoking and diabetes may both function as comorbid conditions and can simultaneously
cause and worsen ischemic stroke outcomes by contributing to altered glucose utilization
and mitochondrial dysfunctions. Therefore, the aim of this review article is to confer the
effects of smoking and diabetes on brain energy metabolism and how the coexistence
of these conditions could exacerbate ischemic stroke outcome by altering brain energy
metabolism while pointing out the limitations of current knowledge.

2. Brain Energy Metabolism

Although the human brain accounts for ~2% of the total body weight, it has very high
energy requirements, accounting for at least 20% of the body’s energy consumption [34].
Tight coupling exists between the demand and supply of energy with changes in CBF and
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glucose utilization correlating with neuronal activity [35]. Therefore, an understanding
of brain energy metabolism is crucial in understanding the physiology and pathology
associated with the NVU. Classically, brain energy metabolism has been correlated with
the supply of oxygen and glucose to the brain through CBF. Glucose has been considered
to be the primary source of energy utilized by both neurons and astrocytes. The oxidation
of glucose generates ATP which is needed for energy-dependent reactions. Lactate is a
supplementary energy substrate for neurons [36]. Numerous studies have demonstrated
that under particular conditions, such as fasting [37], uncontrolled diabetes [38], or maternal
milk diet in newborns [39], ketone bodies are also able to meet the energetic requirements
of the brain.

2.1. Glucose Metabolic Routes

Glucose typically enters neurons through GLUTs, and then is converted to glucose-6-
phosphate by phosphorylation [40]. Then, glucose-6-phosphate can be processed through
either of three different metabolic routes: glycolysis, pentose phosphate pathway (PPP)
or, stored as glycogen. Glucose-6-phosphate metabolized through glycolysis gives rise
to two molecules of pyruvate. Under normal conditions and in the presence of oxygen,
pyruvate can enter mitochondria, where it is utilized in the tricarboxylic acid cycle (TCA)
and oxidative phosphorylation to generate ATP. Under different conditions such as hypoxia
or specific metabolic requirement of cells, pyruvate can also be reduced to lactate [41]. This
lactate is transported to the extracellular space by monocarboxylate transporters (MCTs).
The complete oxidation of glucose produces substantial amounts of energy in the form of
30–36 ATPs in the mitochondria as compared with glycolysis which produces only two
ATPs. The PPP and glycolysis pathway are also both linked to the production of reducing
equivalents in the form of NADPH [42]. NADPH is a critical defense component against
oxidative stress through the metabolism of the tripeptide glutathione (GSH) [43]. GSH acts
as an electron donor in several reactions, including the detoxification of ROS [44].

2.2. The Important Role of Astrocytes in Brain Energy Metabolism

The human brain consists of up to 10-fold higher number of glial cells as compared
with neurons [45]. Astrocytes are the most prevalent glial cells which comprise almost 50%
of the total human brain volume [46]. Morphologically, astrocytes are uniquely positioned
to sense and respond to changes in neuronal activity allowing them to perform numer-
ous essential functions [47,48]. These cells play a crucial role in maintaining brain ionic
equilibrium, glutamate homeostasis, as well as the maintenance of ROS (in GSH recycling)
and osmotic regulation [46]. Neurons rely on astrocytes for the supply of precursors of
the Krebs cycle intermediates or their derivatives, as the enzyme pyruvate carboxylase
is only present in astrocytes but not in neurons [49]. The energy demands of astrocytes
comprise only about 10–15% of the total brain energy requirements. Approximately 85% of
the glucose taken up in the brain is used in energy expenditure in neurons [50].

Astrocytes are the only cells in the brain capable of storing glycogen. The activity of
pyruvate dehydrogenase (PDH), on the one hand, is high in neurons and low in astrocytes,
resulting in limited capacity of glycolysis in neurons from the TCA cycle and the oxidative
phosphorylation route being more active in those cells. Astrocytes, on the other hand, have
more active glycolysis process that can be upregulated with limited pyruvate processing
through the TCA cycle route. The high glycolytic rate of astrocytes suggests a preference
for the production and release of lactate. Studies have demonstrated the neuroprotective
role of lactate experimentally [51,52] which prevented the death of vulnerable neurons and
slowed disease progression.

2.3. Astrocyte–Neuron Lactate Shuttle

Magistretti and Pellerin [53] proposed that astrocytes increase their rate of glucose
uptake, glycolysis, and release of lactate into the extracellular space in response to intensi-
fied neuronal activity. The high neuronal activity releases glutamate into the extracellular
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space through the neuronal glutamate transporter, excitatory amino acid transporter 3
(EAAT3). This enhanced activity at the glutamatergic synapses is sensed by astrocytes
who uptake the glutamate via glutamate transporters EAAT1 and EAAT2. The transport
of glutamate is driven by a sodium gradient, where three Na+ ions are co-transported
with one glutamate, resulting in a significant increase in intracellular Na+ concentrations
in astrocytes. Glutamate in astrocytes is converted to glutamine, which is then released
back into the extracellular space and taken up by neurons. Glutamine is converted back
to glutamate in neurons, thereby, replenishing the pool of glutamate and completing the
glutamate–glutamine cycle [35,54]. Glutamate uptake by astrocytes stimulates the uptake of
glucose at a 1:1 stoichiometric relationship. The increase in Na+ concentrations in astrocytes
through the glutamate-glutamine cycle activates the Na+-K+-ATPase, triggers glycolysis,
and leads to the production and release of lactate into the extracellular space. This lactate
can be utilized as an energy source by neurons for the generation of ATP through the TCA
cycle and oxidative phosphorylation [55,56]. This interplay in glucose metabolism between
neurons and astrocytes is illustrated in Figure 1. Angamo et al. [57] demonstrated that the
astrocyte-neuron lactate shuttle (ANLS) regulates ion homeostasis and synaptic signaling
in the presence of ample glucose. PDH is the rate-limiting enzyme that catalyzes lactate
oxidation. The inactive form of the enzyme is present in greater proportions in astrocytes
as compared with neurons [58]. Astrocytes can, therefore, be viewed as “lactate sources”
producing and maintaining the extracellular lactate pool, while neurons can be considered
to be “lactate sinks” that consume lactate in an oxidative manner to fulfill energy demands.
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The ANLS hypothesis has been thoroughly scrutinized over the years, where some
studies criticized the concept [50,59]. Even though there is an ongoing debate, overwhelm-
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ing experimental evidence supports the ANLS hypothesis [60–62]. It is now widely accepted
that lactate is a crucial component in the brain energy metabolism process.

3. Brain Energy Metabolism in Cerebral Ischemia

Disruption in brain energy metabolism is a pathological hallmark of ischemic stroke [10].
A wealth of understanding has been gained related to changes after cerebral ischemia utiliz-
ing animal models of stroke based on the effects of pharmacological interventions/genetic
modifications that drive brain injury/recovery. Various durations of middle cerebral artery
occlusion (MCAO) in mice or rats have been used commonly in these investigations. The
duration of the occlusion plays a critical role in determining the extent of injury and in-
volvement of complex pathophysiological events. Due to the limited collateral perfusion in
the cerebral arteries, ischemia is instantly developed in the brain tissue surrounding the
occluded vessel. Blood flow is reduced by more than 80% in the core ischemic region [63].
GLUTs are upregulated at the brain endothelial cells and brain parenchyma [64,65] follow-
ing ischemic stroke to meet the enhanced energy demand. Nevertheless, the disrupted
supply of glucose and oxygen supply results in less ATP production. Ionic gradients across
the plasma membrane also become depleted leading to a large potassium efflux out of the
cells and calcium influx into the cells [66,67].

In brain tissue, the core of an injury is surrounded by penumbral tissue that has the ca-
pacity for full recovery. This metabolically unstable circumferential zone has 20–40% blood
flow reduction and has normal K+ homeostasis. Neurons in the salvageable penumbra are
hyperpolarized and electrically silent; however, their function could be recovered if the
regional CBF is restored in time [63,68]. Therefore, if penumbra is not salvaged, it will pro-
gressively be recruited to the infarct core. In fact, the possibility of recovery or irreversible
damage is determined by both the amount of residual blood flow and the duration of
blood flow interruption within a region. The glucose and ATP content in the ischemic core
falls markedly within the first 5 min of occlusion. ATP concentrations in the core region
remain to be 15–30% as compared with non-ischemic tissue for at least the first 2 h of focal
ischemia [69]. Phosphocreatine in the brain acts as a short-term energy reserve, allowing
ATP regeneration from ADP in a reaction catalyzed by creatine kinase. Due to limitations in
oxygen availability, glucose reaching the core tissue is metabolized via glycolysis to lactate
resulting in a 10-fold or even higher levels of lactate accumulation [69,70]. The alterations
in the penumbral tissue are less severe. Two hours after ischemic insult, phosphocreatine
is reduced by 30% and ATP is reduced by 50% as compared with non-ischemic regions.
Some of the produced ADP is metabolized further to generate AMP and ATP. This reaction
is catalyzed by adenylate kinase and usually helps maintaining ATP level and meeting
short-term energy requirements in the brain. AMP is also metabolized to inosine and
hypoxanthine in ischemic brain tissue [71].

3.1. Role of Mitochondria in Ischemic Brain Energy Metabolism

Mitochondria play a crucial role in the alterations of brain energy metabolism and
oxidative stress in ischemic stroke [72–74]. Glucose utilization in the penumbral area
remains unaltered or increases in the initial 2 h of ischemic stroke. Increased glucose extrac-
tion from blood maintains glycolytic activity and increases the lactate concentration [75].
This suggests that oxidative metabolism of glucose is significantly impaired in penumbral
brain regions, but glycolysis is mostly preserved. Reserve capacities cannot keep up with
the increased energy demand of the penumbral tissue due to the reduction in oxidative
metabolism [76]. Depolarized tissue proportionally loses ATP and phosphocreatine. In-
terestingly, even though mitochondrial respiratory function is significantly restored in the
core and penumbral tissue within an hour after reperfusion, it declines at later time points.
This secondary impairment in mitochondrial respiration seemingly develops earlier than
the alterations in energy-related metabolites, when determined in the same ischemic model.
It indicates that the delayed changes in mitochondrial function are an early step in the de-
velopment of irreversible cell dysfunction and possibly a contributor to this process [72,73].
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A lower membrane potential in mitochondria, isolated from core tissue, is observed when
incubated under basal or ADP-stimulated conditions. This further indicates a decreased
ATP generation capacity of mitochondria. Electron micrographs from brain tissue at 2 h of
reperfusion after a 3 h duration of focal ischemia have shown significant structural defects
in neuronal mitochondria, which was consistent with the functional impairment observed
under similar conditions in other studies [77,78]. Neuronal A-kinase anchor protein 121
(AKAP121) has been observed to be degraded during focal brain ischemia and has been
hypothesized to be partially responsible for the mitochondrial changes. This protein causes
functional alterations in mitochondria in response to intracellular signaling. Degrada-
tion of AKAP121 hinders oxidative metabolism and decreases mitochondrial membrane
potential [79].

Oxidative stress is a crucial factor in the development of both apoptosis, which is
a programmed cell death pathway and necrosis, the unprogrammed cell death pathway
which is predominant in ischemic core particularly after reperfusion [74]. In ischemic stroke,
the mitochondria-mediated cell death pathway is considered to be an intrinsic apoptotic
pathway rather than a receptor-mediated extrinsic apoptotic pathway. In the intrinsic
pathway, different internal signals created by hypoxia, DNA damage, or oxidative stress are
sensed by cells which results in programmed cell death [74]. Isolated mitochondria from
the penumbra regions of rats during early recirculation showed increased calcium content
and free radical production in vitro. These alterations were both significantly decreased in
mitochondria from rats treated with dinitrophenol (oxidative phosphorylation uncoupler),
suggesting a mitochondrial role in the protective effects [80]. GSH is a major water-soluble
antioxidant localized in both the cytosol and the mitochondria of cells. Mitochondrial GSH
levels reduce sharply during ischemia and are believed to be sufficient to induce infarct
formation which persists following reperfusion [81]. Losses of mitochondrial GSH in vitro
increase the susceptibility of astrocytes to oxidative stress [82,83]. It is important to note
that the cell-type specific effects of ischemic stroke on mitochondrial dysfunctions in the
NVU have not been fully elucidated and need further investigation. Mitochondria have
been identified as an important therapeutic target in ischemic stroke treatment (Table 1)
and several studies have suggested they play a key role in oxidative stress, inflammation,
energy production, autophagy, mitophagy, lipid production, and overall stroke outcome.

Table 1. Targeting mitochondria for regenerative therapy in ischemic stroke.

Pharmacologic
Class

Description/Mechanism
of Action(s)

Stroke
Model Used

Species and
Number of

Animals

Sex of
Animals

Therapeutic
Outcome(s)

Year
Published

with
Reference(s)

Mitochondrial
fission inhibitor

(Mdivi)

-Inhibition of the assembly
of Drp1 and GTPase Drp1

enzymatic activity
-Reduction of the level of
Drp1 and Cytochrome c

tMCAO Wistar rats,
20/group Male

-Reduced cerebral
damage induced by

ischemia-reperfusion
injury

-Inhibition of
apoptotic cell deaths

2013 [84],
2014 [85]

Modulators of
purinergic
receptors

-Stimulation of
glia-specific purinergic

receptor, P2Y1R
-Increased mitochondrial
O2 consumption and ATP

production
-P2X7R antagonism

decreased expressions of
P2X7R, NLRP3, ASC,
Caspase-1 p20, and
cleaved caspase-3 in
ischemic brain tissue

Photothrombotic
model

-
Transgenic

mice
-C57BL/6J
mice, 3 or
6/group

Male

-Reduced neuronal
damage, cell death,

and swelling in
ischemic stroke
-Reduced brain
infarct size and

neuronal apoptosis
-Improved functional
outcome after stroke

2013 [86],
2017 [87]



Int. J. Mol. Sci. 2022, 23, 8512 7 of 25

Table 1. Cont.

Pharmacologic
Class

Description/Mechanism
of Action(s)

Stroke
Model Used

Species and
Number of

Animals

Sex of
Animals

Therapeutic
Outcome(s)

Year
Published

with
Reference(s)

Antioxidants
and SOD
mimetics

-Free radical trapping
-Mitochondria-specific

reduction of O2
−,

cytochorme c, caspase-3,
and CHOP

-Inhibition of the NF-κB
pathway

-pMCAO
-tMCAO

C57BL/6J
mice;

6/group,
Wistar rats,
12/group

Male

-Decresed brain lesion
volume, motor

impairment, and
neglect in animal

models
-Reduced brain infarct
volume, tissue damage,

and apoptosis

2007 [88],
2009 [89],

2012 [90,91],
2022 [92]

Activators of
NAD-

dependent
deacetylase

sirtuin 1
(SIRT1)

-Reduction of
inflammation and

oxidative stress
-Prevention of lipid

peroxidation
-Mimicking ischemic

preconditioning in brain
-Alteration of

CDK5R1/SIRT1 signaling

Global
cerebral
ischemia

followed by
asphyxial

cardiac arrest

Sprague
Dawley

(SD) rats, 5
or 8/group
C57BL/6J

mice,
15/group

Male

-Reduced brain
infarct volume and

neurological deficits
-Improved regional

brain blood flow,
apoptosis, and
mitochondrial
dysfunctions

2009 [93],
2012 [94],
2022 [95]

Methylene blue

-Alternative electron carrier
which reduces electron

leakage and ROS production
-Enhancing mitochondrial
oxygen consumption rate

and decreasing the
extracellular

acidification rate

-tMCAO
-Global
hypoxia
(15% O2)

-Sprague-
Dawley rats

-Sprague-
Dawley rats,

6/group

Male -Reduced ischemic
brain infarct volume

2011 [96],
2013 [97]

Melatonin

-Enhancing the expression
of neuronal bcl-2

-Inhibition of autophagy
-Activation of the PI3K/Akt

pro-survival pathway
-Reduction of oxidative

stress
-Inhibition of MAPK

pathway

-tMCAO
-BCO

-Rats
-Mongolian

gerbils,
10/group

Male

-Decreased brain
infarct area and

neurological
impairments

-Reduction of post-
ischemic brain area
-Increased survival

and reduced
hyperactivity

1999 [98],
2000 [99],
2014 [100],
2022 [101]

Hydrogen
sulfide (H2S)

-Stimulation of
ATP-sensitive potassium
channel/protein kinase

C/extracellular
signal-regulated

kinase/heat shock protein
90 pathway

-Inhibition of ROS and
caspase-3

Four artery
occlusion

Sprague-
Dawley rats,

6/group
Male

-Neuroprotection in
ischemic neurons

-Reduction of
neuronal apoptosis

2010 [102],
2013

[103,104]

Alpha-phenyl-
tert-butyl-

nitrone
(PBN)

-Free radical scavenger
-Improved mitochondrial

respiratory function

-Total cerebral
ischemia
-tMCAO

-Fischer
344 rats,

3-5/group
-Sprague-

Dawley rats,
6-7/group

Male
-Improved

neurological
performance

2008
[105,106],
2010 [107]
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Table 1. Cont.

Pharmacologic
Class

Description/Mechanism
of Action(s)

Stroke
Model Used

Species and
Number of

Animals

Sex of
Animals

Therapeutic
Outcome(s)

Year
Published

with
Reference(s)

Luteolin

-Decrease in ROS
production

-Protecting the activities
of mitochondria, catalase,

and glutathione
-TNF signaling pathway

-tMCAO
-pMCAO

Sprague-
Dawley rats,
16-18/group,

Sprague-
Dawley rats,
6-10/group

-Female
-Male

-Reduced brain
infarct volume

-Improved behavioral
and motor functions

after stroke

2011 [108],
2012 [109,110],

2021 [111]

Selenium
compounds

-Reduction of oxidative
stress (ROS,

malondialdehyde) and
proinflammatory cytokines
-Protection of mitochondrial

dehydrogenase and
complex I activity and
reduced mitochondrial

swelling
-Decreased autophagy

-tBCCAO
-tMCAO

Wistar rats,
8/group
Diabetic
Sprague-

Dawley rats,
20/group

Male

-Improved brain
infarct and edema
-Decreased BBB

damage
-Improved

neurological
functions

2012 [112],
2014 [113],
2021 [114]

tMCAO, transient middle cerebral artery occlusion; pMCAO, permanent middle cerebral artery occlusion; SOD,
superoxide dismutase; ROS, reactive oxygen species; BCO, bilateral carotid occlusion; tBCCAO, transient bilateral
common carotid artery occlusion; BBB, blood-brain barrier

3.2. Sources of Oxidative Stress in Cerebral Ischemia

Oxidative stress is a key player in the pathobiology of ischemic stroke [74], as described
earlier. Hence, it is important to discuss the sources of oxidative stress in ischemic stroke.
It has been observed that ROS play a critical role in cell homeostasis, blood flow, and
the physiology of cerebral vasculature [115]. ROS are regulated in the body by cellular
antioxidant systems including GSH, superoxide dismutase (SOD), glutathione reductase,
glutathione peroxidase (GPx), antioxidant response element, catalase, and nuclear factor
erythroid 2-related factor 2 coupled with NVU components containing neurons, astrocytes,
pericytes, endothelial cells, and microglia [116,117]. ROS can affect microcirculation by
changing blood flow resistance and affecting vascular pathophysiology in the brain [118].
Additionally, it has been observed that excessive ROS can disrupt BBB integrity and alter
BBB permeability [119]. Microglia and astrocytes can produce an elevated level of ROS
by the NADPH oxidase (NOX) pathway altering the expression of tight junction proteins
(claudin-5, occludin, and ZO-1) of BBB. Pericytes play a significant role in maintaining BBB
integrity and are susceptible to oxidative stress as well [120,121]. Activated microglia can
produce ROS which can cause apoptosis of pericytes [122]. It has been demonstrated that
ROS are also synthesized by immune cells such as polymorphonuclear neutrophils (PMNs)
causing oxidation of important proteins required for cellular signaling such as tyrosine
phosphatase which may lead to endothelial dysfunction. Previously, Kontos et al. reported
the generation of superoxide during reperfusion. Meninges, vascular smooth muscle cells,
and endothelial cells were identified as superoxide generation sites [123]. Neutrophils
and macrophages are major components of the innate immunity systems which play a
crucial role in inflammatory responses to infections and tissue injury by getting activated
and transported.

Excessive amount of ROS can be generated after stroke, evidenced by the protective
effects of ROS scavengers [124]. Oxidation of serum albumin has been found to be increased
in stroke patients which may result in oxidation of amino acid residues by ROS [125]. A
steady increase in ROS levels after MCAO model in in vivo study has also been observed
after occlusion [126]. The second phase of ischemia/reperfusion (I/R) injury may be in-
duced by reperfusion where ROS are generated [126]. One of the important sources of
ROS generation is mitochondrial electron transport chain (ETC) [127]. During ischemia,
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the ubiquinone-cytochrome b region of the ETC is considered to be the key source for ROS
generation [128]. A recent study identified succinate accumulated during ischemia as a
potential mitochondrial metabolite that drove extensive ROS production [129]. Another
crucial source of ROS generation during ischemic stroke is NOX enzymes. Elevated expres-
sion level of NOX has been found to be responsible for increasing MMP-9 upregulation
after stroke, promoting BBB damage [130]. It has been observed that after ischemic stroke,
NOX2 and NOX4 expression levels were upregulated [131]. Additionally, xanthine oxidase
(XO) is considered to be another source of ROS generation during ischemic stroke. XO
produces hydrogen peroxide which contributes to post-stroke brain edema after I/R [132].
In addition, XO mediated an increased level of superoxide anion radicals that could be ob-
served in blood after forebrain I/R in experimental animal model [133]. Other intracellular
enzymes involved in ROS production are cyclooxygenases (COX), lipoxygenases (LOX),
and cytochrome P450 enzymes. Free arachidonic acid from cell membrane phospholipids is
metabolized by the abovementioned enzymes and can contribute to generating superoxide
during I/R [134]. Cerebral I/R injury has been found to be related to acute inflammation
where both neutrophil and macrophages play a significant role. Rapid recruitment of
neutrophils to ischemic areas and interaction of platelets with activated neutrophils may in-
crease occlusion of vessels [135]. Reperfusion may increase oxygen in the tissue generating
more ROS resulting in brain injury [136]. In addition, macrophages are activated in brain
within a very short period of stroke onset and generate a range of proinflammatory media-
tors including TNFα and IL-1β which may worsen brain damage [137]. Figure 2 depicts
the oxidative stress pathways and how they are perturbed in the setting of ischemic stroke.
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3.3. Metabolic Flexibility of Microglia: Potential Role in Ischemic Stroke

In addition to neurons, other cells of the NVU can regulate energy metabolism in the
ischemic brain. Microglia are resident immune cells of the CNS, which play a crucial role in
different pathological conditions [138,139]. A recent study by Bernier et al. demonstrated
that microglia could alter their metabolic profile in glucose-deprived conditions to retain
their immune surveillance functions for a long time [138]. The authors demonstrated that
microglial immune surveillance remained functional in an in vivo model of hypoglycemia
and an in situ model of aglycemia. They also showed that microglia could switch their
preferred metabolic process from glycolysis in normal physiological conditions to glu-
taminolysis in aglycemic conditions. This effect could be critical for neuroprotection and
vascular restoration in metabolically stressful conditions. Especially, the aglycemic com-
ponent of ischemic stroke could be influenced by this metabolic flexibility of microglia. It
would be interesting to see the effects of both oxygen and glucose deprivation on microglial
immune functions and metabolic profile in the ischemic brain, which opens an exciting
research area.

4. Smoking and Diabetes as Comorbid Conditions for Ischemic Stroke

Comorbid conditions affecting energy metabolism in the ischemic brain need to be
explored, as they may exacerbate the outcome of an ischemic event. Smoking and diabetes
are considered to be critical risk factors and comorbidities for ischemic stroke. These
comorbid conditions are associated with higher possibility of ischemic stroke occurrence
and deteriorating brain damage, therapeutic consequence, and post-stroke recovery [13].
Smoking has been reported to be a risk factor for stroke in different studies involving
diverse ethnicities and populations. It has been found that active smokers have two to
four-fold enhanced stroke risk as compared with non-smokers or ex-smokers who had
quit smoking more than 10 years ago [140]. Another study reported six-fold increased
risk of stroke in smokers as compared with non-smokers who had never been exposed
to second-hand smoke as well [141]. Moreover, a robust dose-dependent relationship
has been found between smoking and cerebral ischemic stroke risk in young females
which suggested a correlation between sex difference and stroke risk in the smokers [141].
Our laboratory has shown that nicotine exposure can worsen ischemic stroke outcome by
increasing brain edema and infarct volume [20], and brain to blood potassium transport [19]
in preclinical studies. Further, exposure to tobacco smoke and electronic cigarettes were
shown to enhance brain injury and neurological outcome in an in vivo model of ischemic
stroke [142].

There are three types of diabetes, namely type 1, type 2, and gestational diabetes. Type
2 diabetes is the most common type of diabetes and around 90–95% of diabetic patients
suffer from type 2 diabetes [143]. Studies have found an association between diabetes and
stroke. A total of 27% increase in the number of stroke patients with diabetes as comorbidity
was reported in a study conducted from 1996 to 2006 [144]. The risk of ischemic stroke was
around twice in diabetic patients as compared with non-diabetic patients [145]. A recent
clinical study concluded that baseline hyperglycemia was associated with worsened clinical
prognosis in acute ischemic stroke patients treated with intravenous thrombolysis [146],
which was consistent with other studies [147]. Experimental studies have also reported that
hyperglycemic conditions caused enhanced brain injury after ischemic stroke by decreasing
the expression of the neuroprotective protein, alpha-synuclein [148], and worsening of
microvascular thromboinflammation [149]. Denorme et al. also showed that hyperglycemia
enhanced brain infarct size and BBB permeability, and worsened neurological outcomes
and CBF [150]. Additionally, the effects of smoking and diabetes on NVU transporters have
been reported in different studies, demonstrating the enhanced risk of stroke occurrence
and worsened outcomes [13]. Alteration of brain energy metabolism could be an important
mechanism of smoking- [151] and diabetes-induced [152] worsening of ischemic stroke
prognosis. Below, we discuss how smoking and diabetes can alter brain energy metabolism,
which may contribute to the pathobiology of ischemic stroke.
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5. Effects of Nicotine and Smoking on Brain Energy Metabolism
5.1. Glucose Utilization

The effects of nicotine and smoking on brain glucose utilization have not been fully
elucidated yet, as conflicting reports exist on this matter. A dose-dependent increase of
local cerebral glucose utilization (LCGU) in nine structures of the rat brain was observed
in one study following administration of nicotine [153]. In this study, nicotine was in-
fused in three dosages, i.e., 0.5, 1.58, and 5 µg/kg/min, which resulted in 10, 39, and
114 ng/mL plasma nicotine, respectively. Behavioral effects of nicotine on the central
nervous system (CNS) were also reported, correlating the increase of LCGU in different
parts of the limbic system [153]. Acute nicotine treatment (0.3 mg/kg, s.c.) increased
LCGU [24]. Marenco et al. reported similar results in partially immobilized rats but found
reduced global brain glucose utilization in freely moving rats with 0.4 mg/kg, s.c. nicotine
treatment [25]. Restraining-induced stress could account for the increase in LCGU in some
preclinical studies. A randomized, double blind, placebo-controlled study demonstrated
that nasal administration of nicotine (1–2 mg) after overnight abstinence increased regional
cerebral metabolism of glucose (rCMRglu) in the thalamus and visual cortex of humans.
The thalamus was activated by nicotine, which could be due to the presence of nicotinic
acetylcholine receptors (nAChRs) in high density [154]. In contrast, Stapleton et al. showed
that acute nicotine administration (1.5 mg, i.v.) in humans decreased brain glucose uti-
lization in most of the brain area [26]. A clinical study also showed that smoking could
reduce CBF and CMRO2 after abstinence in chronic smokers (15 ± 5 cigarettes per day
for 10 ± 5 years, each cigarette delivering 1 mg nicotine) which was acutely restored after
smoking was resumed (2 ± 1 cigarettes) [155]. Later, Wang et al. showed a decrease in
brain glucose oxidation with acute exposure of nicotine (0.7 mg/kg, s.c.) [27]. Nicotine
contents for currently marketed tobacco products are 1.1–1.8 mg in tobacco cigarette and
0.5–15.4 mg/15 puffs in electronic cigarettes [156]. Plasma nicotine level after smoking a
tobacco cigarette is 15 ng/mL [157]. The doses of nicotine in the abovementioned clinical
studies correspond well with marketed cigarettes, while those of the preclinical studies
may vary due to the physiological differences between humans and rodents. Different
studies have reported that nicotine uptake resulted in altered glucose metabolism resulting
in an increased level of blood sugar [158–161]. The cell type-specific effects of nicotine on
normative brain energy metabolism are not known and need to be investigated. Further,
the effects of nicotine on the vascular (endothelium, matrix, smooth muscle, astrocyte)
and extravascular (astrocyte, neuron) relationships, in terms of energy metabolism need
further research.

Few studies have investigated the effects of smoking on glucose utilization in the
ischemic brain. Previous studies from our laboratory have shown that chronic nicotine
exposure (4.5 mg/kg/day for 14 days) significantly reduced glucose transport across the
BBB along with decreased expression of GLUT1 transporter in ischemic brain endothelial
cells [151]. In addition, nicotine exposure (5 µM) decreased glucose uptake in neurons
in ischemia-like condition [162,163]. In vivo exposure to nicotine-containing electronic
cigarettes (2.4% nicotine) could also decrease brain glucose utilization and GLUTs’ ex-
pression (GLUT1 and GLUT3) in normoxic and ischemic condition [163]. A recent study
showed that 16–21 days of smoking-derived nicotine treatment enhanced brain infarct
volume after tMCAO in both adolescent and in adult female rats, which was linked with
alterations in the glycolytic pathway [164]. These results suggest that nicotine, smoking, or
vaping may lead to significant glucose deprivation in the ischemic brain, which could result
in worsened outcome of an ischemic stroke event (depicted in Figure 3). It is noteworthy
that some researchers have shown beneficial effects of activation of α7 nAChR subtype in
ischemic stroke, which was mostly mediated by anti-inflammatory actions [165,166].
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5.2. Mitochondrial Function and Oxidative Stress

The effects of nicotine and smoking on mitochondrial activity have been investigated
in different studies including various experimental systems such as intact cell, isolated
mitochondria, and animal model [167]. Cormier et al. reported that, nicotine inhibited
oxygen utilization in isolated rat brain mitochondria [168]. Nicotine binds only to complex
I of the mitochondrial respiratory machinery and prevents the flow of electron from NADH
to complex I [168]. Another study demonstrated decreased levels of mitochondrial complex
I, II, and III enzymatic activities after 7 days of nicotine treatment [169]. Wang et al.
showed that chronic nicotine treatment affected the expression of a number of genes which
encoded for mitochondrial respiratory complex subunits in different brain regions [170].
Another study showed that 16 days of nicotine treatment decreased mitochondrial energy
metabolism in rat hippocampus which was linked with complex IV inhibition [171], while a
recent study also suggested the role of complex III in nicotine-mediated inhibitory effect on
the mitochondrial respiratory machinery [172]. Diaz and Raval showed that 16–21 days of
nicotine treatment inhibited cortical mitochondrial complex IV enzyme activity in a recent
study [164]. These results indicate that the effects on individual brain regions should be
taken into consideration while studying the effects of nicotine and smoking on whole brain
mitochondrial energy metabolism.

Electrons that escape from the mitochondrial ETC can react with oxygen, resulting in
the formation of ROS. SOD is a key enzyme responsible for the detoxification of these ROS.
Increased oxidative stress in neurons involve several mechanisms including production of
hydrogen peroxide and hydroxyl radicals [173], reduced activity of GPx and SOD [174],
and increased level of malondialdehyde (MDA) [175]. Nicotine has been linked with
the formation of excess ROS from that mitochondrial respiratory chain which can cause
oxidative stress in the brain. Although a few studies have demonstrated that nicotine can
decrease ROS formation [168], several other studies have shown that nicotine exposure
may increase cytosolic ROS, resulting in enhanced oxidative stress [176–178]. Ande et al.
showed similar results in astrocytes [179]. Seven days of nicotine treatment was shown to
enhance ROS formation in the temporal cortex of the rat brain [176]. However, another
study showed that nicotine increased ROS production in rat brain hippocampal region other
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than cortex [177] which was associated with DNA damage and lipid peroxidation. Das
et al. also showed that in vivo nicotine treatment enhanced lipid peroxidation in different
rat brain regions [178]. Furthermore, researchers have shown that nicotine exposure
decreased the levels and functions of antioxidant enzymes such as SOD and glutathione-S-
transferase [176,178], which would exacerbate brain oxidative stress. Additionally, both
in vitro and in vivo studies have demonstrated ROS generation by electronic cigarette
emission [180,181].

Particulate and gaseous elements in cigarette smoke other than nicotine are also re-
sponsible for vascular reactivity and endothelial dysfunctions. Kourembanas et al. showed
that carbon monoxide could inhibit the production of endothelin-1 and platelet-derived
growth factor B by endothelial cells [182]. Free radicals play a vital role in mediating
smoking-induced endothelial injury [183]. Lipid peroxidation is the prominent mechanism
of endothelial damage by free radicals [184]. Chronic nicotine-free cigarette smoke extract
exposure causes endothelial dysfunctions by increasing vascular wall-derived superoxide
generation [185]. Naik et al. used nicotine-free and low-nicotine cigarettes to show that
these products caused significant BBB endothelial dysfunctions by enhancing the release
of reactive oxygen and nitrogen species, downregulating the expression of tight junction
proteins, and enhancing inflammatory response [186]. They also concluded that these
observed toxic effects at the BBB endothelium correlated with the tar and nitric oxide levels
in cigarettes. ROS from cigarette smoke are also involved with platelet activation [187].
Acrolein is a key component in tobacco smoke that can cause platelet aggregation, for-
mation of platelet–leukocyte aggregates, and release of prothrombotic mediators from
platelet granules thereby, enhancing the risk of thrombotic events [188]. Unsaturated alde-
hyde components of cigarette smoke, including acrolein and crotonaldehyde, have been
shown to inhibit in vitro chemotaxis of human PMNs [189]. Further, aqueous extract of
tobacco smoke decreased glycolytic function and phagocytic ability of PMNs, reducing
their antibacterial function and increasing toxic effects [190].

The abovementioned smoking/nicotine-induced alterations in mitochondrial energy
metabolism may add to the disrupted brain energy metabolism in ischemic stroke. Studies
are needed to address this unexplored hypothesis. Mitochondria are also the essential
source of ROS generation in cells which contribute to the pathogenesis of ischemia, reper-
fusion, and I/R injury [191]. A recent study showed that nicotine may cause brain injury
by enhancing neuroinflammation after cerebral ischemia due to increased mitochondrial
oxidative stress [28]. Another study suggested that chronic nicotine exposure could exac-
erbate transient focal cerebral ischemia-induced brain injury due to preexisting oxidative
stress via increased superoxide level and reduced manganese superoxide dismutase (Mn-
SOD) and uncoupling protein-2 levels in the cerebral cortex and arteries in rats [192].
Conversely, nicotine showed protective effects on brain mitochondrial respiration in an
anoxia/reoxygenation model [193]. However, when nicotine was administered post anoxia
but before reoxygenation, it was unable to preserve mitochondrial function [168]. The
possible role of smoking and nicotine in brain mitochondrial energy metabolism in ischemic
stroke is depicted in Figure 4.
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6. Effects of Diabetes on Brain Energy Metabolism

A brief introduction to the characteristics of two major types of diabetes and differ-
ent animal models employed to mimic these diseases is given below to help clarifying
their effects on brain energy metabolism. Type 1 diabetes is characterized by a lack of
insulin production, which is caused by autoimmune destruction of the pancreatic beta
cells. Chemical induction (streptozotocin (STZ), alloxan), spontaneous autoimmune (NOD
mice, BB rats), genetic induction (AKITA mice), and virally-induced (Coxsackie B virus,
encephalomyocarditis virus) are different rodent models of type 1 diabetes [194].

In type 2 diabetes, there are insulin resistance and dysfunctional beta cells. In vivo
models of type 2 diabetes include obese models (Lep ob/ob mice, Lepr db/db mice, KK mice),
induced obesity (high fed diet, desert gerbil), non-obese models (GK rat), and genetically
induced models (hIAPP mice, AKITA mice) [194]. The high fat diet (HFT) model of type 2
diabetes is characterized by obesity, insulin resistance, and altered glucose homeostasis. In
recent times, type 2 diabetes models have been developed in rodents using STZ treatment
in conjunction with HFT to better mimic human type 2 diabetes [195–197]. Use of multiple
low dose injections of STZ after HFT pretreatment produces more stable type 2 diabetes
models, which is characterized by hyperglycemia and insulin resistance.

6.1. Glucose Utilization

Different studies have shown that experimental hyperglycemia and type 1 diabetes
could decrease glucose transport across the BBB [198,199] which was connected with the in-
tensity of the hyperglycemia. GLUT1 at the BBB was also shown to be downregulated with
hyperglycemia [31]. Other studies have also reported decreased brain glucose utilization in
diabetic rodents [32,200]. Glycolytic function was decreased in a type 1 diabetes model [32].
In contrast, another study showed that glycolytic activity was at least initially increased in
a diabetogenic drug, STZ, -induced type 1 diabetes model [201]. Further, Li et al. reported
that hyperglycemia could increase glycolytic metabolism, ATP, and glycogen content in
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primary astrocytes [202]. Brain glucose utilization was also shown to be decreased in type
2 diabetes [203,204], with reports of both downregulated [204] and unchanged GLUT1
expression [203] at the BBB. Neuronal GLUT3 expression was non-significantly decreased
in an in vivo study with db/db diabetic mice [203]. With HFT, lower brain glucose uptake
was observed in mice brain PET scans [205]. Liu et al. showed reduction of neuronal GLUT3
and GLUT4 in mice with 3 months of HFT treatment [206]. Moreover, decreased activity of
the TCA cycle has been observed in experimental studies modeling type 2 diabetes [207],
along with reduction in energy sources which may upregulate glycolysis and consequently
lead to neuronal damage [30].

However, Garcia-Espinosa et al. reported that TCA cycle function was unchanged in
type 1 diabetes [32], whereas Sickmann et al. demonstrated impaired TCA cycle activity
in type 2 diabetes [208]. One of the subunits of the PDH enzyme complex was shown to
be decreased in a type 2 diabetes model [209]. Additionally, another study reported that
hyperglycemia, induced by intracerebroventricular application of STZ, decreased glycolytic
enzymes and the alpha-ketoglutarate dehydrogenase enzymes [210]. Although preclinical
models of type 1 and type 2 diabetes have limitations, the observed effect of diabetes on
brain glucose utilization suggests that the coexistence of diabetes could adversely affect
brain glucose utilization in ischemic stroke, thereby, worsening ischemic brain injury. These
effects are illustrated in Figure 3.

6.2. Mitochondrial Function and Oxidative Stress

It has been reported that diabetes is related to mitochondrial dysfunctions [211].
Diabatic encephalopathy causes mitochondrial alterations including increased level of
ROS [212], lipid peroxidation, and nitrite, and reduced total antioxidant level [213]. In
addition, diabetes-mediated oxidative stress is responsible for increasing proinflammatory
cytokines which, in turn, leads to neuronal degeneration [214]. One study reported that
diabetes impaired mitochondrial respiration in brain which could be due to alterations in
ETC function and oxidative phosphorylation [215]. The inner membrane of mitochondria
is the main target of ROS due to an elevated level of polyunsaturated fatty acid which leads
to oxidation. Thus, lipid peroxidation and oxidative alterations in ETC result in variations
in electron flow as well as electron leakage which consequently lead to generation of ROS
and mitochondrial ETC damage [216]. Diabetes-induced ROS generation involves both
enzymatic and non-enzymatic pathways. The components of enzymatic pathways include
NOX, NOS, COX, LOX, cytochrome P450, XO, and myeloperoxidase (MPO). On th contrary,
the non-enzymatic pathways include deficiencies in mitochondrial ETC, transition-metal
catalyzed Fenton reactions, advanced glycation end (AGE) products, glucose autooxidation,
and polyol (sorbitol) pathway [217,218]. Among the abovementioned sources, NOX is
one of the primary sources of ROS generation in diabetic conditions involving different
organs [218]. It has been demonstrated that hyperglycemia inhibited ETC at the levels
of complexes III, IV, and V in STZ-induced type 1 diabetes rat model [219]. Moreover,
the level of ROS, NO, and expression of mitochondrial NO synthase were found to be
augmented in mitochondria, while activity of GSH peroxidase enzyme and protein content
of MnSOD were found to be decreased. A decreased level of GSH and increased amount of
GSSG were also found in this study [219]. Decreased activity of complexes III, IV, and V of
the respiratory chain by oxidative and nitrosative stress and reduced ATP level can cause
mitochondrial dysfunctions [219]. Hyperglycemia also activates the neurotoxic polyol
pathway [220], resulting in excess ROS, reactive nitrogen species, and AGE products, and
impaired Na+/K+-ATPase activity [221]. Further, hyperglycemia can excessively stimulate
microglia and microangiopathy [221]. Hyperglycemia can also cause increased levels of
mitochondrial NO and aconitase activity and a decreased level of mitochondrial lipid
peroxidation at early stage of diabetes [222]. Thus, diabetes is related to an increased level
of oxidative stress which affects lipid, membrane protein, and mitochondrial DNA which
ultimately result in mitochondrial dysfunction [222]. Brain mitochondrial studies in a
type 1 diabetes model also suggested decreased respiration with dysfunctional electron
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transport or ATP synthase [223]. Expression of antioxidant enzymes such as SOD, catalase,
and glutathione peroxidase are also decreased in the diabetic brain [224].

Mitochondria play a crucial role in maintaining ischemic brain physiology in dia-
betes [225]. As mitochondria are necessary for ATP generation, calcium influx buffering,
free radical production, and proapoptotic factors release in ischemic brain [226,227], mito-
chondrial dysfunction in ischemic brain may lead to increased level of intracellular calcium,
oxidative stress generation, and reactive peroxynitrite species production [225]. Moreover,
concomitant mitochondrial permeability transition pore activation facilitates the release
of cytochrome c that stimulates the apoptotic cell death pathways [228]. Consequently,
this may results in the stimulation of terminal executioner caspases and apoptotic cell
death, which is considered to be one of the important mechanisms of cell death in ischemic
stroke [229]. As impaired mitochondrial function has also been observed in diabetes, coexis-
tence of this condition may exacerbate the alterations of mitochondrial energy metabolism
and enhance oxidative stress in ischemic stroke. Karasu et al. reported that diabetes up-
regulated auto-oxidation of glucose which caused protein glycation non-enzymatically
and this ultimately resulted in increased level of ROS which participate in ischemic brain
injury [152]. Glucose auto-oxidation, stimulated polyol pathway, AGE synthesis, and
endogenous antioxidant enzyme inhibition may play crucial roles in the enhancement
of brain oxidative stress in diabetic models [230–232]. Additionally, disparity between
free radical generation and their quenching by endogenous antioxidant enzymes has been
found in diabetes, which may damage proteins, lipids, and nucleic acids in neurons [233].
In summary, it can be said that diabetes is responsible for enhanced electron flux to complex
III, impaired antioxidant enzyme system, reduced ATP production, decreased calcium ac-
cumulation, and accelerated mitochondrial fission, which may result in increased oxidative
stress, lower availability of ATP during ischemia-reperfusion, mitochondrial swelling, and
proapoptotic molecules’ release. Collectively, these may worsen brain injury and neurologi-
cal outcomes of ischemic stroke [225]. Figure 4 depicts these effects. Understanding the
changes in ischemic brain energy metabolism with coexisting smoking and/or diabetes,
coupled with novel drug delivery strategies [234] can facilitate development of specific
therapeutic interventions for these conditions.

7. Conclusions

Altered glucose utilization and impaired mitochondrial functions contribute to defec-
tive brain energy metabolism and enhanced oxidative stress in ischemic stroke. Comorbid
conditions such as nicotine/smoking exposure and diabetes can further alter brain energy
metabolism, thereby, worsening the outcome of an ischemic stroke event in a growing
population of patients. Since there are, so far, few studies that hae addressed the out-
come of stroke in appropriate pre/comorbid models, particularly addressing smoking via
inhalation, a scientific gap exists which needs to be addressed. Until this is addressed,
the stroke field will continue to struggle in correlating preclinical results to the human
stroke condition.
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