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Abstract

Vitamin D provides a significant benefit to human health, and its deficiency has been linked

to a variety of diseases including cancer. Vitamin D exhibits anticancer effects perhaps

through inhibition of angiogenesis. We previously showed that the active form of vitamin D

(1, 25(OH)2D3; calcitriol) is a potent inhibitor of angiogenesis in mouse model of oxygen-

induced ischemic retinopathy (OIR). Many of vitamin D’s actions are mediated through vita-

min D receptor (VDR). However, the role VDR expression plays in vascular development

and inhibition of neovascularization by 1, 25(OH)2D3 remains unknown. Here using wild

type (Vdr +/+) and Vdr-deficient (Vdr -/-) mice, we determined the impact of Vdr expression

on postnatal development of retinal vasculature and retinal neovascularization during OIR.

We observed no significant effect on postnatal retinal vascular development in Vdr -/- mice

up to postnatal day 21 (P21) compared with Vdr +/+ mice. However, we observed an

increase in density of pericytes (PC) and a decrease in density of endothelial cells (EC) in

P42 Vdr -/- mice compared with Vdr +/+ mice, resulting in a significant decrease in the EC/

PC ratio. Although we observed no significant impact on vessel obliteration and retinal neo-

vascularization in Vdr -/- mice compared with Vdr +/+ mice during OIR, the VDR expression

was essential for inhibition of retinal neovascularization by 1, 25(OH)2D3. In addition, the

adverse impact of 1, 25(OH)2D3 treatment on the mouse bodyweight was also dependent

on VDR expression. Thus, VDR expression plays a significant role during retinal vascular

development, especially during maturation of retinal vasculature by promoting PC quies-

cence and EC survival, and inhibition of ischemia-mediated retinal neovascularization by 1,

25(OH)2D3.
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Introduction

Vitamin D Receptor (VDR) is a member of the nuclear transcription factor superfamily.

Through activation by vitamin D, VDR could associated with other nuclear transcription fac-

tors including retinoid-X-receptor (RXRα) and binds to the vitamin D response element in

target genes causing expression or transrepression [1, 2]. The majority of vitamin D action is

believed to be mediated through VDR. Genetic variation in VDR could lead to vitamin D defi-

ciency, which is associated with increased risk for cancer and a variety of other diseases. VDR

is detectable in almost all human tissues. In the eye, VDR is detected in retinal ganglion cell

layer, inner nuclear layer, retinal pigment epithelium and the epithelium of cornea, lens, ciliary

body, and retinal photoreceptor cells [3, 4].

The expression of VDR in tissues that are not traditionally involved in calcium metabolism,

emphasizes a potential important role for vitamin D and its receptor in function of these tis-

sues. Recently, a narrative review suggested the ability of eye tissue to locally produce vitamin

D [3]. We recently assessed VDR expression in cells isolated from the retinal vasculature. Reti-

nal pericytes (PC) express a high level of VDR compared to endothelial cells (EC), and its levels

increased significantly by incubation of these cells with 1, 25(OH)2D3, the active form of vita-

min D [5]. Therefore, investigating the role of vitamin D and its receptor in developmental

processes and cell autonomous functions will help to better understand mechanisms of vita-

min D action in various tissues including the eye.

The mouse retinal vasculature develops after birth, and provides a great opportunity to

study all aspects of vascular development postnatally. Mice are born without retinal blood ves-

sels. During the first week of life, the blood vessels sprout radially from the optic nerve to the

edge of the retina forming the superficial layer of retinal blood vessels. These vessels then

sprout deep into the retina and form the deep and intermediate layer of retinal vasculature,

respectively. Formation of all vascular layers are complete by three weeks of age (postnatal day

21; P21). These vessels continue undergoing pruning, remodeling, and maturation, which is

completed by 6 weeks of age (P42) [6–9]. The role VDR expression plays in retinal vascular

development has not been previously addressed.

Retinopathy of prematurity (ROP) is a leading cause of blindness in premature infants

(14%) [10, 11]. In the United States, about 15,000 premature infants develop some degree of

ROP every year, and about 500 of them become legally blind due to severity of ROP [12]. In

premature infants, incomplete vascularized retina and cycles of hyper- and hypo- oxygenation

lead to formation of abnormal new blood vessels. These vessels grow from the retina into the

vitreous and cause hemorrhage, and retinal detachment if left untreated. Thus, there is a great

interest in understanding the underlying mechanisms responsible for sensitivity of developing

retinal vasculature to high oxygen and development of therapeutics that save vision.

The mouse oxygen-induced ischemic retinopathy (OIR) is a highly reproducible model for

study of retinal neovascularization [13], which recapitulates hyperoxia damage to the develop-

ing retinal vasculature observed in premature infants with ROP. In the OIR model, P7 pups

and their mother are exposed to high oxygen (75%) for 5 days. This level of oxygen prevents

further development of retinal vasculature and causes vessel loss around the optic nerve (vaso-

obliteration). The mice are then brought to room air (20% oxygen) for 5 days. Lack of suffi-

cient oxygen leads to neovascularization and abnormal growth of retinal blood vessels from

the retina into the vitreous. Maximum retinal neovascularization occurs by P17 when mice are

sacrificed for quantitative assessment of neovascularization. Our previous studies demon-

strated that 1, 25(OH)2D3 inhibits retinal neovascularization during OIR [14]. However, the

role VDR expression plays in retinal neovascularization and its inhibition by 1, 25(OH)2D3

during OIR remain unknown.
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Here to investigate the role of VDR expression in vascular development and neovascu-

larization, we compared normal postnatal retinal vascular development and retinal neovascu-

larization during OIR in wild type (Vdr +/+) and Vdr-deficient (Vdr -/-) mice. Our results

demonstrated that normal retinal vascular development is independent of VDR expression

before weaning. However, the density and integrity of retinal vasculature was impacted during

the late stages of development and maturation in Vdr -/- mice. The ratio of EC to PC decreased

significantly, due to increased number of PC and decreased number of EC in P42 Vdr -/- mice.

In addition, the degree of retinal neovascularization during OIR was independent of VDR

expression. However, 1, 25(OH)2D3 failed to inhibit retinal neovascularization during OIR in

Vdr -/- mice, unlike Vdr +/+ mice, indicating VDR expression is required for significant in-

hibition of neovascularization by 1, 25(OH)2D3. Interestingly, weight loss associated with 1,

25(OH)2D3 administration was not observed in Vdr -/- mice as occurred in Vdr +/+ mice.

Thus, the adverse systemic effect of 1, 25(OH)2D3 on bodyweight is also dependent on VDR

expression.

Materials and methods

Ethics statement

All animal experiments were performed in accordance to the Association for Research in

Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision

Research and were approved by the Institutional Animal Care and Use Committee of the Uni-

versity of Wisconsin School of Medicine and Public Health (the assurance number A3368-01).

Animals were sacrificed according to an approved protocol by CO2 asphyxiation.

Animals

The vitamin D receptor (Vdr)-deficient mice (B6.129S4-Vdrtm1Mbd/J; Jackson Laboratories,

Bar Harbor, ME; stock number 006133) and wild type mice were maintained at the University

of Wisconsin animal facilities according to approved protocols. Litters were produced by mat-

ing heterozygote mutant mice and they were genotyped by PCR of DNA extracted from tail

tips. The screening primers used for genotyping were as follows (5’ to 3’): Vdr mutant: CACGA
GACTAGTGAGACGTG; Vdr wild type: CTCCATCCCCATGTGTCTTT; and Vdr common: TTCT
TCAGTGGCCAGCT CTT, as suggested by the supplier. The impact of OIR on retinal vessel

obliteration and neovascularization is sex independent [13]. We also confirmed this by assess-

ing the degree of neovascularization and vessel obliteration in wild type male and female mice

(C57BL/6j; Jackson Laboratories), and both responded similarly. Clinical studies also showed

independence of sex with ROP as a risk factor [15, 16]. In all experiments male and female

Vdr -/- mice were compared to their Vdr +/- and Vdr +/+ littermates. C57BL/6j mice (Jackson

Laboratories) were also used as wild type control in some experiments.

For the mouse model of OIR, P7 pups and their mother were exposed to the hyperoxia

condition (75% ± 0.5% oxygen) in an airtight incubator for 5 days as previously described

[13, 17, 18]. Incubator temperature was maintained at 23 ± 2˚C and oxygen level was moni-

tored continuously using a PROOX model 110 oxygen controller (Reming Bioinstruments

Co., Redfield, NY). The mice were then brought to room air (hypoxia, 20% oxygen) for 5 days.

To investigate antiangiogenic activity of 1,25(OH)2D3, half of the pups from Vdr +/+ and

Vdr -/- mice received intraperitoneal injection of 0.0125 μg (2.5 μg/kg) of 1,25(OH)2D3 (NDC

17478-931-01; Akorn, Inc.,Lake Forest, IL) from P12 to P16. The other half of the pups re-

ceived saline alone. Mice were then sacrificed at P17, and one eye was collected for retinal

wholemount preparation as described below and one eye was prepared for histological

evaluations.
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Preparation, visualization, and analysis of retinal wholemounts

Mice were sacrificed at various time points during development. The mice eyes were enucle-

ated and fixed in 4% paraformaldehyde briefly (3–5 min), then transferred to 70% methanol to

fix for at least 24 h at -20˚C. Retinas were dissected in and then washed with phosphate buff-

ered saline (PBS) three times, 10 min each. Dissected retinas were then incubated in blocking

buffer (50% fetal calf serum (FBS) and 20% normal goat serum (NGS) in PBS) for 2 h at room

temperature (RT). Retinas were incubated with desired primary antibodies including rabbit

anti-mouse collagen IV (Millipore, AB756P), anti-glial fibrillary acid protein (GFAP) (14-

9892-82; eBioscience, ThermoFisher, San Diego, CA), and FITC- conjugated anti-α-smooth

muscle actin (F3777; Sigma-Aldrich, St. Louis, MO) diluted 1:500 in PBS containing 20% FCS,

20% NGS at 4˚C overnight. Retinas were then washed three times with PBS, 10 min each; incu-

bated with appropriate secondary antibodies including CyTM 2-conjugated goat-anti-mouse

(115-225-146; Jackson ImmunoResearch Laboratories, West Grove, PA) and Alexa 594 goat-

anti-rabbit (A-11037; ThermoFisher) diluted 1:500 in PBS containing 20% FCS, 20% NGS for

2 h at RT. Retinas were then washed four times with PBS, 10 min each and mounted on the

slide with PBS/glycerol (1:1 vol).

To assess the number of angiogenic sprouts at postnatal day 5 (P5), number of leading

sprouts at the edge of expanding retinal vasculature were counted for at least six images per

retina (at x100). Percentage of retinal vascular coverage was calculated by ratio of measured

area of the expanded retinal vasculature to the total retina at P5.

To evaluate organization of major blood vessels, number of major arteries branched off of

optic nerve were counted at P7 and P21 in images captured from anti- α-SMA stained retinas

at x12.5. Development of vascular plexus were assessed by counting the number of immediate

secondary branches and their associated branch points from the major arteries in the above

images at both P7 and P21.

To assess the number of proliferating cells, Ki-67 staining was performed after completion

of 2 h blocking. Briefly, retinas were incubated with Ki-67 (12075S; Cell Signaling) prepared

(1:100) in 3% BSA, 0.3% Triton X-100 in PBS overnight at 4˚C. The next day, retinas were

washed three times with PBS, 10 min each. The retinas were then incubated with Isolectin

B4-FITC (1:100; Vector Labs, Burlingame, CA) for 2 h and washed four times with PBS, 15

min each. The samples were mounted with PBS/glycerol (1:1 vol). For quantification, the

mean number of Ki-67 positive cells on the intermediate layer of retinal vasculature were

determined per field (x400). Retinas were viewed by fluorescence microscopy and images were

captured using EVOS imaging system (AMG, ThermoFisher) or Zeiss microscope (AxioPhot,

Carl Zeiss, Chester, VA).

Quantification of retinal neovascularization and avascular area

Quantification of retinal and vitreous neovascularization during OIR (at P17) was performed

using serial histological sections and image analysis as described previously by others [13, 19]

and us [7, 17]. For histology sections, mouse eye were enucleated, fixed in formalin for at least

24 h at room temperature. They were then embedded in paraffin and eight serial sections

(40 μm apart, 6 μm thick) were taken from around the optic nerve (four on each side of the

optic nerve). The hematoxylin and PAS stained slides were examined for the presence of neo-

vascular tufts grown from the retina into the vitreous, and the average from 8 sections is

reported as the mean number of neovascular nuclei per eye.

For image analysis, after wholemount staining and imaging, retinal neovascularization was

assessed by semi-automated quantification method (SWIFT_NV) installed on ImageJ software

(NIH, Maryland, USA) as developed and described by Stalh et.al. [19]. During the preparation
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of digital captured images for these macros, avascular areas were also measured and reported

as percentage of vaso-obliterated area relative to the total retina area.

Immunohistochemical staining of the frozen sections

Enucleated mouse eyes were embedded in optimal cutting temperature (OCT) compound and

frozen sections (6 sections per eye) were prepared. Sections were fixed in cold acetone for 10

min, washed three times with PBS (5 min each), and blocked (1% BSA, 0.2% skim milk, and

0.3% Triton X-100 in PBS) for 15 min at RT. Sections were then incubated with rabbit anti-

mouse collagen IV (AB756P; Millipore) diluted in blocking solution (1:500) overnight at 4˚C

in a humid environment. The next day, sections were washed three times (5 min each) in PBS

and incubated with secondary antibody Alexa 594 goat-anti-rabbit (1:500, prepared in block-

ing solution) (A-11037, Invitrogen). After three PBS washes, sections covered with PBS/glyc-

erol (1:1 vol) and mounted with coverslip. Retinas were viewed using fluorescence microscopy

and images were captured in digital format using a Zeiss microscope (Cal Zeiss, Chester, VA).

Trypsin-digested retinal vessel preparations

Enucleated eyes from P21 and P42 mice were fixed in 4% paraformaldehyde for at least 24 h at

room temperature. The retinas were then dissected and washed overnight in distilled water

and incubated in 3% trypsin (Trypsin, Difco; 1:250 prepared in 0.1 M Tris, 0.1 M maleic acid,

pH7.8 containing 0.2 M NaF) for approximately 1–1.5 h at 37˚C. When digestion was com-

pleted, the very delicate and fragile retinal vessels were flattened by four radial cuts and

mounted on glass slides for PAS and hematoxylin staining. Based on location and nuclear

morphology of the cells, EC and PC were distinguished and counted. The nuclei of EC are oval

or elongated and lie within the vessel wall along the axis of the capillary, while PC nuclei are

small, spherical, stain densely, and generally have a protuberant position on the capillary wall.

For quantification, slides were scanned by Aperio Digital Pathology Slide Scanner (ScanScope

Model: CS, Aperio Technologies, Inc., Vista, CA) and images were captured at x40 using

Aperio ImageScope software (version 12.2.2.5015; Leica Biosystems Imaging, Inc; Buffalo

Grove, IL). The number of EC and PC was determined by counting the number of respective

nuclei on captured images. The counting was performed in the mid-zone of the retina for at

least six images from four quadrants of each retina, and retinas from at least 5 mice. The mean

number of EC, PC, and their ratio are reported per image/field for each retina.

Mice bodyweight assessment during development and OIR

Mice bodyweight was assessed by simply measuring their bodyweight (gram; gr) on a digital

scale. The average mouse bodyweight is reported for each time point. During OIR, mice were

weighed prior and after the course of 1, 25(OH)2D3 or saline administration at P12 and P17.

Percentage of bodyweight gain was assessed by subtracting the bodyweight at P17 from P12

over the bodyweight at P12 (
� P17 weight� P12 weight

P12 weight
�
� 100).

Determination of the rate vascular cell proliferation

We have previously shown that maximum vascular cell proliferation occurs in retinas from

P14 mice [20]. Eyes were enucleated from P14 Vdr +/+ and Vdr -/- mice, fixed for 3 min in 4%

paraformaldehyde, and stored in methanol at -20˚C overnight. The retinas were then dissected

and placed in PBS for 30 min, fixed in 3% paraformaldehyde for 30 min, and washed three

times in PBS. The retinas were then transferred to new tubes, rinsed and blocked in blocking

buffer (see above) for 24 h at room temperature. Next the retinas were incubated with Ki67
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antibody (1:50 dilution, clone D3B5 catalog #:12075; Cell Signaling) in 2.5% BSA, 0.4% Triton

X-100 and blocking buffer for 24 h at 4˚C while rocking. Samples were washed 5 times in PBS,

one time in 2.5% BSA, blocking buffer and 0.4% Triton X-100 (20 min at room temperature)

and then rocked in 50% blocking buffer at room temperature for 30 min. The retinas were

then incubated with the appropriate secondary antibody (1:500; Jackson ImmunoResearch

Laboratories) in 2.5% BSA, blocking buffer and 0.4% Triton X-100 rocking for 2 h at room

temperature. The samples were washed three times in PBS for 10 min and fixed in 3% parafor-

maldehyde for 30 min at room temperature. The retinas were then washed 3 times in PBS,

transferred to new tubes and washed once more in PBS. The retinas were then incubated with

Isolectin B4-FITC (1:100; Vector Labs) for 90 min and washed 3 times in PBS. The samples

were mounted in mounting medium with DAPI (Southern Biotech). For quantification, the

numbers of Ki67 positive cells on the blood vessels were determined per field (x400).

Imaging of the hyaloid vasculature

Hyaloid vessels from 6-week-old mice were imaged using a Micron III indirect camera (Phoe-

nix Research Labs, Pleasanton, CA). Mice were anesthetized using ketamine/xylazine and eyes

were dilated with atropine. Fundus images were taken prior to an intraperitoneal injection of

sodium fluorescein (100 mg/Kg) (10% soltution; Altaire Pharmaceuticals, Riverhead, NY)

while the retina was in focus on the Micron III. Images were taken as the hyaloid vessels were

filled with fluorescein.

VEGF level measurements

The levels of VEGF were evaluated in retina extracts prepared from P15 Vdr +/+, Vdr +/-, and

Vdr -/- mice using the Mouse VEGF Immunoassay Kit (R&D Systems, Minneapolis, MN).

Briefly, retinas from each mouse were dissected and placed in 0.5 mL of PBS and stored at

-80˚C prior to analysis. VEGF levels were determined as recommended by the supplier.

Statistical analysis

Statistical differences between groups were evaluated with the One-way ANOVA followed by

Tukey’s multiple comparison test using GraphPad Prism version 5.04 for Windows (GraphPad

Software, La Jolla, CA). Statistical Differences were confirmed with Bonferroni’s comparison

of selected pairs of columns and student’s unpaired t-test (two-tailed). Mean ± standard devia-

tion is shown. P< 0.05 is considered significant.

Results

The spreading of superficial layer of retinal vasculature is independent of

Vdr expression

To assess the effect of Vdr-deficiency on retinal vascular development, we prepared retinal

wholemounts from mice at various postnatal days and stained them to visualize the vascula-

ture. In the majority of experiments, we used anti-collagen IV antibody (Col IV, stained red)

to visualize the structure, organization, and regression of retinal blood vessels. Collagen IV is

one of the major components of the basement membrane of retinal blood vessels. Here we

assessed whether Vdr-deficiency influence the sprouting of the superficial layer of the retinal

vasculature.

During early vascular development, retinal astrocytes (AC) lay out the primary scaffolding

to guide retinal vascularization. Endothelial cells then follow this scaffolding to vascularize the

retina. This is immediately followed by the recruitment of PC, which protect the EC and
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stabilize the newly formed blood vessels. Retinas from postnatal day five (P5) mice were

stained for GFAP, an intermediate filament of AC, and flatmounted to assess the expansion

of AC, and for Col IV to determine the rate of vascular EC expansion and the sprouting of

endothelial tip cell density at the leading edge of expanding vasculature (Fig 1A). These results

indicated no significant difference in the mean number of tip cell sprouts in Vdr -/- mice com-

pared with Vdr +/- and Vdr +/+ littermates (Fig 1B). At this stage, retinal AC were reached the

edge of retina and had covered the entire retina. Thus, the developing retinal vasculature

expands at a similar rate in Vdr -/- and Vdr +/+ mice. We also measured the relative distance

that the retinal vessels migrated from the optic nerve at P5. No significant differences were

observed between Vdr +/+ and Vdr -/- littermates (Fig 1C).

The organization of major blood vessels and development of primary

retinal vascular plexus are not affected by Vdr-deficiency

We next examined whether Vdr-deficiency impacts the number of major blood vessels in the

retina by wholemount staining with anti-α-smooth muscle actin (SMA). The SMA is mainly

expressed in smooth muscle cells, which cover the major arteries but not the capillaries [6].

Fig 1. The development of superficial layer of retinal vasculature is independent of Vdr expression.

(A) Demonstrates GFAP and Col IV stained retinal vessels prepared from postnatal day 5 (P5) Vdr +/+ and

Vdr -/- mice. Please note similar expansion of astrocytes (green, GFAP) and progression of expanding

vessels (red, Col IV). Scale bar = 200 μm for x25 and Scale bar = 50 μm for x100 images. (B) The mean

number of angiogenic sprouts at the angiogenic fronts were quantified per field (x100) in each retina. (C)

Coverage of retinal vasculature relative to total retina area were measured for each retina and is shown as a

percentage. (n� 5; each point represents one mouse).

https://doi.org/10.1371/journal.pone.0190131.g001
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We examined retinas from P7 mice, when the formation of superficial layer of blood vessels is

nearly complete, and P21 mice when the formation of primary vascular plexus is completed

(Fig 2A). At P7, we observed a similar mean number of retinal arteries in Vdr +/+ (4.6 ± 0.54)

and Vdr -/- (5 ± 1.00) mice. The mean number of major arteries, branches, and branch points

were also similar between Vdr -/- mice and their Vdr +/- and Vdr +/+ littermates at P7 and

P21 (Fig 2B and 2C). Thus, our results indicated minimal association between Vdr-deficiency

and organization of major blood vessels comparing Vdr -/- mice with their Vdr +/+ and Vdr +/-

littermates. We also observed similar structure and density of the retinal vasculature at P5, P8,

P10, P14, and P21 in wholemounts and P8 and P10 in frozen sections, and similar rates of pro-

liferations determined by Ki67 staining (Figure A in S1 File). These results are also consistent

with the minimal differences observed in the bodyweights among these mice (Fig 3). Further-

more, examination of hyaloid vessels regression after 6-weeks of age revealed no differences

between Vdr +/+ and Vdr -/- mice (Figure B in S1 File).

Fig 2. The organization of major blood vessels and development of primary retinal vascular plexus is

not affected by Vdr-deficiency. (A) Retinas from P7 and P21 mice were wholemount stained with anti-α-

smooth muscle actin and imaged at x12.5. Mean number of major arteries, branches, and branch points were

quantified per retina and shown, respectively, in (B) for P7 and (C) for P21. (n� 5; each point represents one

mice) Scale bar = 2,000 μm.

https://doi.org/10.1371/journal.pone.0190131.g002
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Decreased vascular cell density and EC/PC ratios in Vdr -/- mice

To compare retinal vascular densities in Vdr +/+ and Vdr -/- mice, we prepared retinal trypsin

digests and determined EC/PC ratios as well as their densities. In wholemount retinal digests,

the EC nuclei occur within the vessel wall, are large, oval, weakly stained, and protrude lumin-

ally. Pericytes nuclei, are darkly stained, small, round, and protrude laterally from the vessel

wall. Fig 4A shows trypsin-digest preparations from P21 mice, when formation of primary vas-

culature is completed, and P42 mice, after completion of vascular maturation. Our data dem-

onstrated no significant changes in EC/PC ratio in retinal vasculature of P21 Vdr -/- mice

compared with Vdr +/+ mice (Fig 4B). However, a significant decrease in the EC/PC ratio was

observed in retinal vasculature of 6-week-old Vdr -/- mice compared with Vdr +/+ mice (Fig

4C). Loss of EC, which normally occurs during maturation of developing retinal vasculature,

was also observed here regardless of VDR expression. In contrast, the loss of PC during normal

maturation of developing retinal vasculature is minimal [7, 20, 21]. Thus, the significant de-

crease in EC/PC ratio of retinal vasculature from 6-week-old Vdr -/- mice was attributed to the

presence of increased number of PC, which continued to accumulate in the absence of VDR,

and decreased number of EC (Fig 4D). Collectively, our data suggest that expression of VDR is

essential for appropriate maturation of the retinal vasculature, by halting the promigratory and

proliferative phenotype of pericytes and enhancing the survival of EC following the formation

of retinal primary vascular plexus.

Retinal neovascularization during OIR is independent of Vdr expression

Oxygen induced ischemic retinopathy in mice allows to study the various phases of ROP, the

hyperoxia mediated vessel obliteration and ischemia-mediated neovascularization [13, 14]. In

this model, P7 pups and their mother are exposed to a cycle of hyperoxia (75% oxygen) and

normoxia/hypoxia (20% oxygen) for five days. High oxygen exposure results in downregula-

tion of proangiogenic factors that prevent further development of retinal vasculature and pro-

motes loss of existing blood vessels (vessel obliteration). When mice are exposed to room air

(normoxia), the under vascularized retina becomes ischemic and formation of new abnormal

blood vessels (neovascularization) will initiate. These new abnormal blood vessels grow from

Fig 3. Vdr-deficiency minimally affected the mice bodyweight. Mice bodyweight were determined as detailed in

Methods up to 6-weeks of age. We observed no significant differences in postnatal mice bodyweight (gram)

at each time point (n� 4).

https://doi.org/10.1371/journal.pone.0190131.g003
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Fig 4. Altered vascular cell density and EC/PC ratios in Vdr -/- mice. Retinas from P21 and P42 mice

were prepared by trypsin digest and H&E/PAS staining. Slides were then scanned and images captured at

x400. (A) Representative images are shown; Scale bar = 50 μm. Number of EC (red arrow head) and PC

(green arrow head) were counted for at least 6 images per mice, and EC/PC ratio calculated for P21 (B) and

for P42 (C) mice; (***P = 0.0008). (D) The quantitative assessment of this data, and the number of EC and

PC along with the number of retinas counted in each group in parentheses, are shown. (n� 5; **P = 0.0043).

https://doi.org/10.1371/journal.pone.0190131.g004
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the retina into the vitreous, and form vascular tufts. Mice were sacrificed at desired time points

and, areas of vessel obliteration and degree of neovascularization were assessed.

Representative images (x20) of wholemount retinas stained with Col IV from Vdr +/+,

Vdr +/-, and Vdr -/- mice (Fig 5A) demonstrated similar hyperoxia-mediated retinal vessel

obliteration (Fig 5D). Retinal neovascularization was assessed using two different methods

with similar results (Fig 5B and 5C). No significant differences in the area of vessel obliteration

or degree of neovascularization was observed in Vdr +/+ mice compare to their Vdr -/- litter-

mates. Thus, retinal neovascularization during OIR is independent of VDR expression.

1, 25(OH)2D3-mediated inhibition of retinal neovascularization requires

Vdr expression

Previous studies from our laboratory demonstrated that 1, 25(OH)2D3 is a potent inhibitor of

retinal neovascularization during OIR [14]. We next determined whether this inhibition of neo-

vascularization is dependent on VDR expression. We compared the effects of 1, 25(OH)2D3 on

retinal neovascularization in Vdr +/+, Vdr +/-, and Vdr -/- during OIR (Fig 6A). Since room

air/normoxia cycle during OIR occurs from P12 to P17, 1, 25(OH)2D3 was administered by

daily intraperitoneal injections during this time and the degree of neovascularization was

assessed at P17. Using the quantitative image analysis and/or counting the number of nuclei in

neovascular tufts on the vitreous side, our results demonstrated that the significant inhibition of

neovascularization by 1, 25(OH)2D3 was dependent on VDR expression (Fig 6B and Figure D

in S1 File). 1, 25(OH)2D3 treatment had no significant impact on the area of vessel obliteration

observed between groups (Fig 6C). In addition, 1, 25(OH)2D3 mediated bodyweight loss, which

is a systemic side effect of 1, 25(OH)2D3 treatment was not observed in Vdr -/- mice (Fig 6D).

Fig 5. Similar degree of ischemia-driven retinal neovascularization in Vdr+/+ and Vdr-/- during OIR. (A)

Representative images (x20) of wholemount retinal neovascularization isolated from P17 mice exposed to a cycle of

hyperoxia and room air (OIR) and stained with collagen IV. Retinas from Vdr +/+, Vdr +/-, and Vdr -/- littermates were

wholemount stained with anti-collagen IV to visualize the vasculature. Scale bar = 2,000 μm. Quantitative assessment of

the neovascularization (histological evaluation and quantitative analysis of images) and area of vessel obliteration are

shown in (B), (C), and (D) respectively. (n� 7; each point represents one mice).

https://doi.org/10.1371/journal.pone.0190131.g005
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Thus, although degree of retinal neovascularization is independent of Vdr expression during

OIR (as shown in Fig 5B and 5C; non-treated mice), the significant inhibition of retinal neovas-

cularization by 1, 25(OH)2D3 is Vdr dependent (as shown in Fig 6B and Figure D in S1 File; 1,

25(OH)2D3 treated mice).

Discussion

Vitamin D is one of the natural compounds, which in its hormonal and active form (Calcitriol

or 1, 25(OH)2D3) inhibits the development, growth, and progression of a variety of cancers

and eye diseases. This inhibitory effect is mainly mediated through VDR and its direct effect

on gene expression [14, 22–26]. However, based on observed rapid responses after vitamin D

treatment, potential non-genomic functions of vitamin D are also suggested [27]. These func-

tions could be mediated directly by VDR, as well as those by other membrane-associated

receptors [27–30]. Thus, vitamin D’s action could be mediated through different receptors and

pathways. Here we investigated the impact of VDR expression on postnatal retinal vascular

development and neovascularization during OIR. Based on reduced vascularity and growth of

tumors treated with vitamin D and its analogs [31, 32], it was proposed that vitamin D and its

analogs have anti-angiogenic activity, and tumor vasculature might be a target [25]. Our previ-

ous studies showed significant attenuation of retinal neovascularization by 1, 25(OH)2D3 dur-

ing OIR [14]. However, the role VDR expression plays in retinal vascular development and

neovascularization during OIR and its inhibition by 1, 25(OH)2D3 remained unknown.

To further understand VDR mechanisms of action, transgenic mice lacking a functional

Vdr expression have been generated. Vdr-deficient (Vdr -/-) mice are viable with a normal

phenotype at birth and they do not exhibit any developmental and growth defects, especially,

before weaning [33, 34]. VDR function has been investigated in developmental studies [35–37]

as well as its association with various diseases [3, 38–40], cancer [41–48], and carcinogen-

induced tumorigenesis [49]. These studies indicated that Vdr-deficiency impairs inner ear

development [37] and its expression is essential for heart development in zebrafish [36]. Mice

deficient in VDR also showed accelerated mammary gland development during pregnancy

with delayed post-lactation involution, perhaps as a result of enhanced angiogenesis during

development and failure in proper vessel regression during involution [35]. These observations

are consistent with our findings that VDR expression, especially in perivascular supporting

cells, has a significant impact on the maturation of developing blood vessels by promoting the

quiescence and differentiated phenotype of these cells. Here we showed that the mice body-

weight was similar between Vdr +/+, Vdr +/-, and Vdr -/- during early postnatal development

up to 6-weeks of age. Thus, it is highly unlikely that the changes we report here in Vdr -/- mice

are associated with adverse health issues in these mice noted as they get older, which could be

simply remedied by appropriate diet. However, some of the cardiovascular abnormalities asso-

ciated with vitamin D deficiency is only revered by addition of vitamin D supplement and not

with rescue diet or calcium normalization [50].

The postnatal development of retinal vasculature permits to study all aspects of vascular

development after birth. We next examined normal postnatal retinal vascular development

and retinal neovascularization during OIR in Vdr +/+, Vdr +/-and Vdr -/- mice at different

Fig 6. Vdr expression is required for significant inhibition of retinal neovascularization by1, 25(OH)2D3. (A)

Representative images (x20) of collagen IV stained wholemount retinal neovascularization from P17 OIR with and

without 1, 25(OH)2D3 treatment from Vdr +/+, Vdr +/-, and Vdr -/- mice. Scale bar = 2,000 μm. Quantitative

assessment of the neovascularization (histological evaluation) and area of vessel obliteration from these groups

are shown in (B) and (C), respectively; (***P = 0.0006, *P = 0.0121). (D) The evaluated mice bodyweight (gr)

comparison from the above groups is shown; (****P<0.0001). (n� 7; each point represents one mouse).

https://doi.org/10.1371/journal.pone.0190131.g006
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time points. Vdr +/+ and Vdr -/- mice exhibited a very similar pattern of vascular development

and vascular density up to three weeks of age, when the formation of primary retinal vascular

plexus is completed but not matured. However, the EC to PC ratio of Vdr -/- mice decreased

significantly by 6-weeks of age, after remodeling and pruning, and maturation of retinal vascu-

lature. This decrease in the EC/PC ratio was mainly attributed to the presence of increased

number of PC in Vdr -/- mice. The number of EC decreased as occurs normally during this

process. However, this decrease in the number of EC was further impacted by Vdr-deficiency

perhaps as a result of reduced VEGF levels produced by Vdr deficient PC resulting in less pro-

tection. Thus, changes in PC density and maturation may have a significant impact on vascular

function [51]. Alterations in EC and PC ratio have been observed under a variety of conditions

and disease states including aging, diabetic retinopathy, cancer, hyperglycemia, multiple scle-

rosis, and during development [51–58]. Chen et al. recently reported blood vessels in the

periphery of tumors have higher PC coverage and are more resistant to vascular disrupting

agents, which contribute to treatment failure and diseases recurrence [59]. How changes in

Vdr-deficient PC characteristics and increased numbers may impact retinal vascular function

and susceptibility to various insults awaits further investigation.

The increase in the number of PC could be attributed, at least in part, to our observation that

1, 25(OH)2D3 inhibits the proliferation of Vdr +/+ PC in culture [5], as previously shown in

smooth muscle cells (SMC) [60, 61]. Thus, the increase in PC number in Vdr -/- could be associ-

ated with lack of response to endogenous vitamin D signal and maturation of retinal vascula-

ture. Incubation of vascular SMC with vitamin D results in increased production of VEGF [62].

This increase in VEGF is demonstrated to have a negative effect on proliferation of perivascular

supporting cells through promotion of heterodimerization of PDGF-Rβ and VEGF-R2 [63].

The heterodimerization of these receptors attenuate signaling through these receptors, by their

respective ligands, and promoting the coverage and maturation of developing blood vessels

[63]. We have also observed increased production of VEGF in retinal PC incubated with vita-

min D, as previously shown in SMC [64]. Thus, we propose that 1, 25(OH)2D3 acting through

VDR inhibits proangiogenic activity of PC by promoting their quiescence and stabilizing the

newly formed blood vessels though increased VEGF production. This also may promote the

survival of EC in mature blood vessels, which depend on the VEGF produced by PC [65].

The increase in VEGF level by 1, 25(OH)2D3 occurs through direct interactions between

VDR, as a transcription factor, and VEGF promoter in vascular SMC [66]. Thus, in the

absence of VDR, we propose the reduced levels of VEGF produced by PC could be responsible

for their increased number, and perhaps reduced number of EC whose survival is dependent

on VEGF production. Although the changes in VEGF level in the retinas of Vdr -/- mice

appeared not to be significantly different from Vdr +/+ mice (Figure C in S1 File), this differ-

ence may be masked due to various production of VEGF by multiple cells in the retina includ-

ing EC. The direct impact of VDR expression on production of VEGF by PC incubated with

vitamin D awaits evaluation of VEGF levels in Vdr +/+ and Vdr -/- PC. Together, our data

show that the primary postnatal development of retinal vasculature is independent of VDR

expression. However, vascular density and ratio of EC and PC is affected by VDR expression,

at 6-weeks of age. These observations suggest an important role for VDR expression during

remodeling and maturation phase of the developing retinal vasculature through PC quies-

cence. This is very similar to the impact of other angioinhibitory factors we previously exam-

ined during postnatal retinal vascular development including thrombospondin-1 (TSP1) and

pigment epithelium derived factor (PEDF). We showed the deficiency in these genes mini-

mally affected formation of primary retinal vascular plexus [20, 67]. We proposed that this is

contributed to the overwhelming active role of proangiogenic factors during active angiogene-

sis. However, when proangiogenic activity diminishes in order to establish the homeostatic
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state, the antiangiogenic factors could take an active role in eliminating excess vasculature

until a state of homeostasis is established, as occurs during pruning and remodeling, and mat-

uration of developing vasculature.

We next examined the impact of VDR expression on retinal vessel obliteration and neovas-

cularization during OIR. We observed no significant differences in degree of vessel-obliteration

in Vdr +/+ compare to Vdr -/- mice. In addition, the Vdr -/- mice exhibited a similar rate of reti-

nal neovascularization compared with Vdr +/+ mice (non-treated). Thus, VDR expression min-

imally impacts retinal vascular responses during OIR. This is consistent with our previous

observation that deficiency of other angioinhibitory factors, namely TSP1 and PEDF, minimally

affect neovascularization during OIR [20, 67]. Again, we propose that this is mainly attributed

to the active and dominant role of proangiogenic factors during active angiogenesis. It is only

when antiangiogenic molecules are in excess (exogenously added) or the level of proangiogenic

factors drop below a threshold (excess endogenous level) when inhibitors of angiogenesis pre-

vent angiogenesis, as occurs during pruning and remodeling, and maturation of newly formed

vessels [67]. We previously showed exogenous 1, 25(OH)2D3 inhibited retinal neovasculariza-

tion during OIR [14]. Here we showed, 1, 25(OH)2D3 failed to significantly inhibit retinal neo-

vascularization in Vdr -/- mice compared with Vdr +/+ mice during OIR (in 1, 25(OH)2D3

treated mice). Thus, a significant anti-angiogenic activity of 1, 25(OH)2D3 is mediated through

VDR. However, whether VDR-independent mechanisms may also contribute to vitamin D-

mediated inhibition of angiogenesis awaits carful cell autonomous characterization of vitamin

D action on retinal vascular cells. A potential systemic side effect of 1, 25(OH)2D3 treatment is

hypercalcemia and lack of bodyweight gain [68, 69]. Interestingly, 1, 25(OH)2D3 mediated

weight loss was not observed in Vdr -/- mice compared with Vdr +/+ mice during OIR (1,25

(OH)2D3 treated mice).

In summary, our results indicate that VDR expression is an important modulator of vascu-

lar development, especially during late stages, where it promotes the quiescence of perivascular

supporting cells and maturation of blood vessels. Although, pathological retinal neovasculari-

zation during OIR was independent of VDR expression, the significant inhibition of retinal

neovascularization by 1, 25(OH)2D3 was dependent on expression of VDR. Identification and

understanding the 1, 25(OH)2D3 mechanisms of action during biological and pathological

conditions, and the signaling pathways involved will improve our knowledge regarding its

therapeutic use.
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