
RESEARCH ARTICLE

Optimizing Semantic Pointer Representations
for Symbol-Like Processing in Spiking Neural
Networks
Jan Gosmann*, Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada

* jgosmann@uwaterloo.ca

Abstract
The Semantic Pointer Architecture (SPA) is a proposal of specifying the computations and

architectural elements needed to account for cognitive functions. By means of the Neural

Engineering Framework (NEF) this proposal can be realized in a spiking neural network.

However, in any such network each SPA transformation will accumulate noise. By increas-

ing the accuracy of common SPA operations, the overall network performance can be

increased considerably. As well, the representations in such networks present a trade-off

between being able to represent all possible values and being only able to represent the

most likely values, but with high accuracy. We derive a heuristic to find the near-optimal

point in this trade-off. This allows us to improve the accuracy of common SPA operations by

up to 25 times. Ultimately, it allows for a reduction of neuron number and a more efficient

use of both traditional and neuromorphic hardware, which we demonstrate here.

Introduction
The Neural Engineering Framework (NEF) [1] is a mathematical theory of how biological neu-
ral systems can implement a wide variety of dynamic functions. These methods have been used
to propose novel models of a wider variety of neural systems, including the barn owl auditory
system [2, 3], parts of the rodent navigation system [4], escape and swimming control in zebra-
fish [5], tactile working memory in monkeys [6], and simple decision making in humans [7]
and rats [8]. In short, the NEF provides a method for capturing how neural computations
might be performed. However, it does not specify what those computations are. More recently,
the NEF has been used to underwrite a proposal regarding the mammalian neural architecture
[9]. This proposal is called the Semantic Pointer Architecture (SPA), and suggests specific com-
putations, architectural elements, and methods of representing and transmitting information
to account for perceptual, motor, and cognitive behaviour. The SPA was used to construct
what remains the largest functional brain model, called Spaun [10].

The SPA employs a small number of mathematical operations (discussed in detail later).
When those operations are implemented in a neural network, each transformation will accu-
mulate noise. Thus, any improvement to the accuracy of these operations will improve the

PLOSONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 1 / 18

OPEN ACCESS

Citation: Gosmann J, Eliasmith C (2016) Optimizing
Semantic Pointer Representations for Symbol-Like
Processing in Spiking Neural Networks. PLoS ONE
11(2): e0149928. doi:10.1371/journal.pone.0149928

Editor: Eleni Vasilaki, University of Sheffield,
UNITED KINGDOM

Received: October 7, 2015

Accepted: February 5, 2016

Published: February 22, 2016

Copyright: © 2016 Gosmann, Eliasmith. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All simulation data files
are available from the Figshare database (http://dx.
doi.org/10.6084/m9.figshare.1566849 and https://dx.
doi.org/10.6084/m9.figshare.2060679). All model and
data analysis code is available on GitHub (https://
github.com/ctn-archive/spaopt). The n-back model
used in the "Large scale model" section is also
available on GitHub (https://github.com/ctn-archive/
gosmann-cogsci2015).

Funding: This work was supported by the Canada
Research Chairs program (http://www.chairs-chaires.
gc.ca/), the Natural Sciences and Engineering
Research Council of Canada Discovery grant 261453
(http://www.nserc-crsng.gc.ca/), Air Force Office of

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0149928&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1566849
http://dx.doi.org/10.6084/m9.figshare.1566849
https://dx.doi.org/10.6084/m9.figshare.2060679
https://dx.doi.org/10.6084/m9.figshare.2060679
https://github.com/ctn-archive/spaopt
https://github.com/ctn-archive/spaopt
https://github.com/ctn-archive/gosmann-cogsci2015
https://github.com/ctn-archive/gosmann-cogsci2015
http://www.chairs-chaires.gc.ca/
http://www.chairs-chaires.gc.ca/
http://www.nserc-crsng.gc.ca/

overall network performance by a significant factor. The goal of this work is to improve the
accuracy of such computations for a given amount of neural resources. We will show that such
an improvement is possible by considering the distribution of values represented in neural
ensembles. By allowing a less accurate representation of rarely occurring values we can consid-
erably improve the representation of common values. For example, if almost all represented
values had a magnitude below one, it is not useful to have neurons tuned to represent values
with a larger magnitude. In fact, we derive a heuristic to determine a near optimal trade-off of
being able to represent all possibly occurring values and only being able to represent the most
likely values. Identifying this heuristic allows for much more efficient simulation of neural
components that perform typical SPA operations because less neurons can be used while main-
taining the error level. Large-scale models require optimizations of this sort because they are
computationally costly to simulate. For instance, the Spaun model required 2.5h of simulation
time for each second of simulated time. With fewer neurons, model simulation can run faster
or larger models can be run without increased hardware requirements. As well, such optimiza-
tions make it more feasible to put computationally useful networks on non-traditional, neuro-
morphic hardware.

While traditional von Neumann computers approach physical limits, neuromorphic plat-
forms promise continuing speed-ups and a far better energy efficiency. Projects like CAVIAR
[11], SyNAPSE/TrueNorth [12], and Neurogrid [13] to scale up these platforms are underway.
Nevertheless, more effective usage of the hardware reduces costs and allows to run larger or
more complicated models on the same hardware. While it is common to analyze the complex-
ity of algorithms on traditional platforms to optimize their efficiency, it is not very common on
neuromorphic hardware, presumably because many neural network approaches do not allow
for analytic investigation of the computations.

Choudhary et al. [14], Mundy et al. [15], and Wang et al. [16] have shown that the Neural
Engineering Framework (NEF) [1] is a viable method to translate the mathematical formula-
tion of an algorithm into a neural network which can run on neuromorphic hardware. Conse-
quently, optimizations of the sort we perform here will benefit this growing body of work on
neuromorphic computation by providing methods for a more efficient usage of the available
hardware resources.

The paper is organized as follows: First, we give an introduction to the Neural Engineering
Framework and the Semantic Pointer Architecture before describing our optimization meth-
ods in detail. Following that, we test the methods first with computer simulations of standard
leaky integrate-and-fire neurons and then with a SpiNNaker neuromorphic implementation
using fixed-point calculations. To show the applicability to large scale models, we demonstrate
the improvement on a recent model of the n-back task. Finally, we discuss the results, noting
that these methods can reduce the number of neurons used by up to 97.5%.

Methods

The Neural Engineering Framework (NEF)
The methods in this paper are applicable to the Neural Engineering Framework (NEF) [1]
which allows the construction of large-scale neural networks from a mathematical description.
The NEF is based on three core principles:

1. Representation: Populations of neurons represent vectors by non-linear encoding and linear
decoding.

2. Transformation: Functions of time-varying variables can be computed by an alternative lin-
ear decoding of the vector represented by a neural population.

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 2 / 18

Scientific Research grant FA8655-13-1-3084 (http://
www.afosr.af.mil/), Canada Foundation for Innovation
(http://www.innovation.ca/), and Ontario Innovation
Trust. All funding was received by CE. This work
made also use of SHARCNET (https://www.sharcnet.
ca) and Compute Canada (https://www.
computecanada.ca/) computer resources. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://www.afosr.af.mil/
http://www.afosr.af.mil/
http://www.innovation.ca/
https://www.sharcnet.ca
https://www.sharcnet.ca
https://www.computecanada.ca/
https://www.computecanada.ca/

3. Dynamics: Represented values can be treated as state variables (see Principle 1). A dynam-
ical system of these state variables can be implemented with recurrent connections. Neces-
sary nonlinearities can be computed with principle 2.

Here we focus on the first two principles. NEF models typically begin by suggesting a
description of the cognitive system using time-varying, real-valued vectors and transforma-
tions of these vectors. The NEF specifies a population encoding given a group of neurons for
such a vector. It also specifies how to approximately decode the vector or a transformation of it
from the population coding of such a group of neurons. By combining encoding and decoding,
populations of neurons can be connected to create networks to transmit and process informa-
tion. In the following we will detail these steps (see also Fig 1).

The representation of a time-varying vector x(t) by a neuron i is given by the non-linear
encoding

aiðtÞ ¼ G½JðxðtÞÞ�; JðxðtÞÞ ¼ aiðei � xðtÞÞ þ Jbias;i ð1Þ

where ai(t) is the neuron’s activity, G[�] a non-linear activation function, J(x) the incoming cur-
rent to the neuron, αi a gain factor, ei the neuron’s encoder or preferred direction vector, and
Jbias, i the background current to the neuron. The dot product ei � x with the neuron’s encoder
accounts for the fact that a neuron is typically tuned to specific stimuli.

Depending on the activation function, the activity ai(t) can be a rate approximation or a
spike train ∑k δ(t − tk) expressed as a sum of Dirac delta δ functions for all spikes k at times tk.
A specific neuromorphic hardware platform may dictate G[�] or place constraints on it. If the
activation function returns a spike train, a continuous signal can be obtained by convolving the
spike train with a filter that accounts for post-synaptic effects in a receiving neuron. In this
work we use an exponential decay of the form exp(−t/τ), where τ is the post-synaptic time con-
stant for a given neurotransmitter.

For simplicity, we assume ai to be a rate approximation in the following equations. The
value represented by a group of N neurons, called ensemble in the NEF terminology, can be
estimated by a weighted linear decoding of their activities ai as

x̂kðtÞ ¼
XN
i¼1

dikaiðtÞ ð2Þ

with decoding weights dik. Together, the encoding and decoding equations specify the first
NEF core principle of representation.

The decoding weights are typically found by a least-squares optimization of the difference
kx̂ � xk with Q evaluation points x randomly picked from the desired representational range.
This range is usually chosen to be a hyper-sphere with radius r. Thus, all vectors with a length
of less than r will be represented equally well on average, but vectors with a length exceeding r
will have an increasing error in their representation as the decoding weights have not been
optimized for this range. Unfortunately, arbitrarily increasing the radius will spread out the
constant number of evaluation points over the representational range which will lead to a less
precise decoding for vectors within range. Because of this, the choice of r can be quite impor-
tant and the methods presented here are concerned with finding a good radius r considering
the statistical distribution of represented values.

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 3 / 18

Fig 1. Representation and transformation in the Neural Engineering Framework (NEF). The NEF specifies how an input (upper left) is encoded by a
population of neurons with individual tuning curves. The orientation of the rising flank of the tuning curve corresponds to the preferred direction ei of the
neuron (either −1 or +1 in this one-dimensional example). The encoding equation will typically produce spike trains for the neurons (top right). To decode the
represented value, the spike trains are filtered (corresponding to synaptic filtering) and then a linear weighted sum is computed (bottom right). Using different
sets of decoding weights non-linear transformations can be implemented (bottom left).

doi:10.1371/journal.pone.0149928.g001

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 4 / 18

To solve the least-square problem for the decoding weights, we define the matrices

A ¼

a1ðx1Þ a1ðx2Þ � � � a1ðxQÞ

a2ðx1Þ a2ðx2Þ � � � a2ðxQÞ

..

. ..
. . .

. ..
.

aNðx1Þ aNðx2Þ � � � aNðxQÞ

2
666666664

3
777777775

and X ¼

x1

x2

..

.

xQ

2
666666664

3
777777775

ð3Þ

and use the regularized pseudo-inverse as follows

d>1

d>2

..

.

d>N

2
666666664

3
777777775
¼ ðAA> þ Qg2 maxðAÞ2IÞ�1

AX ð4Þ

where max(A) is the largest element in A. The scale of regularization is denoted by γ and I rep-
resents the identity matrix.

Next, we consider the principle of transformation. The decoding weights for an arbitrary
function f(x) can be computed by changing X in Eq 3 to

X ¼

f ðx1Þ

f ðx2Þ

..

.

f ðxQÞ

2
666666664

3
777777775
: ð5Þ

This produces a different set of decoding weights transforming the represented value. Note
that even though the decoding is linear, it can approximate non-linear functions.

Individual ensembles can be connected to form larger functional networks in the NEF. To
do so we determine the decoding weights for the desired transformation from the presynaptic
ensemble. The decoded value can then be fed to and encoded in the postsynaptic ensemble.
Mathematically this gives an outer product of the presynaptic decoding weights and postsynap-
tic encoders which specifies the synaptic connection weights from j to i as

Wij ¼ e>i Pdj ð6Þ

where the matrix P can give a linear transformation of the represented vector to be imple-
mented in the connection weights. To implement a communication channel the identity matrix
is used.

Because the third principle of dynamics is not relevant to the methods in this paper, we skip
a detailed description for the sake of brevity and refer the interested reader to [1].

The Semantic Pointer Architecture (SPA)
Many cognitive models implemented with the NEF, including Spaun, use the Semantic Pointer
Architecture (SPA) [9]. The SPA consists of a variety of components, computations, and repre-
sentational strategies thought to reflect neural processing in the mammalian brain. In general,

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 5 / 18

the representations used throughout the SPA are called semantic pointers. One aspect of the
SPA that is important for cognitive processing is the representation of structured information
in spiking neurons. The semantic pointers used in the SPA for cognitive processing are based
on Holographic Reduced Representations (HRR) proposed by Tony Plate [17], which is one of
a family of representational schemes collectively referred to as Vector Symbolic Architectures
(VSA) [18]. These semantic pointers are usually normalized to unit length. This normalization
constraint is a basic assumption of the following optimization methods. Multiple semantic
pointers can be combined with addition to obtain a new semantic pointer similar to each indi-
vidual item. As with HRRs, the SPA also defines a binding operation that employs circular con-
volution:

u ¼ v⊛ w : ui ¼
XD

j¼1

vjwði�jÞ mod D: ð7Þ

The binding produces a new vector dissimilar to the original vectors. From the resulting
vector, the operands can be approximately recovered by a circular convolution with the involu-
tion of the other operand. That is,

v � u⊛ w�1 ð8Þ
with the involution defined as

w�1 ¼ ðw1;wD;wD�1; � � � ;w2Þ: ð9Þ
Furthermore, a vector v with |w| = |v⊛ w| is called unitary. Note that the circular convolution
is an element-wise multiplication in the Fourier space, which allows for a well-characterized
implementation in neurons with the NEF. The transformation to and from Fourier space is lin-
ear and can thus be implemented in the connection weights between neural ensembles (see Eq
6). The multiplications are non-linear, but can nevertheless be implemented accurately with
the NEF [19].

Using addition and circular convolution, multiple semantic pointers can be stored and
retrieved within a single vector. Given semantic pointers for SQUARE, CIRCLE, BLUE, and
RED, a scene with a blue square and a red circle could be represented as

scene ¼ SQUARE⊛ BLUEþ CIRCLE⊛ RED: ð10Þ
From this the color of the square can be obtained with the involution as

SQUARE�1 ⊛ scene � BLUEþ noise: ð11Þ

Finally, semantic pointers v and w can be compared using the dot product v � w which will give
a measure of similarity that lies between -1 to 1.

This characterization of structured representation in the SPA has been used to build a vari-
ety of spiking neural models that simulate simple linguistic parsing [20], the Wason card task
[21], and human performance on the Raven’s Progressive Matrices [22], a general intelligence
test. In each case, a large proportion of the computational resources are dedicated to computing
the binding operation, which is essentially a high-dimensional product. This work focusses on
improving the accuracy of such computations for a given amount of neural resources.

High-dimensional representations
To calculate the optimal decoding weights in the NEF it is necessary to invert an N × Nmatrix.
The required time for this inversion grows cubic with N. As long as no non-linear combination

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 6 / 18

of the represented vector components has to be calculated it is possible to split the vector into s
subvectors and represent each subvector with an individual neural population. When keeping
the number of neurons fixed, this requires only s inversions of N/s × N/smatrices with a com-
plexity of O(N3/s2) instead of O(N3). Note that in most models based on the NEF and SPA lin-
ear combinations of vectors components, which allow this optimization are extremely
common. Moreover, N and s are usually chosen in dependence of the total number of dimen-
sions D. In that case the improvement is not just a constant factor, but changes the asymptotic
behaviour (e.g. with N = kD and s = D we would have O(D3) vs. O(D)).

Furthermore, if we increase the number of dimensions D, we usually want to keep the total
error caused by neuron noise constant. If the complete D-dimensional vector is stored in one
ensemble, the number of neurons N has to be scaled by D2 to achieve this goal. By splitting up
the vector into s subvectors with a fixed number of components (e.g. one and thus s = D), the
number of neurons only needs to be scaled linearly with the number of dimensions. (See S4
Appendix.)

In the NEF, each ensemble is usually optimized over a certain radius r by randomly picking
evaluation points from a hyper-sphere. In case of cognitive semantic pointers this radius is typ-
ically unit length. However, when splitting up semantic pointers in subvectors, those subvec-
tors will not be of unit length anymore. This results in ensembles being optimized over
irrelevant areas of the input space (all vectors up to unit length) and decreases the accuracy in
the relevant range (only the vectors with length of the subvectors). Moreover, some NEF-type
models rely on a normalization behavior outside of the optimization radius (e.g. [10]). By split-
ting up the vector, but keeping the radius fixed, the normalization will no longer normalize to
unit vectors, but considerably larger vectors.

In the following we present a method to optimize the ensemble radius in these cases to
increase the network accuracy.

Finding the optimal radius
The radius of the hypersphere from which evaluation points are chosen is central to the optimi-
zation proposed in this paper. If we chose the radius too small, values might fall outside of this
hypersphere and they cannot be represented well because the neural ensemble has not been
optimized for values in this range. If, however, we chose the radius too large some proportion
the evaluation points will be used to cover an irrelevant part of the input space, i.e., a part
where no values have to be represented. We want to find the radius with the best trade-off of
these two effects.

We proceed by defining an approximate error function in dependence of the radius. By
minimizing this error function, a nearly optimal radius can be obtained. There are three factors
contributing to the representation error:

• Distortion Ex > r from points that fall outside of the optimization radius r.

• Distortion Ex � r from points that fall inside of the optimization radius r.

• Noise from the spiking and random fluctuations of the neurons.

In the following we derive expressions for the static distortion given by the first two error
contributions listed above. The neuron noise is assumed to be independent of the radius r and
will be excluded in the analysis.

Distortion outside of the radius. Let v = (v1, . . ., vD) be a random vector with D = n +m
independent components distributed according to vi � N ð0; s2Þ. The probability density

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 7 / 18

function (PDF) of the length of this vector is given by (see S1 Appendix)

pjvj ðx; s;DÞ ¼ kDx
D�1exp � x2

2s2

� �
ð12Þ

with normalizing constant

kD ¼ 1

2ðD=2Þ�1sDG
D
2

� � ð13Þ

where GðtÞ ¼ R1
0
xt�1 expð�xÞ dx is the gamma function. This reduces to a half-normal distri-

bution for D = 1 and a Rayleigh distribution for D = 2.
This distribution allows us to derive the distribution of the length jv̂1:mj of a subvector with

the firstm components of a unit vector. To do so, one has to determine the quotient of the
probability distribution corresponding to the following equation of random variables:

jv̂1:mj ¼
jv1:mj
jvj ð14Þ

The resulting probability distribution is given by

pSBðx; n;mÞ ¼ 2

B
n
2
;
m
2

� � ðx2Þðm�1Þ=2ð1� x2Þn=2�1

ð15Þ

with the beta function Bða; bÞ ¼ R 1

0
ta�1ð1� tÞb�1dt. We refer to this distribution as the square

root beta distribution and use the subscript SB because of its close relationship to the beta dis-

tribution. In fact, the probability distribution of jv̂1:mj2 is given by a beta distribution with
parameters α =m/2 and β = n/2. Example plots of different parameterizations of the square
root beta probability density function are shown in Fig 2.

The cumulative distribution function is given by (see S2 Appendix)

FSBðx; n;mÞ ¼
B x2;

m
2
;
n
2

� �

B
m
2
;
n
2

� � ð16Þ

with the incomplete beta function Bðx; a; bÞ ¼ R x

0
ta�1ð1� tÞb�1dt .

Assuming that every point outside of the optimization radius r gets projected onto the
hyper-sphere surface with radius r, the squared error of a point y with y = |y| is (y−r)2. (Most
neuron models used with the NEF will not do a hard cut-off at the radius, but saturate more
slowly. Thus, values outside of the radius r can still be represented to a certain degree.) Weight-
ing this expression by the probability density of y and renormalizing gives the error expression

Ex>r ¼
R 1

r ðy � rÞ2pSBðy;D�m;mÞdy
1� FSBðx;D�m;mÞ : ð17Þ

The integral can be written with a number of beta functions (see S3 Appendix) which allows an
easy implementation in software, as many libraries (e.g. SciPy) provide implementations of this
function.

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 8 / 18

Distortion inside of the radius. The exact distortion inside of the radius is given by

E�
x<r ¼

1

jXj
Z
X

x�
XN

i¼1

aiðxÞdi

������
������
2

dx : ð18Þ

and can be estimated from our finite set of evaluation points as

Ex<r ¼
1

Q

XQ

q¼1

ryq �
XN

i¼1

aiðryqÞdi

������
������
2

: ð19Þ

where yq are evaluation points sampled from the unit hyper-sphere SD.
Complete error function. Weighting both error contributions by the probability of repre-

senting a value in the respective domains gives the complete error function:

EðrÞ ¼ Ex�rFSBðr;D�m;mÞ þ Ex>rð1� FSBðr;D�m;mÞÞ: ð20Þ

See Fig 3 for a number of example plots showing how Eq 20 can be used to estimate the

Fig 2. Examples of the SqrtBeta probability density function for different parameterizations.

doi:10.1371/journal.pone.0149928.g002

Fig 3. Estimated distortion error for different neuron countsN and vector dimensionalityD in
dependence of the ensemble radius r. It is assumed that each vector component is stored in an individual
ensemble (m = 1).

doi:10.1371/journal.pone.0149928.g003

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 9 / 18

expected error for various numbers of neurons (N) and dimensions (D). The error function is
well-behaved for numerical optimization methods as it is monotonically decreasing towards
the minimum from either side of it. Thus, the optimal radius r can be found easily and
efficiently.

Results
To validate the derived error function we performed a number of simulations using the Nengo
neural simulator [23]. For the simulations we generated a slowly varying D-dimensional
semantic pointer by generating low-pass filtered white noise for each vector component and
normalizing the resulting vector to unit length. The cutoff frequency was set to 5Hz. The simu-
lation and data analysis code is available at https://github.com/ctn-archive/spaopt.

Empirical distortion error
To empirically determine the distortion we used the rate approximation of leaky integrate-
and-fire (LIF) neurons given by

Gi½JiðxÞ� ¼

1

tref � tRC ln 1� J thri

JiðxÞ
� � JiðxÞ > J thri

0 otherwise

ð21Þ

8>>><
>>>:

with refractory time constant τref = 2 ms, membrane time constant τRC = 20 ms, and threshold
current J thri randomly chosen for each neuron to produce firing rates in the range of 200Hz to
400Hz. The use of rate neurons eliminates any spiking noise so that the difference of the
decoded vector and the input vector is the actual distortion after correcting for delay in the syn-
aptic transmission. A single ensemble representingm subdimensions of the D dimensional vec-
tor was simulated. After an initial 0.5s the error in every 1 ms time step of 20 trials with a
duration of 10s each was averaged.

The results for different parameter sets together with the analytical error estimate are plot-
ted in Fig 4. The empirical error is closely matched by the analytical estimation for most tested
parameter sets. Where this is not the case, especially for smaller radii, it tends to overestimate
the error. This is most likely due to the assumption that all values outside of the radius get pro-
jected onto the radius. The actual neuron model saturates a bit slower which reduces the error.
For large radii some deviation is introduced because the error estimate is based on a limited
number of evaluation points which cannot cover the complete continuous input space. Conse-
quently, the error function shown in Eq 20 is reliable, with a mean deviation of (0.248 ± 0.533)
× 10−3 of the empirical error.

Representation
Next we tested the accuracy of representation with spiking LIF neurons using the same neuro-
nal parameters as for the rate neurons (τref = 2 ms, τRC = 20 ms, random voltage thresholds V thr

i

to yield firing rates in the range from 200Hz to 400Hz). A network of D ensembles each repre-
senting a single dimension was used. The root mean square error (RMSE) of the decoded
vector was recorded in each timestep across 20 independent simulations. Fig 5 shows the distri-
bution of the recorded error values. We use violin plots here which are similar to box plots, but
additionally show the probability density providing additional information about the mean
and variance. The horizontal lines mark quartiles.

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 10 / 18

https://github.com/ctn-archive/spaopt

Fig 4. Comparison of the estimated distortion error (solid blue line) and empirically measured distortion error (green scatter points). Error bars on
the scatter points denote the 95% confidence intervals. The empirical error is the mean of 20 trials with a duration of 10s each. See the text for details on how
the empirical error was obtained. As long as not otherwise noted in the title of the individual plot the simulations were performed with N = 200 neurons, a
vector dimensionality of D = 64,m = 1 subdimensions per individual ensemble,Q = max{2Nm, min{max{500m, 750}, 2500}} evaluation points, and a
regularization of γ = 0.1.

doi:10.1371/journal.pone.0149928.g004

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 11 / 18

In the test cases, the RMSE was reduced by a factor of 2.3 to 4.6 compared to using a non-
optimized radius. As the mean square error is proportional to 1/N (Fig. 2.6 in [1]) this should
allow us to reduce the number of neurons with the optimized radius by the square of these fac-
tors without an increase in the error compared to the default radius. We refer to this reduced
number of neurons as the heuristically reduced neuron number, as it is our attempt to choose
fewer neurons (per dimension) while retaining a similar level of error. Corresponding simula-
tion results are included in Fig 5. Despite the reduction in the amount of neurons between
about 5 to 22 times, the majority of the error distribution for the heuristically reduced neuron
number is below the baseline distribution in most cases. Only for 64 dimensions with 50 neu-
rons reduced to 6 neurons does the error distribution get slightly wider and exhibit a tail
extending to larger error values. Presumably this is caused by other distortion effects with very
few neurons not approximated by the simple 1/N rule.

Circular convolution
To show that the radius optimization not only improves representational accuracy, but also the
accuracy of transformations, we tested it with a circular convolution network. The same ran-
dom and slowly varying input vector (normalized random vector with white noise compo-
nents) was used as one operand and the second operand was fixed to a random unitary vector.
Otherwise, the same procedure is used as in the representation test.

The circular convolution in Nengo is computed by taking the discrete Fourier transform
(DFT), multiplying the Fourier coefficients in individual ensembles, and calculating the inverse
discrete Fourier transform (IDFT). This characterization of the computation in the state space
results in a simple, 2-layer feedforward network. The Nengo default implementation uses a
normalization factor of 1 for the DFT, a factor of 1/D for the IDFT, and a radius of 2 for the
multiplication ensembles. In the optimized implementation we use a normalization factor of

1=
ffiffiffiffi
D

p
for both the DFT and IDFT to keep the coefficient vector at unit length and apply the

radius optimization.
The resulting distributions of the RMSE with respect to the analytical circular convolution

are shown in Fig 6. The optimized radius shifts the majority of the error distribution downward,

Fig 5. Distribution of the error (Euclidean distance) in the representation of aD dimensional vector. Each subplot shows the results for a fixed
dimensionality. In each subplot results with the default and optimized radius for a baseline number of neurons per dimension are given and also the result for
the optimized radius and heuristically reduced neuron number (see text for details).

doi:10.1371/journal.pone.0149928.g005

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 12 / 18

but leaves a long tail. The majority of all occurring values can still be represented with the
smaller radius. But there are a few rare instances where a vector has a few components larger
than the average. These cannot be accurately represented with the smaller radius. Thus, by opti-
mizing the radius we are able to get a better representation of most values at the cost of a worse
representation for a few values.

In the test cases the RMSE was reduced by a factor ranging from 1.4 to 1.8. We applied the
same heuristic as in the representation test to reduce the neuron number and included the
results in Fig 6. The results are similar to the representation test. Given enough neurons to start
with the reduction with the radius optimization gives an error distribution close to the baseline.
Only when the number of neurons gets too low (e.g. from 50 to 14) does the heuristic becomes
inaccurate resulting in an increase in error.

Dot product
In addition to the circular convolution for binding, the SPA uses dot products for comparison of
semantic pointers. In Nengo a dot product is implemented by multiplying the vector components
in individual parabolic multiplier networks and having the outputs project to a single ensemble to
generate a sum. The default ensemble radius is 1. Fig 7 shows the comparison of the default
implementation and the optimized radius. Using the optimized radius shrinks the distribution’s
variance and reduces the RMSE by a factor of 6.6 to 25.7 for the test cases. Here we also note a sig-
nificantly different shape of the distribution because the dot product sums over all dimensions.

Again this optimization allows for the use of far fewer neurons with the optimized radius.
We set a lower limit of five neurons per dimension as fewer neurons could easily give rise to
additional error sources. The results of reducing the number of neurons by 10 to 20 times to
this lower limit is depicted in the same figure. The error of the optimized dot product is still
clearly below that of the default implementation.

Neuromorphic hardware
As discussed in the introduction, these optimizations are helpful for improving the accuracy of
computations being performed in resource-limited neuromorphic hardware. Here we verify

Fig 6. Distribution of the error (Euclidean distance) in the calculation of circular convolution withD dimensional vectors. Each subplot shows the
results for a fixed dimensionality. In each subplot results with the default and optimized radius for a baseline number of neurons per dimension are given and
also the result for the optimized radius and heuristically reduced neuron number (see text for details).

doi:10.1371/journal.pone.0149928.g006

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 13 / 18

that these optimizations hold on physical neuromorphic hardware by using the SpiNNaker
platform [24]. The LIF neuron on this platform uses fixed point instead of floating point calcu-
lations as was assumbed by the previous simulations. The maximum number of dimensions in
these tests was limited to 25 due to current limitations in the SpiNNaker implementation. A
single SpiNNaker core is not able to generate all required packages to transmit within the
required amount of time. These limitations are expected to be removed shortly by using multi-
ple cores for the packet generation if needed.

The results in Fig 8 show a decrease of the RMSE by a factor of 1.3 with the radius optimiza-
tion when representing a value (without transformation). This allows to decrease the number
of neurons per dimension from 200 to 120 per dimension while still achieving an error compa-
rable to the baseline. The tail of the distribution gets longer, but the total contribution to the
mass of the distribution is negligible. Overall, this means that a network of 5000 neurons was
reduced to 3000 neurons, while retaining the same performance.

Large scale model
We have shown the effectiveness of the optimization method for single ensembles. To verify
the improvements on larger scale models, we employ the optimization method on an NEF
model of the n-back task, a test of executive control of working memory that achieves human-
like performance [25]. In particular, the network makes use of dot products, circular convolu-
tions, and recurrent memory populations. The model uses 92250 neurons overall, with 60600
representing vectors that allow for the proposed optimization method. The vector dimension-
ality was set to 64, and 3200 neurons were allocated to represent a single vector, except in dot
products and circular convolutions where 6400 and 12800 neurons were used respectively.
From input to output information passes through 11 neural populations with the optimization
methods applied. This includes two circular convolutions and a dot product. Furthermore,
the model includes recurrent processing among these 11 neural populations and a semantic
pointer gets convolved n times (e.g., 2 times in the 2-back task) before it is read out.

The original results were obtained with the optimization methods presented in this paper
with a single ensemble for each vector component. If we disable the optimization of the radius
and use the Nengo default, the effect on the model performance is detrimental (see Fig 9).

Fig 7. Distribution of the error (Euclidean distance) in the calculation of dot products withD dimensional vectors. Each subplot shows the results for
a fixed dimensionality. In each subplot results with the default and optimized radius for a baseline number of neurons per dimension are given and also the
result for the optimized radius and heuristically reduced neuron number (see text for details).

doi:10.1371/journal.pone.0149928.g007

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 14 / 18

Fig 9. Model performance on the n-back task.Results for n 2 {1, 2, 3} are shown. For each n results with
(optimized) and without optimization (default) of the radius are presented. Each of these two conditions was
simulated with using a single ensemble for each dimensions (sd = 1) and using a single ensemble for sets of
16 dimensions (sd = 16).

doi:10.1371/journal.pone.0149928.g009

Fig 8. Distribution of the error (Euclidean distance) in the representation of a 25 dimensional vector
on the SpiNNaker neuromorphic hardware platform. The results with the default and optimized radius for
a baseline of 200 neurons per dimension are given and also the result for the optimized radius and
heuristically reduced neuron number (see text for details).

doi:10.1371/journal.pone.0149928.g008

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 15 / 18

However the default radius was chosen for a representation of 16 vector components in a single
ensemble. Splitting up the representation of the vector in this way also yields a performance
below the baseline. As a final comparison, using the radius optimization on this representation
of 16 vector components each slightly improves the performance, but due to the low vector
dimensionality of 64, which is only split into four parts, the improvement is not as large as
when each vector component is represented individually. Based on the previous results on the
improvements for representation, circular convolution, and dot products, we estimate that at
least a total of 260000 or about 2.8 times as many neurons would be needed to obtain the same
model performance without the optimization as with it.

Discussion
We derived a mostly analytical approximation of the representational error of an NEF ensem-
ble in dependence of its radius. This can be used to find a near optimal radius for the represen-
tation of a low-dimensional subvector of a high-dimensional semantic pointer. Doing so is an
efficient operation as only the activity matrix A has to be empirically estimated. The minimum
of the resulting error function can be found quickly as it is well-formed.

The method provides a number of important improvements. First, it can be used instead of
the default radius which is only optimized for a specific neuron type and parameter set. Second,
it allows us to obtain a radius without relying on trial and error methods or a rule of thumb.
Third, fewer resources (e.g. simulated neurons) are needed to achieve the same level of perfor-
mance as the error is reduced with a well-chosen radius.

Using the optimized radius yields a reduction of the RMSE up to a factor of 1.8 in the case
of circular convolution and a factor of up to 25.7 in case of a dot product compared to the cur-
rent Nengo default implementation. Both operations are frequently used in cognitive models
built with the Semantic Pointer Architecture. On the SpiNNaker neuromorphic platform the
reduction by a factor of 1.3 is more moderate, but still allowed a reduction of the number of
neurons by 40%. Also, note that only 25 dimensions were used on the SpiNNaker platform. As
current limitations with the hardware implementation are overcome, allowing higher dimen-
sional semantic pointers, the usefulness of the presented method is expected to increase. In
general, the variance of the individual unit vector components will decrease with increasing
vector dimensionality as the distribution of vector component lengths will shift to smaller val-
ues and decrease in width. That allows for a smaller radius and increases the benefit of the
radius optimization.

In cognitive models a number of these operations are often used in sequence, resulting in
the accumulation of error. When a smaller error is introduced by the individual operations, it
is possible to build larger cognitive networks without negative functional consequences due to
accumulated error. Alternatively, a reduction in the number of neurons is possible while keep-
ing the error constant. This allows for a more efficient use of resources, including neuro-
morphic hardware, to run even larger models or allow for more processing in power-sensitive
applications.

More generally, we have demonstrated the potential of adapting neural network parameters
to the distribution of the input signals to the specific neural subsystems. In SPA models it is
common to have high-dimensional vectors split up into subvectors, consequently we focussed
our optimization on this particular input structure. However, future work can focus on differ-
ently structured input which should allow for related derivations of error functions that can be
optimized in a similar way.

Similarly, the analysis in this paper used the L2 norm as error measure. We expect future
work to consider other cases in which different error norms might be more appropriate. The

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 16 / 18

choice of norm determines the trade-off that is being made between having a majority of small
errors and a few large errors versus all errors being similar in magnitude. Similar optimizations
should be achievable in these cases.

Conclusion
By considering the probability distribution of represented values within the Semantic Pointer
Architecture, we were able to derive a method for determining an optimized radius for neural
networks constructed using the Neural Engineering Framework. Depending on the hardware
platform and calculated transformation neuron numbers could be reduced by 40% up to 97.5%
while still achieving a comparable performance to unoptimized networks. Ultimately, this
allows to simulate more complex networks as the hardware can be used more efficiently.

We are planning to include the proposed methods in the Nengo neural network simulator
in the future.

Supporting Information
S1 Appendix. PDF of the length of a random vector with normal distributed components.
(PDF)

S2 Appendix. PDF of the length of a subvector of a unit vector.
(PDF)

S3 Appendix. Error outside of radius expressed with Beta functions.
(PDF)

S4 Appendix. Scaling of number of neurons with dimensions.
(PDF)

Author Contributions
Conceived and designed the experiments: JG. Performed the experiments: JG. Analyzed the
data: JG. Wrote the paper: JG CE.

References
1. Eliasmith C, Anderson CH. Neural engineering: Computation, representation, and dynamics in neurobi-

ological systems. Cambridge, MA: MIT Press; 2003.

2. Fischer BJ. A model of the computations leading to a representation of auditory space in the midbrain
of the barn owl. Washington University. St. Louis, MO, USA; 2005.

3. Fischer BJ, Peña JL, Konishi M. Emergence of multiplicative auditory responses in the midbrain of the
barn owl. Journal of Neurophysiology. 2007 Sep; 98(3):1181–1193. doi: 10.1152/jn.00370.2007 PMID:
17615132

4. Conklin J, Eliasmith C. A controlled attractor network model of path integration in the rat. Journal of
Computational Neuroscience. 2005; 18:183–203. doi: 10.1007/s10827-005-6558-z PMID: 15714269

5. Kuo PD, Eliasmith C. Integrating behavioral and neural data in a model of zebrafish network interaction.
Biological Cybernetics. 2005; 93(3):178–187. doi: 10.1007/s00422-005-0576-9 PMID: 16136350

6. Singh R, Eliasmith C. Higher-dimensional neurons explain the tuning and dynamics of working memory
cells. Journal of Neuroscience. 2006; 26:3667–3678. doi: 10.1523/JNEUROSCI.4864-05.2006 PMID:
16597721

7. Litt A, Eliasmith C, Thagard P. Neural affective decision theory: Choices, brains, and emotions. Cogni-
tive Systems Research. 2008; 9:252–273. doi: 10.1016/j.cogsys.2007.11.001

8. Bekolay T, Laubach M, Eliasmith C. A spiking neural integrator model of the adaptive control of action
by the medial prefrontal cortex. The Journal of Neuroscience. 2014; 34(5):1892–1902. doi: 10.1523/
JNEUROSCI.2421-13.2014 PMID: 24478368

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 17 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149928.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149928.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149928.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0149928.s004
http://dx.doi.org/10.1152/jn.00370.2007
http://www.ncbi.nlm.nih.gov/pubmed/17615132
http://dx.doi.org/10.1007/s10827-005-6558-z
http://www.ncbi.nlm.nih.gov/pubmed/15714269
http://dx.doi.org/10.1007/s00422-005-0576-9
http://www.ncbi.nlm.nih.gov/pubmed/16136350
http://dx.doi.org/10.1523/JNEUROSCI.4864-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16597721
http://dx.doi.org/10.1016/j.cogsys.2007.11.001
http://dx.doi.org/10.1523/JNEUROSCI.2421-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.2421-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24478368

9. Eliasmith C. How to build a brain: A neural architecture for biological cognition. New York, NY: Oxford
University Press; 2013.

10. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, et al. A large-scale model of the func-
tioning brain. Science. 2012 Nov; 338(6111):1202–1205. doi: 10.1126/science.1225266 PMID:
23197532

11. Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodri-
guez F, et al. CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-process-
ing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Transactions
on Neural Networks. 2009 Sep; 20(9):1417–1438. doi: 10.1109/TNN.2009.2023653 PMID: 19635693

12. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, et al. A million spiking-neu-
ron integrated circuit with a scalable communication network and interface. Science. 2014 Aug; 345
(6197):668–673. doi: 10.1126/science.1254642 PMID: 25104385

13. Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, et al. Neurogrid: A
Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations. Proceedings of the IEEE.
2014 May; 102(5):699–716. doi: 10.1109/JPROC.2014.2313565

14. Choudhary S, Sloan S, Fok S, Neckar A, Trautmann E, Gao P, et al. Silicon Neurons That Compute. In:
Villa AEP, DuchW, Érdi P, Masulli F, Palm G, editors. Artificial Neural Networks and Machine Learning
—ICANN 2012. No. 7552 in Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2012. p.
121–128.

15. Mundy A, Knight J, Stewart TC, Furber S. An efficient SpiNNaker implementation of the Neural Engi-
neering Framework. In: International Joint Conference on Neural Networks. Killarney, Ireland; 2015.

16. Wang, R, Thakur, CS, Hamilton, TJ, Tapson, J, van Schaik, A. A neuromorphic hardware architecture
using the Neural Engineering Framework for pattern recognition. Preprint. 2015 Jul.

17. Plate TA. Holographic reduced representations. IEEE Transactions on Neural Networks. 1995; 6
(3):623–641. doi: 10.1109/72.377968 PMID: 18263348

18. Gayler RW. Vector symbolic architectures answer Jackendoff’s challenges for cognitive neuroscience.
In: International Conference on Cognitive Science; 2003.

19. Gosmann J. Precise multiplications with the NEF. Waterloo, Ontario, Canada: University of Waterloo;
2015. Available from: http://dx.doi.org/10.5281/zenodo.35680

20. Stewart TC, Choo X, Eliasmith C. Sentence processing in spiking neurons: A biologically plausible left-
corner parser. In: 36th Annual Conference of the Cognitive Science Society. Cognitive Science Society;
2014. p. 1533–1538.

21. Eliasmith C. Cognition with neurons: A large-scale, biologically realistic model of the Wason task. In:
27th Annual Meeting of the Cognitive Science Society; 2005.

22. Rasmussen D, Eliasmith C. A spiking neural model applied to the study of human performance and
cognitive decline on Raven’s Advanced Progressive Matrices. Intelligence. 2014; 42:53–82. doi: 10.
1016/j.intell.2013.10.003

23. Bekolay T, Bergstra J, Hunsberger E, Dewolf T, Stewart TC, Rasmussen D, et al. Nengo: A Python tool
for building large-scale functional brain models. Frontiers in Neuroinformatics. 2014 Jan; 7(48). doi: 10.
3389/fninf.2013.00048 PMID: 24431999

24. Furber SB, Galluppi F, Temple S, Plana LA. The SpiNNaker project. Proceedings of the IEEE. 2014
May; 102(5):652–665. doi: 10.1109/JPROC.2014.2304638

25. Gosmann J, Eliasmith C. A Spiking Neural Model of the n-Back Task. In: 37th Annual Meeting of the
Cognitive Science Society; 2015. p. 812–817.

Optimizing Semantic Pointer Representations

PLOS ONE | DOI:10.1371/journal.pone.0149928 February 22, 2016 18 / 18

http://dx.doi.org/10.1126/science.1225266
http://www.ncbi.nlm.nih.gov/pubmed/23197532
http://dx.doi.org/10.1109/TNN.2009.2023653
http://www.ncbi.nlm.nih.gov/pubmed/19635693
http://dx.doi.org/10.1126/science.1254642
http://www.ncbi.nlm.nih.gov/pubmed/25104385
http://dx.doi.org/10.1109/JPROC.2014.2313565
http://dx.doi.org/10.1109/72.377968
http://www.ncbi.nlm.nih.gov/pubmed/18263348
http://dx.doi.org/10.5281/zenodo.35680
http://dx.doi.org/10.1016/j.intell.2013.10.003
http://dx.doi.org/10.1016/j.intell.2013.10.003
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fninf.2013.00048
http://www.ncbi.nlm.nih.gov/pubmed/24431999
http://dx.doi.org/10.1109/JPROC.2014.2304638

