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Abstract: In order to detect the incipient fault of rolling bearings and to effectively identify fault
characteristics, based on amplitude-aware permutation entropy (AAPE), an enhanced method named
hierarchical amplitude-aware permutation entropy (HAAPE) is proposed in this paper to solve
complex time series in a new dynamic change analysis. Firstly, hierarchical analysis and AAPE
are combined to excavate multilevel fault information, both low-frequency and high-frequency
components of the abnormal bearing vibration signal. Secondly, from the experimental analysis, it is
found that HAAPE is sensitive to the early failure of rolling bearings, which makes it suitable to
evaluate the performance degradation of a bearing in its run-to-failure life cycle. Finally, a fault feature
selection strategy based on HAAPE is put forward to select the bearing fault characteristics after the
application of the least common multiple in singular value decomposition (LCM-SVD) method to
the fault vibration signal. Moreover, several other entropy-based methods are also introduced for
a comparative analysis of the experimental data, and the results demonstrate that HAAPE can extract
fault features more effectively and with a higher accuracy.

Keywords: hierarchical amplitude-aware permutation entropy; rolling bearing; performance trend
state assessment; fault feature extraction

1. Introduction

The condition monitoring of rotating machinery is a fundamental task in prognostics
and health management systems [1]. As an essential part of rotating machinery, rolling
bearings are critical and more easily damaged components compared to others [2]. If a
rolling bearing has a local defect on the matching surface, a series of shocks are generated
due to periodic collisions when the rolling element rolls over the defect area. These
abnormal shocks may result in an unexpected failure of large-scale equipment if without
timely inspection and maintenance [3,4]. To ensure the reliable operation of rolling bearings,
a degradation evaluation of its running state and a fault diagnosis, two indispensable
aspects of modern advanced rotating equipment, can be employed. Additionally, with these
two techniques, considerable maintenance costs can be saved. Therefore, the performance
evaluation and fault diagnosis of rolling bearings have become a major topic of research.

Nowadays, in the condition monitoring of rotating machinery, vibration-signal-based
processing techniques are one of the most used methods for fault diagnosis, which can be
classified into three categories: time-domain analysis (e.g., root mean square (RMS) and
kurtosis), frequency-domain analysis (e.g., fast Fourier transform and envelope spectrum
demodulation), and time–frequency analysis [5]. In addition, time–frequency analysis
has become a popular method for rolling bearing fault feature extraction, and wavelet
transform (WT) [6], empirical mode decomposition (EMD) [7], ensemble empirical mode
decomposition (EEMD) [8], and variational mode decomposition (VMD) [9] are several
typical time–frequency analysis algorithms. However, the parameter selection of the above
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methods has some influence on their performance [10–12]. By contrast, as a matrix decom-
position method, singular value decomposition (SVD) is a nonparametric algorithm that
has been widely used in the noise reduction field [13,14]. The denoising method based on
SVD eliminates the noise and defect unrelated components by setting the singular values
(SVs) corresponding to the noise-related components to 0; thus, the informative compo-
nents can be reconstructed from the persevered SCs [15]. The critical issue of reconstruction
is to determine the dimension of the Hankel matrix. Generally, the dimension of the Hankel
matrix can be reconstructed using the maximum dimension method, which depends on
the length of the signal but ignores the signal frequency characteristics. The least common
multiple in SVD (LCM-SVD) method has been introduced to address this problem, and it
determines the reconstructed matrix’s dimension based on frequency factor analysis [16].

Regarding the nonlinear dynamic analysis method of rolling bearing signals, entropy
is developed into an effective approach to measure the dynamic change in complex time
series in fault diagnosis [17]. Sample entropy (SE), fuzzy entropy (FE), and permutation
entropy (PE) [18] algorithms are several entropy-based indexes that are extensively em-
ployed. Compared with the SE and FE approaches, PE has many advantages, such as clean
theory, fast calculation efficiency, and robust anti-noise performance [19]. PE is always
used to estimate the different patterns of orderings that are scattered in a time series and
plays a significant role in feature extraction [20]. However, the direct application of PE
in feature extraction does not ensure the data’s denoising effect; hence, it is often used
after a noise removal method [21]. Apart from this, PE is disabled to assess the amplitude
information of the signal. To settle this issue, Azami et al., proposed an entropy algorithm
named amplitude-aware permutation entropy (AAPE) based on PE, which improves its
sensitivity to the amplitude and frequency of the time series by using the counting rule for
each sorting mode [22,23]. However, single-scale entropy, such as SE, FE, PE, and AAPE,
may lose key information during time series analysis. To solve this problem, multi-scale
entropy (MSE) was first proposed by Costa M. et al., to measure the complexity of a time
series [24]. Subsequently, multi-scale fuzzy entropy (MFE) [25], multi-scale permutation
entropy (MPE) [26], and multi-scale amplitude-aware permutation entropy (MAAPE [27])
and its variants (IMAAPE [28]) were proposed sequentially. However, multi-scale entropy
analysis ignores the effect of high-frequency components. To obtain more helpful infor-
mation, Jiang et al., put forward a novel multi-scale analysis method called hierarchical
analysis, which can reveal the inherent fault characteristics of a vibration signal in both
low- and high-frequency components [29,30]. Derived from hierarchical analysis, hierar-
chical sample entropy (HSE) [31], hierarchical fuzzy entropy (HFE) [32], and hierarchical
permutation entropy (HPE) [33] were proposed to extract fault characteristics.

Inspired by the advantages of hierarchical analysis and the AAPE algorithm, the HAAPE
method for rolling bearings is proposed, and it includes the following two aspects: per-
formance degradation assessment and fault diagnosis. In the performance degradation
assessment stage, HAAPE is employed as an index to quantify the running state of the bear-
ing in its run-to-failure life cycle, and Chebyshev’s inequality theory is applied to establish
a health threshold to judge the bearing performance trend between the healthy state and
abnormal state. In the fault diagnosis stage, HAAPE is used after the LCM-SVD procedure
to identify the bearing failure characteristics. Two experimental cases demonstrate that
the proposed HAAPE can effectively extract the fault characteristics, and the experimen-
tal results show that HAAPE has superiority over existing methods in the prediction of
performance degradation trend and fault diagnosis of rolling bearings.

The remainder of this article is constructed as follows: Section 2 introduces the related
theoretical basis and the fundamentals of HAAPE. Simulation signals are used to verify the
effectiveness of the proposed method in Section 3. The experimental results are arranged
in Section 4, which includes two experimental cases, namely, case 1 and case 2. Finally,
several conclusions are drawn in Section 5.
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2. Methodologies
2.1. Amplitude-Aware Permutation Entropy (AAPE)

A one-dimensional time series X(i), i = 1, 2, . . . , N is denoted as the original signal.
At any time point j, the m dimensional reconstruction vector Xm,τ

j with the delay time τ

can be obtained as follows:

Xm,τ
j =


x(1) x(1+τ) · · · x[1+(m−1)τ]
x(2) x(2+τ) · · · x[2+(m−1)τ]
x(j) x(j+τ) · · · x[j+(m−1)τ]

...
x(k) x(k+τ) · · · x[k+(m−1)τ]

, j = 1, 2, . . . , k = N − (m− 1)τ (1)

The elements in the j-th reconstructed vector are arranged in ascending order as shown
in Equation (2).

x[i + (j1 − 1)τ] ≤ x[i + (j2 − 1)τ] ≤ · · · ≤ x[i + (jm − 1)τ] (2)

where j1, j2, . . . , jm are the index of the column of each element in the reconstructed vector.
Hence, there are m! potential ordinal patterns, of which the d-th permutation is marked as
πd. The occurrence times of each πd are calculated to obtain their occurrence probability.
Finally, based on the definition of Shannon entropy, PE can be defined.

PE(x, m, τ) = −
m!

∑
πd=1

p(πd)Inp(πd) (3)

However, there are two main shortcomings in the application process: (1) PE only
considers the sequence number structure of the time series rather than the amplitude differ-
ence between sequential samples, which results in the loss of some valuable characteristics.
(2) Under the appearance of equal amplitude, the difference in permutation patterns cannot
be distinguished using PE. The AAPE based on PE addresses the two problems mentioned
above. A flowchart of AAPE is given in Figure 1.

Supposing that the initial value of p(πm,τ
d ) is 0, for the original signal X, as j increases

from 1 to N − m + 1, p(πm,τ
d ) should be renewed whenever πm,τ

d appears.

p(πm,τ
d ) = p(πm,τ

d ) +

(
A
m

m

∑
k=1

∣∣∣x[j+(k−1)τ]

∣∣∣+ 1− A
m− 1

m

∑
k=2

∣∣∣x[j+(k−1)τ] − x[j+(k−2)τ]

∣∣∣) (4)

where A (A ∈ [0,1]) stands for the correlation adjustment coefficient, which is related to the
mean value and deviation between consecutive amplitudes.

Then, the probability of p(πm,τ
d ) of the time series is given by Equation (5).

p(πm,τ
d ) =

p(πm,τ
d )

N−m+1
∑

j=1

(
A
m

m
∑

k=1

∣∣∣x[j+(k−1)τ]

∣∣∣+ 1−A
m−1

m
∑

k=2

∣∣∣x[j+(k−1)τ] − x[j+(k−2)τ]

∣∣∣) (5)

The AAPE calculation of the original signal X after normalization can be calculated by
Equation (6).

AAPE(x, m, τ, A) =

−
m!
∑

πm,τ
d =1

p(πm,τ
d )Inp(πm,τ

d )

In(m!)
(6)
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Figure 1. Flowchart of the AAPE. 
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2.2. The Least Common Multiple in Singular Value Decomposition (LCM-SVD)

The SVD, a matrix orthogonalization decomposition method, has been widely used in
fault diagnosis analysis. A one-dimensional vibration time series needs to be reconstructed
into a matrix, and the Hankel matrix is commonly applied in various formats. Given the
original signal X(i), i = 1, 2, . . . , N, the Hankel matrix Hm×n can be reconstructed as

Hm×n =


X(1) X(2) · · · X(n)
X(2) X(3) · · · X(n + 1)

...
X(m) X(m + 1) · · · X(N)

 (7)

where 1 < n < N, m = N − n + 1.
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The SVD of Hm×n can be defined as follows:

Hm×n = U∑ VT = [u1, u2, · · · , uq]


σ1 0 · · · 0

0 σ2
. . .

...
...

. . . . . . 0
0 · · · 0 σq




v1
v2
...

vq

 (8)

where the left singular vectors Um×m and right singular vectors Vn×n are orthogonal
matrices, and Σm×n is a diagonal matrix composed of singular values (σ1 ≥ σ2 ≥ . . . ≥ σq
≥ 0, q = min(m, n)).

For a noisy signal, the matrix dimension affects the denoising accuracy of SVD in fault
identification. Under the matrix dimension determined by the least common multiple in
SVD (LCM-SVD) method, the waveform error of the denoising results is much smaller
than that of the traditional maximum dimension method [16]. Thus, we can obtain a well
denoised signal via the LCM-SVD method. A flowchart of the LCM-SVD analysis process
is shown in Figure 2, and the three steps are presented below.
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Firstly, the least common multiple Tg is calculated by the periods of all frequency
components. In the envelope spectrum analysis of the rotor system, each frequency of
higher harmonics has a prominent frequency and is an integer multiple of the rotational
frequency. Therefore, the least common multiple Frg of each frequency component in the
signal is the period of rotational frequency.

Then, a base number G is the ratio of the sampling period Ts (or sampling frequency
Frs) and the least common multiple Tg (or Frg). To maximize the dimension of the Hankel
matrix, the parameters b and d are introduced by the optimization computation.

Finally, the suitable row m and column n of the Hankel matrix form are determined to
prepare for SVD.

2.3. Hierarchical Amplitude-Aware Permutation Entropy (HAAPE)

HAAPE is derived from the hierarchical analysis method and the AAPE algorithm,
and its flowchart is shown in Figure 3. The detailed calculation procedure of HAAPE can
be described as follows:
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(1) For a one-dimensional time series X(i), i = 1, 2, . . . , N, two operators Q0 and Q1 are
defined as {

Q0(x) = x(2j)+x(2j+1)
2

Q1(x) = x(2j)−x(2j+1)
2

, j = 1, 2, . . . , 2n−1 (9)

where N = 2n, and n is a positive integer, which represents the n-th level of decomposition.
The averaging operator Q0 and difference operator Q1 describe the low- and high-frequency
components of the signal, respectively. Accordingly, the original time series can be rebuilt
by Q0 and Q1.

X =
{(

Q0(x)j + Q1(x)j

)
,
(

Q0(x)j −Q1(x)j

)}
, j = 1, 2, . . . , 2n−1 (10)

(2) The matrix Qj operator is defined when j = 0 or j = 1 as follows:

Qj(x) =


1
2

(−1)
2

j
0 0 · · · 0 0

0 0 1
2

(−1)
2

j
· · · 0 0
. . .

0 0 0 0 · · · 1
2

(−1)
2

j


2n−1×2n

(11)

(3) To conduct a hierarchical analysis of a time series, the operators Q0 and Q1 are
applied repeatedly in step 2. To describe each node of the k-th layer in the hierarchical
analysis, we introduce the positive integer parameter p and a vector [ζ1, ζ2, . . . , ζk]. The
relationship between p and the vector is calculated as follows:

p =
k

∑
i=1

2k−iζi (12)

That is, when k ∈ Z+
N is fixed, p corresponds to the sole vector [ζ1, ζ2, . . . , ζk] ∈ {0, 1}

by Equation (12). For example, when k = 3 and p = 7, the unique vector [ζ1, ζ2, ζ3] = [1, 1, 1].
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(4) The sub-signal with node p component of the k-th layer decomposition in time
series Xk,p can be obtained by Equation (13). Therefore, the high-frequency components
X3,7 can be denoted as Q3

1·Q2
1·Q1

1·X(i).

Xk,p = Qk
ζk
·Qk−1

ζk−1
· . . . ·Q1

ζ1
·X(i) (13)

(5) Finally, under the hierarchical layer k, the HAAPE value of the original signal X(i)
can be expressed by the AAPE value of each layer node component.

HAAPE(x, m, τ, A, k, p) = AAPE(xk,p, m, τ, A) (14)

where m is the embedding dimension, and τ is the time delay. The schematic diagram of
the hierarchical analysis contains three layers, as shown in Figure 4.
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Five parameters need to be determined before calculating the HAAPE algorithm:
signal length N, embedding dimension m, time delay τ, correlation adjustment coefficient
A, and hierarchical decomposition layer k. Specifically, the embedding dimension m is
associated with the signal length N (N = 2048). If the value of m is set too small, the phase
space reconstructed vector will lose its usefulness and effectiveness. Conversely, if m is set
too large, the phase space reconstructed vector will fail to reveal the change between time
series distinctly. Generally, the embedding dimension m is 3–7 [34]. Time delay τ is normally
set to 1. Correlation adjustment coefficient A is usually set to 0.5 since the significance of the
average amplitude is equal to the difference of the amplitude values. However, A << 0.5 is
recommended when the difference between two consecutive time series is more important
than the average amplitude [22]. For the selection of the hierarchical decomposition layer
k, the length of the time series is shortened with an increase in the k value. However, if
the hierarchical decomposition layer k is smaller, some critical low- and high-frequency
characteristics cannot be obtained, so the layer number k = 3 is usually selected [35].

3. Numerical Simulation Analysis

In this section, HAAPE, IMAAPE, MAAPE, and HPE are selected for performance
comparison. The 50 sets’ independent random WGN and 1/f noise containing 2048 data
points are adopted to observe four entropy trends. Figure 5a,b show the randomly selected
temporal waveforms of WGN and 1/f noise, respectively. It can also be seen in Figure 5a
that WGN is a random distribution and has a stable complexity in the period. In contrast,
1/f noise in Figure 5b has a more complex structure and contains more mode information.
Consequently, 1/f noise is more complex than WGN regarding structure, whereas WGN is
greater than 1/f noise in terms of the quality of irregularities. Theoretically, the entropy
value of WGN will be stable and higher than that of 1/f noise.
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Figure 5. (a) Temporal waveform of WGN, and (b) temporal waveform of 1/f noise.

To ensure comparability and effectiveness, the parameters of the four various entropy
algorithms are defined as the following: embedding dimension m = 3, time delay τ = 1,
adjustment coefficient A = 0.5, scale factor t = 8, and layer number k = 3 (contains eight
nodes). Then, the four entropies of WGN and 1/f noise are normalized, and the averages
of 50 sets of values are displayed in Figure 6. In Figure 7, to eliminate the influence of the
measurement scale, the coefficient of variation (CV) is used to judge the distribution degree
of the four entropies, where the CV value is equal to the standard deviation divided by the
mean value. The simulation results are defined as follows:
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(1) In Figure 6, the HAAPE and HPE values of WGN are greater than those of 1/f noise,
which is in accordance with the theoretical analysis. The IMAAPE and MAAPE values of
WGN are greater than those of 1/f noise in the last four scales (scale = 5,6,7,8).
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(2) The HAAPE and HPE value curves can separate WGN noise and 1/f noise signals
well, while both the IMAAPE and MAAPE value curves overlap on most scales and have
poor separability in Figure 6.

(3) As can be seen in Figure 7, whether WGN or 1/f noise, the CV value of IMAAPE is
lower than that of MAAPE on all scales. This indicates that IMAAPE is more stable than
MAAPE. Meanwhile, the CV value of HAAPE is smaller than that of HPE in whole scales,
which illustrates that the AAPE algorithm is superior to feature extraction.

(4) In Figure 7, as the scale factor (or hierarchical nodes) increases, the CV value of
IMAAPE steadily increases, while HAAPE gradually decreases, indicating that the stability
is significantly improved. Hierarchical analysis has an advantage over the traditional
multi-scale analysis because the hierarchical analysis can simultaneously utilize the signal’s
low- and high-frequency components.

Accordingly, compared with the other three methods (IMAAPE, MAAPE, and HPE),
HAAPE can extract entire information and detect the dynamic trend of complex time series.

4. Experimental Data Analysis
4.1. Experimental Setup

The data sets in this section were published by the Center on Intelligent Maintenance
Systems (IMS), the University of Cincinnati [36]. The data sets are used to conduct two
cases, one for trend analysis of rolling bearing performance degradation to explicate the
effectiveness of the HAAPE algorithm and the other one for a feature selection strategy
based on HAAPE after LCM-SVD identifies valid fault characteristics.

The experimental bench’s schematic diagram and physical diagram are shown in
Figure 8; four ZA-2115 type double-row roller bearings are installed on the single shaft.
The radial load of the middle bearings, namely, bearings 2 and 3, is 6000 lbs, and bearings
1 and 4 play the supporting role. The shaft is driven by a motor, and its rotating speed is
stable at 2000 r/min. During operation, the vibration data are collected by the PCB 353B33
high-precision ICP vibration sensor at a sampling frequency of 20 kHz (each sampling
time is 1 s) every 10 min, collecting 20,480 data points. The experiment obtains three
experimental data sets, ranging from the installation of the new bearing to complete failure.
We use the second set for experimental analysis. The second set has 984 data sets, and each
data set contains the vibration signals of the bearings in one direction. The experiment
runs for 163.83 h, and the results show that the outer ring of bearing 1 fails as a result of
disassembling and inspecting bearing 1 [37]. Table 1 presents the structural characteristics
of ZA-2115 and its ball pass frequency outer (BPFO).
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Figure 8. (a) The experimental bench’s schematic diagram and (b) its physical diagram. 

Table 1. The structural characteristic of ZA-2115 and its ball pass frequency outer ring. 
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15.17° 71.5 mm 8.4 mm 16 236.4 Hz 

Figure 8. (a) The experimental bench’s schematic diagram and (b) its physical diagram.

Table 1. The structural characteristic of ZA-2115 and its ball pass frequency outer ring.

Contact Angle Pitch Diameter Roller Diameter Roller Number BPFO

15.17◦ 71.5 mm 8.4 mm 16 236.4 Hz
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4.2. Case 1: Rolling Bearing Performance Degradation Trend Analysis

The trend analysis of rolling bearing performance degradation investigates the cor-
relation between the healthy operational state and the whole life process of test signals.
The RMS, kurtosis, HAAPE, IMAAPE, HPE, and PE methods are selected for comparison.
The common analysis indexes used to evaluate the whole life cycle are the RMS and kurto-
sis values. The experimental data are divided into ten non-overlapping groups, and the
average entropy value of the ten groups is used as the output result.

The amplitude value between two consecutive sampling points is more valuable than
the average amplitude when employing performance degradation trend analysis, so the
correlation adjustment coefficient A is set to 0.02 in this section. The scale factor should
be as small as possible to avoid losing features in the multi-scale analysis [38]. Thus, the
hierarchical decomposition layer k is fixed to 2, and scale factor t = 4. Figure 9 depicts
the effects of the embedding dimension on HAAPE. With an increase in the embedding
dimension m, the performance degradation trend notably grows in the gray rectangle.
Nevertheless, there is no significant difference in effect between m = 6 and m = 7. Meanwhile,
in the computation process, we find that m = 6 takes less time to calculate than m = 7, so
m = 6 is best.
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Figure 9. The influences of embedding dimensions on HAAPE.

The whole life of a rolling bearing can be divided into two conditions: a healthy state
and an abnormal one. In practical engineering applications, we monitor the two conditions
to obtain the degradation trend of the rolling bearing. Chebyshev’s inequality theory is
introduced to determine the effective health threshold, which is defined as follows:

P{|X− µh| ≥ εh} ≤
σ2

h
ε2

h
or P{|X− µh| < εh} ≥ 1−

σ2
h

ε2
h

(15)

where X stands for the series of HAAPE values under healthy conditions, and µh and
σh represent the mean value and standard deviation of X, respectively. According to
Equation (15), when εh is set to 5σh, the entropy value of a bearing is about µh ± 5σh in the
healthy condition. In general, the test bearing remains healthy during the first one-quarter
of the time period [39,40]. Therefore, we apply the first 50 h of indicator data to calculate
the health threshold through Equation (15) to minimize errors. The HAAPE value of the
rolling bearing data series exceeds the health threshold, which confirms that the rolling
bearing is under abnormal conditions with 96% confidence probability.

RMS and the kurtosis value are sensitive to bearing degradation [39], so RMS and
kurtosis are shown as evaluation indexes in Figure 10a,b, respectively. It can be seen in
Figure 10a that when early failure occurs, the RMS values surpass the health threshold
at nearly 89 h, and the change range is relatively small. Meanwhile, the kurtosis values
indicate that the health threshold and curve intersect occur approximately 20 h later than
those of the RMS index at 108.8 h in Figure 10b. This also reveals that kurtosis is insensitive
to early bearing performance degradation.
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To investigate the trend analysis of the HAAPE algorithm, the algorithms IMAAPE,
HPE, and PE are utilized for the comparison experiment. As shown in Figure 10c, the
HAAPE values exceed the health threshold at 88.78 h and display a sharp drop, indicating
a sudden change in the bearing running state. This demonstrates that the HAAPE algorithm
successfully extracts the fault features of the rolling bearings and detects the early perfor-
mance decline trend, which occurs earlier than the RMS index at about 13 min. In addition,
the value of HAAPE maintains a stable state in the healthy stage; the entropy retains small
values; and the curve varies when a bearing fault occurs, which means that the vibration
signals of the healthy state are more complex and random than that of the abnormal state.
Therefore, the HAAPE algorithm is sensitive to early bearing fault detection, and it draws
the degradation trend of bearings effectively and accurately. In Figure 10d,e, both IMAAPE
and HPE values indicate the occurrence of degradation at 93 h, about 3 h later than HAAPE.
In addition, the range of entropy change is relatively smaller when detecting early failure,
which shows that the above two algorithms have poor sensitivity to early failure. Figure 10f
shows that the intersection of the health threshold and the PE curve is at 91 h, which is
earlier than IMAAPE and HPE but later than HAAPE.

In summary, HAAPE can extract fault characteristics of rolling bearings and assess
performance degradation process, which has a profound significance for the life prediction
of rolling bearings.
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4.3. Case 2: The Feature Selection Strategy Based on HAAPE after LCM-SVD

In practical conditions, the operating environment of the bearing is often buried in
noise. To verify the effectiveness of the proposed method, the 533rd, 534th, and 700th
data groups are taken as analysis objects in this case and random Gaussian noise with
SNR = 1 dB is added to the original vibrational signals. The 533rd and 534th data groups
are the bearing vibration data when an early fault occurs, while the 700th data group is
collected when bearing failure aggravates. Figure 11 shows the time-domain waveform
and envelope spectrum of the 533rd data group. Figure 11a exhibits a random group signal
time-domain waveform with a data length of 2048. Figure 11b displays the confusing and
complex Hilbert envelope spectrum, and the fault frequency cannot be extracted because
of noise in the time series. Consequently, this case requires envelope spectrum analysis to
be carried out after LCM-SVD denoising.
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Figure 11. (a) Time-domain waveform, and (b) Hilbert envelope spectrum of the 533rd data group
with Gaussian noise.

The difference spectrum unilateral maxima of singular value (DSUMSV) determines
the effective rank order number by, from right to left, selecting the coordinate value
corresponding to the highest difference of the peak compared with its neighbor one. This
case adopts the DSUMSV to describe HAAPE’s accuracy of identification. To validate the
superiority of the HAAPE algorithm, the IMAAPE algorithm is compared in this case to a
related analysis, and the selection of parameters (N, m, τ, A, k) refers to those presented in
Section 2.3.

As shown in Figure 12a, there are three peaks in total in the singular value difference
spectrum (SVDS), and the second maximum peak is in the fourth coordinate using the
DSUMSV principle. Furthermore, its value is the highest difference from the maximum
peak, which means that the maximum sudden change in the singular value happens in the
fourth coordinate. This change shows the boundary of singular values between the signal
and noise, so the effective rank order is four. In Figure 12b, the HAAPE values of the first
30 singular components are calculated, and every two values in the first six entropies nearly
equal each other. Therefore, the effective rank order is set to six. The values of IMAAPE
have no rules at all in Figure 12b. In Figure 12c, the rebuilt signal is analyzed by envelope
analysis, where the Fourier transform of the envelope signal is multiplied by the Hann
window function. Less useful frequency information can be extracted when the rank order
is equal to four, while a frequency position stands out on the curve at 244.1 Hz when the
order equals six, which is approximately equal to the fault frequency of the outer ring.

In Figure 13a,b, the DSUMSV method and HAAPE algorithm results show that the
first six coordinates are identified as the effective rank order number. Meanwhile, with
difficulty, we can observe the regularity of the IMAAPE values change in Figure 13b. As
shown in Figure 13c, when the rank order is equal to six, the envelope analysis curve has a
prominent peak at 205.1 Hz, which further suggests the possible potential damage to the
outer ring. Therefore, the comparative analysis reveals that HAAPE is better than IMAAPE
in characteristic frequency recognition.
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Figure 13. Analysis diagram of 534th data group with Gaussian noise. (a) DSUMSV, (b) HAAPE and
IMAAPE, and (c) Hilbert envelope spectrum.

Figure 10 shows the aggravation of the bearing failure, especially in the 700th data
group. Figure 14a indicates that the second maximum peak is the highest difference from



Entropy 2022, 24, 310 14 of 16

the maximum peak, while the second maximum peak is located in the sixth coordinate.
Hence, the effective rank order is set to six. According to Figure 14b, the HAAPE values of
the first ten coordinates show a specific tendency, while the IMAAPE algorithm presents
regularity in the first six coordinates. Consequently, the effective rank order is set to 10.
In Figure 14c, when the effective rank order is six, only the fault frequency of the outer ring
is found, and there is no more multiplier information about the fault frequency. Under the
effective rank order of 10, the envelope curve has 3 prominent peaks at the fault frequency
of 234.4 Hz, dual-frequency of 459 Hz, and tri-frequency of 693.4 Hz. Based on the above
analysis, the failure of the bearing outer ring can be confirmed.
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Figure 14. Analysis diagram of 700th data group with Gaussian noise. (a) DSUMSV, (b) HAAPE and
IMAAPE, and (c) Hilbert envelope spectrum.

5. Conclusions

To evaluate the performance degradation trend of rolling bearings and to improve the
accuracy of extracting useful fault features, a nonlinear dynamic signal analysis method
called HAAPE based on AAPE is proposed to weigh the complexity of the time series
composed of the fault vibration signal. Numerical simulation signals and experimental
data verify the effectiveness of HAAPE. The following several conclusions can be drawn:

(1) Compared with the existing algorithms IMAAPE, MAAPE, and HPE, HAAPE
has better stability and accuracy. It solves the issues arising from multi-scale entropy,
which only considers the low-frequency components of the signal and ignores some in-
formation in the high-frequency components. Accordingly, HAAPE can extract more
useful fault characteristics at both low- and high-frequencies from the vibration signal of
rolling bearings.

(2) The results of experimental case 1 indicate that the proposed HAAPE can efficiently
reflect the bearing performance degradation trend. Additionally, this approach is more
sensitive to the early identification of failures compared to the other five methods. Hence,
the HAAPE algorithm is an effective index for assessment performance degradation.
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(3) Case 2 verifies that the HAAPE algorithm accurately decides the effective rank order.
Especially after LCM-SVD denoising, HAAPE can perfectly identify the fault characteristics
of the bearing using a few feature vectors, which reduces information redundancy and
calculative burden.
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