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Abstract
Perceptual sensitivity to tactile roughness varies across individuals for the same degree of

roughness. A number of neurophysiological studies have investigated the neural substrates

of tactile roughness perception, but the neural processing underlying the strong individual

differences in perceptual roughness sensitivity remains unknown. In this study, we explored

the human brain activation patterns associated with the behavioral discriminability of sur-

face texture roughness using functional magnetic resonance imaging (fMRI). First, a whole-

brain searchlight multi-voxel pattern analysis (MVPA) was used to find brain regions from

which we could decode roughness information. The searchlight MVPA revealed four brain

regions showing significant decoding results: the supplementary motor area (SMA), contra-

lateral postcentral gyrus (S1), and superior portion of the bilateral temporal pole (STP).

Next, we evaluated the behavioral roughness discrimination sensitivity of each individual

using the just-noticeable difference (JND) and correlated this with the decoding accuracy in

each of the four regions. We found that only the SMA showed a significant correlation be-

tween neuronal decoding accuracy and JND across individuals; Participants with a smaller

JND (i.e., better discrimination ability) exhibited higher decoding accuracy from their voxel

response patterns in the SMA. Our findings suggest that multivariate voxel response pat-

terns presented in the SMA represent individual perceptual sensitivity to tactile roughness

and people with greater perceptual sensitivity to tactile roughness are likely to have more

distinct neural representations of different roughness levels in their SMA.
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Introduction
Humans perceive various kinds of mechanical stimuli when interacting with the external envi-
ronment. In particular, discrimination of tactile roughness is essential in perceiving the materi-
al characteristics of a physical surface. Perceptual sensitivity to tactile roughness has been
investigated by probing how physical properties of a surface are perceived by an individual’s
somatosensory system [1]. Many psychophysical studies have revealed that perceptual rough-
ness sensitivity to identical tactile stimuli varies across individuals, leading to large differences
in roughness discrimination capability [2–6]. For example, Libouton and colleagues calculated
individual discrimination thresholds to quantify perceptual sensitivity, and then examined
inter-subject variability from a human population [2]. They reported that the perceptual differ-
ences between individuals were as high as 32.5 μm (particle size of sandpaper) while the aver-
age discrimination threshold was 43.5 μm. Moreover, multidimensional scaling (MDS)
methods used to describe individual perceptual maps of tactile roughness revealed significant
individual differences in roughness perception [6]. Despite a significant amount of psycho-
physical research, however, little attention has been devoted to investigate the neural substrates
underlying such individual differences in perceptual sensitivity to roughness. In the present
study, we set out to find which parts of the brain were implicated in the large individual differ-
ences in tactile roughness sensitivity.

To date, numerous neurophysiological studies have addressed the neural representations of
tactile roughness information in the human brain by examining neuronal responses to stimuli
with various degrees of roughness (for a review, see [7]). Specifically, posterior portions of the
postcentral gyrus have been identified to be critical for tactile roughness discrimination as re-
vealed by a functional magnetic resonance imaging (fMRI) study [8] and a positron emission
tomography (PET) study [9]. Additionally, several studies have sought to demonstrate the rela-
tion between neural activity and behavioral responses in tactile discrimination tasks. Studies
with single cell recordings in non-human primates have shown that neuronal firing activity in
the somatosensory cortex is implicated in behavioral decisions [10, 11]. A human fMRI study
found a relationship between prefrontal cortical activity and behavioral decisions during a tac-
tile discrimination task [12]. Yet, none of these studies has explicitly examined the source of in-
dividual differences in tactile perception.

Here, we aim at finding a neural correlate of individual perceptual sensitivity to tactile
roughness via a combination of psychophysical and fMRI-based neurophysiological ap-
proaches. In our study design, individual differences in behavioral performance during a tactile
roughness discrimination task were compared with the corresponding neuronal activity of the
same participants in follow-up fMRI experiments. In particular, we employed the multi-voxel
pattern analysis (MVPA) method to investigate neural information of tactile roughness in the
fMRI data. Because our data analysis focused on identifying brain regions exhibiting distinct
neural activity patterns across roughness levels, a contrasting analysis using the classical gener-
al linear model (GLM) could not fully satisfy our purpose. We therefore considered the MVPA
more appropriate to our study than the GLM analysis. Moreover, previous studies have re-
vealed that the MVPA could relate distinct activity patterns within a certain brain region to
stimulus parameters, and accumulate the weak information from each brain region in an effi-
cient way [13, 14]. Several fMRI studies have used the MVPA to investigate neural tactile infor-
mation processing [15, 16], mostly focusing on delineating the neuronal activation patterns in
response to tactile stimulations. Liang and colleagues employed a multivariate pattern classifier
to identify neural representations in the human brain elicited by vibrotactile stimuli on the fin-
gers [15]. Along similar lines, a voxel-based principal component analysis (PCA) was used to
investigate the functional neural networks related to tactile stimulus discrimination [16]. In the
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present study, we employed an information-based searchlight MVPA [17] to search for neural
activity involved in perceptual sensitivity to tactile roughness.

We first searched for the brain regions exhibiting neuronal activity patterns associated with
roughness discrimination using a whole brain searchlight MVPA. Once the brain regions pro-
ducing significant decoding results were identified, we investigated whether the decoding accu-
racy within these brain regions correlated with individual behavioral performance of
roughness discrimination. The behavioral performance was measured by the just noticeable
difference (JND) of each participant [18]. The brain regions showing a correlation with the
JND would most likely serve as a neural substrate underlying individual perceptual sensitivity
to tactile roughness.

Materials and Methods

Participants and Ethics Approval
Sixteen healthy volunteers (six females, Koreans, 25.3 ± 3.8 years old, age range: 20–34 years)
with no history of neurological disorders participated in the study after having given written in-
formed consent. All were right-handed, with normal or corrected-to-normal vision. No partici-
pant reported having deficits in tactile processing. Experimental procedures were approved by
the Korea University Institutional Review Board (KU-IRB-11-46-A-0), and the study was con-
ducted in accordance with the Declaration of Helsinki.

Tactile Stimuli
A previous study of fine-surface texture perception reported the absolute detection threshold
of humans to be between 1 and 3 μm in particle sizes [19]. Moreover, Fechner’s law describes
that the magnitude of a subjective sensation increases in proportion with the logarithm of the
tactile stimulus intensity [20]. Based on these findings, we determined the grit values of abra-
sive papers for our experiments: the minimum particle size was set to 3 μm (corresponding to a
grit value of 4000) and linearly increased on a log-scale. Five different roughness levels of alu-
minum-oxide abrasive papers (Sumitomo 3M Limited, Tokyo, Japan), which were validated in
the aforementioned study [19], were used in our experiments. The grit values assigned by the
manufacturer were 400, 1200, 2000, 3000, and 4000, corresponding to average particle sizes of
40, 12, 9, 5, and 3 μm, respectively. A smaller grit value or a larger particle size indicates a
rougher surface.

In the behavioral tactile discrimination task, four out of the five abrasive papers were used
(based on a preliminary study, the particle size of 40 μm was too easy to discriminate). Two
abrasive papers sized 3 × 3 cm2 were attached 1 cm apart from each other on a plastic plate
sized 5 × 9 cm2. Two abrasive papers with the same roughness could be positioned in a single
plate. In total, 16 paired-stimulus plates were used in the behavioral experiments: counterbal-
anced pairwise combinations of four distinct stimuli, plus four stimulus plates having the abra-
sive papers with the same roughness (4P2 + 4 = 16). In the fMRI experiments, all five abrasive
papers were used, each being attached on five stimulus plates. A single abrasive paper sized
3 × 3 cm2 was attached at the center of a plastic plate sized 5 × 5 cm2.

Experimental Design
Prior to the fMRI scanning, participants performed the behavioral tactile discrimination task
outside the MR room, and then moved into the MR room and participated in the fMRI experi-
ment (Fig 1). Participants completed five blocks, each consisting of 16 trials (Fig 1A). The pro-
cedure of every block was identical except for the sequence of stimulus presentation. In each
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trial, participants explored two abrasive papers with the right index fingertip and reported ver-
bally, which of them felt rougher. Participants were instructed to close their eyes during this
discrimination task to block visual information of the stimuli. The duration of a single trial was
15 s and the inter-trial interval was set at 5 s. Participants were given 16 paired-stimulus plates
in a pre-defined random order to ensure that every pair was presented for the same number of
times. We used a function that generated a sequence of numbers pseudo-randomly to obtain
random sequences. A 1-min break was provided between the blocks and the entire experiment
took approximately 30 min.

During the functional image acquisition, participants lay in a supine position in a head-only
MR scanner with their right arm comfortably placed on their upper abdomen and viewed the
visual instruction screen on the MR-compatible head-mounted display goggle with a resolution
of 800 × 600 pixels (Nordic ICE, NordicNeuroLab, Bergen, Norway). The stimulus plate with
an abrasive paper was placed on the participants’ upper abdomen in a consistent manner by an
experimenter. To replace the stimulus plates, an experimenter was positioned at the entrance
of the magnet bore where he could easily reach out to the participants. The fMRI experiments
consisted of five blocks, each with 20 trials; short breaks were provided for about 1 min be-
tween the blocks (Fig 1B). A single block started with a 10-s baseline period followed by a series
of 20 trials. Each trial was composed of two consecutive periods: an exploration period of 6 s
followed by a resting period of 15 s. A Korean word, ‘자극’ (‘Stimulation’ in English), and a

Fig 1. Structure and time course of the experimental design. (A) In the behavioral experiments,
participants were asked to respond on which of the two stimuli felt rougher after active exploration with the tip
of the right index finger. Each participant performed a total of 80 trials (16 trials × 5 blocks) and the maximum
duration allowed per trial was 15 s. (B) In the fMRI experiments, the participants performed a total of 100 trials
(20 trials × 5 blocks) and each trial included two periods: exploration for 6 s followed by rest for 15 s.

doi:10.1371/journal.pone.0129777.g001
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fixation cross, ‘+’, were displayed at the center of the instruction screen to indicate the explora-
tion and resting periods, respectively. The instruction to initiate the exploration was synchro-
nized with the MR pulse sequences after baseline period in each block. During the exploration
period, participants were instructed to explore the tactile surface using horizontal movements;
specifically, participants moved their right index fingertip from side to side. After each explora-
tion period, the participants slightly lifted their finger so as not to interfere with stimulus re-
placement; the experimenter replaced a set of the stimulus plates in a pre-defined order during
each resting period. Next, during the resting period, the participants placed their finger on the
upper abdomen. Visual instructions were preferred to auditory instructions because of the pos-
sibility that the loud sounds generated due to the rapid alterations of current in the MR scanner
might hinder the clear perception of auditory cues. Since the image acquisition time was set at
3 s per volume (see Data Acquisition and Preprocessing), each trial resulted in 7 volumes for
the 21 s duration. Over the entire experiment, 700 functional volumes (i.e., 5 blocks × 20 tri-
als × 7 volumes per trial) were acquired in each participant.

Data Acquisition and Preprocessing
Neuroimaging data were acquired using a 3T MRI system (Magnetom TrioTim, Siemens Med-
ical Systems, Erlangen, Germany) equipped with a standard 16-channel head coil. Anatomical
images were acquired using a T1-weighted 3DMPRAGE sequence with repetition time (TR) =
1,900 ms, echo time (TE) = 2.52 ms, flip angle = 9°, field of view (FOV) = 200 mm, and spatial
resolution = 1 × 1 × 1 mm3. Functional images, covering the whole cerebrum, were acquired
using a T2

�-weighted gradient echo-planar imaging (EPI) sequence with 35 slices, TR =
3,000 ms, TE = 30 ms, flip angle = 90°, FOV = 240 mm, slice thickness = 3 mm, inter-slice
gap = 0.75 mm, and in-plane resolution = 3 × 3 mm2. The preprocessing and statistical analysis
of fMRI data were performed using SPM8 (Wellcome Department of Imaging Neuroscience,
UCL, London, UK) and a high-pass filter of 128 s was used to eliminate low frequency noise.
The EPI data were corrected for slice-timing differences, realigned for motion correction, co-
registered to the individual T1-weighted images, normalized into the Montreal Neurological
Institute (MNI) space, and spatially smoothed by a 4-mm full-width-half-maximum (FWHM)
Gaussian kernel.

Behavioral Data Analysis
To determine the relation between a stimulus and its perceptual variance, we designed the ex-
periment to measure the relative perceptual sensitivities in individuals. We set the grit value of
a left-side abrasive paper on a stimulus plate as a reference value (i.e., one of the four values:
1200, 2000, 3000, and 4000), and then defined relative difference in roughness compared to the
reference paper. Instead of using a fixed standard stimulus surface as reference, different refer-
ence surfaces were presented to participants for each trial. This might lead to unexpected vari-
ance or bias to the data because participants did not perceive roughness in a linear scale.
However, as a basic objective of this study was to examine individual differences in perceptual
roughness sensitivity, we focused on individual abilities of detecting relative differences of
roughness rather than the exact different thresholds of presented roughness. The difference be-
tween the grit value of a right-side abrasive paper and the reference value was calculated, result-
ing in one of 11 difference levels (±2800, ±2000, ±1800, ±1000, ±800 and 0). We defined the
relative roughness of the right-side paper by setting no difference as 100%, and -2800 and 2800
as 50% and 150%, respectively. The intermediate degrees of relative roughness were deter-
mined according to the difference levels. For each degree of relative roughness, we obtained a
ratio of the number of trials in which a participant reported that the right-side paper was
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rougher to the total number of trials with a given degree of relative roughness. A psychometric
function was then fitted to these ratio data against their relative roughness to assess behavioral
discrimination sensitivity using a bootstrap method (the psignifit toolbox for Matlab; [21]). A
fitted psychometric function showed a cumulative probability that the right-side abrasive
paper was perceived to be rougher than the reference paper, as a function of its relative rough-
ness. Therefore, a steeper slope indicated more sensitive discriminability. Here, discrimination
sensitivity of each participant was measured as a difference of roughness intensity values be-
tween the 25th and 75th percentiles. This difference is known as the just noticeable difference
(JND).

For the reliability of the JND, we estimated each participant’s goodness of fit value, in which
a bad fit indicated a low reliability of the JND estimate. We fitted the logistic function to the
psychometric curve and the individual deviances were evaluated to measure goodness of fit
[22]. A 95% confidence interval was calculated based on the simulations from the bootstrap-
ping procedure (n = 999). If the observed deviance was outside the 95% confidence limit, we
considered the participant’s data as an outlier.

Functional Imaging Data Analysis
Functional image data was analyzed using the searchlight MVPA [17]. In particular, we utilized
parameter estimates (i.e., model coefficients) extracted from a GLM for the searchlight MVPA.
Parameter estimates explained how much the stimulus location variable contributed to the var-
iation of neuronal signals. They have been employed as input features to the searchlight MVPA
in previous studies [23, 24]. A standard predictor was built by the convolution of a box-car
function of the stimulation ‘on’ periods with a standard model of the hemodynamic response
function (HRF) of SPM8. We implemented a GLM independently for each stimulation condi-
tion without averaging across trials to increase the number of exemplars used for training the
classifier. Therefore, a total of 100 regressors (5 roughness levels × 4 trials per block × 5 blocks)
were acquired for each participant. Regressors were fitted to each voxel and the resulting pa-
rameter estimates were used as input features to the MVPA. A searchlight with a 7×7×7 voxel
cube, which contained the activation patterns of a maximum of 343 voxels surrounding each
voxel, scanned the whole brain volume. For each cube, a Gaussian Naïve Bayes (GNB) classifier
was used to decode the five different levels of roughness from a multi-voxel activation pattern.
The classification accuracy resulting from a 5-fold cross-validation method in a leave-one-
block-out paradigm (i.e., each experimental block was considered as one fold) was stored along
with the coordinate of the central voxel of the cube. The accuracy value stored for each voxel
was corrected by subtracting chance-level accuracy (0.2 in this case, recall that the classifier
predicted one out of five different roughness levels) to yield deviations from chance (S1 Data-
set). Using these data, we generated each participant’s (spatially-normalized) brain mask of de-
coding accuracies. A random-effects group analysis was performed on the single-subject
accuracy masks to establish commonalities among individual neural decoding results. A one-
sample t-test against 0 was applied to verify above-chance decoding accuracy for every voxel.

To correct the searchlight cluster results for multiple comparisons, we employed the method
described by Oosterhof and colleagues [25]. We compared the size of the clusters resulting
from the group analysis to a reference distribution of clusters that one would obtain by chance.
If there is no real effect, the sign of the searchlight accuracy values would be ‘+’ or ‘-’ with an
equal probability of 50% (which is allowed under the null hypothesis of chance accuracy). To
identify how large clusters would be determined when the null hypothesis is true, we sampled
from the searchlight results maps and randomly flipped the sign of the maps of a random num-
ber of participants. These maps were then considered as one group sample from the null effect
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case, and a random-effect analysis on these maps calculated the size of the biggest cluster. This
procedure was repeated 1000 times and the computed cluster sizes for each iteration were col-
lected, yielding the distribution of cluster sizes under the null hypothesis. In this study, we re-
ported the clusters in the 5% of the upper tail (i.e., p< 0.05 corrected for multiple comparisons
via cluster size).

Additionally, a univariate GLM group analysis was performed to search for brain regions as-
sociated with blood-oxygen-level-dependent (BOLD) signal differences between the tactile
roughness exploration and the resting conditions on each degree of roughness. The resulting
contrast images for each participant were entered into a random-effects group analysis. This
univariate analysis was conducted to confirm that the neuronal activation patterns in our data
corresponded to established patterns in the previous literature and contained adequate infor-
mation for the multivariate decoding analysis.

Correlation Analysis
To determine a correlation between perceptual and neural discriminative patterns of tactile
roughness, we correlated the JND values with the decoding accuracy values for each significant
cluster. In particular, we estimated the robust regression coefficients using a modified least-
squares linear method to reduce the effects of outliers. The significance of the correlation coef-
ficient was evaluated with the F-test. Since a smaller JND value indicates a higher perceptual
sensitivity, a negative correlation (higher decoding accuracy with smaller a JND) indicates that
the multivariate neuronal activity patterns in the examined cluster capture behavioral perfor-
mance in our roughness discrimination task. Moreover, to probe the influence of non-linear
roughness perception (recall that we had used tactile surfaces with non-linearly scaled rough-
ness values, thus percentage of correct answers can be a complementary behavioral measure),
we performed an additional correlation analysis between decoding accuracy and percentage of
correct answers.

Results

Behavioral Data Analysis
Table 1 summarizes the JND values, goodness of fit values (i.e., deviance), and percentage of
correct answers for all 16 participants. Examples of the psychometric function are shown in S1
Fig. In 13 participants, the fitting procedure resulted in acceptable goodness of fit statistics.
However, the behavioral data from three participants (# 6, 7, and 10) were not fitted well and
we therefore excluded from the further analyses. The mean and the standard error values in the
table were calculated excluding the data of participants 6, 7, and 10.

Functional Imaging Data Analysis
A random-effects group analysis (N = 13) revealed that four neural clusters exhibited above-
chance decoding accuracy results of discriminating five roughness levels (p< 0.001 uncorrect-
ed, cluster size> 30) (Fig 2 and Table 2). These four clusters were located in the supplementary
motor area (SMA), the contralateral postcentral gyrus (S1), and the superior portions of the bi-
lateral temporal pole (STP), respectively. The clusters that we found were unlikely to have oc-
curred by chance: a bootstrap procedure [25] revealed that the probabilities of obtaining a
cluster as large as ours were less than 5%. Therefore, our clusters remained significant after the
correction for multiple comparisons [25, 26]. Decoding accuracies from each significant cluster
were obtained as follows (presented as mean ± standard deviation, highest and lowest accuracy
for each cluster): 40.1 ± 4.6%, 47%, and 32% for the SMA cluster; 37.4 ± 4.5%, 46%, and 27%
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for the contralateral S1 cluster; 34.6 ± 4.2%, 41%, and 26% for the contralateral STP cluster;
and 33.6 ± 4.3%, 40%, and 28% for the ipsilateral STP. A one sample t-test verified that these
group-wise decoding accuracy results significantly exceeded the chance level for every cluster
(SMA: t12 = 14.91, p< 0.01; contralateral S1: t12 = 9.51, p< 0.01; contralateral STP: t12 = 11.66,
p< 0.01; ipsilateral STP: t12 = 15.85, p< 0.01). Furthermore, we measured the decoding accu-
racies of excluded participants (i.e., participants 6, 7, and 10) in the identified brain regions. Al-
though these participants could not discriminate the degrees of roughness in the behavioral
experiments, the decoding performances were significantly higher than the chance level (20%)
across the brain regions (p< 0.05). However, their decoding performances were largely lower
compared to data from the 13 participants (S1 Table).

Fig 3 shows the confusion matrices for each cluster. Note that the value on a row i and col-
umn j in each matrix represents the probability that a presentation of roughness i was predicted
as roughness j (an ideal confusion matrix would have a 100% probability everywhere on the di-
agonal and 0% in the off-diagonal entries). In the confusion matrices, the highest accuracy and
the frequent confusions (when the misclassification rate surpasses the chance level of 20%) are
highlighted for each row (for each roughness level). In all four confusion matrices, the highest
classification accuracy was always found on the diagonal entries. The highest performance of
the GNB classifier was found with 49.2% accuracy using the values of S1, when a stimulus of
particle size ‘40’ was provided. The lowest classification performance with 25.0% was found in
the contralateral STP, when a stimulus of particle size ‘9’ was provided. Several specific patterns
in the confusion matrices are also notable. First, the SMA was the only region that did not ex-
hibit frequent confusion. It also showed the least variance of correct classification rates along
the diagonal entries among the four regions: variance across the diagonal entries was 9.85%,
45.29%, 35.31%, and 36.06% for the SMA, S1, contralateral STP, and ipsilateral STP,

Table 1. A summary of the behavioral experiments.

Participant JND Correct answer (%) Goodness of fit (deviance)

P1 37.59 81.67 12.83

P2 40.20 80.00 7.15

P3 35.27 78.33 14.74

P4 21.83 58.33 3.94

P5 87.52 80.00 6.33

P6* 690.49 45.76 22.52

P7* -213.28 48.33 19.12

P8 39.99 75.00 10.33

P9 83.92 83.61 9.19

P10* 152.92 88.33 24.45

P11 86.52 80.00 4.62

P12 31.56 65.00 8.57

P13 26.02 58.33 8.13

P14 32.42 61.67 5.41

P15 30.11 65.00 6.92

P16 109.74 85.00 11.31

Mean 50.98 73.23 8.42

Std. Error 8.18 2.77 0.89

* Data from participants 6, 7, and 10 were considered as outliers and excluded from the analysis.

doi:10.1371/journal.pone.0129777.t001
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respectively. Second, the misclassification rates were evenly distributed over the off-diagonal
entries. We expected that the misclassification would tend towards a similar roughness level,
but such a tendency was not observed.

The whole brain univariate GLM group analysis contrasting tactile exploration against rest-
ing periods identified activation clusters consistently in the primary visual cortex (V1), contra-
lateral primary motor cortex (M1), and contralateral S1 (p< 0.001 uncorrected, cluster

Table 2. Significant clusters for roughness decoding (p < 0.001 uncorrected, cluster size > 30).

Brain Regions Side MNI Coordinates Cluster Size T Z

x y z

Supplementary Motor Area R 2 0 56 191 6.44 4.16

- L -8 -6 52 6.07 4.03

- R 4 -10 54 5.71 3.90

Postcentral Gyrus L -44 -28 62 52 6.18 4.07

- L -40 -34 66 5.36 3.75

Superior Temporal Pole R 58 4 -8 40 6.07 4.03

Superior Temporal Pole L -38 12 -24 41 5.88 3.96

Side indicates hemisphere (R = right, L = left), cluster size indicates N voxels, T indicates peak t-values, Z indicates peak z-values. Entries without the

brain region name-labels indicate sub-peaks within the cluster named above them.

doi:10.1371/journal.pone.0129777.t002

Fig 2. Results of the whole brain searchlight MVPA. Searchlight analysis identified four brain regions showing significant decoding performance in the
prediction of five different levels of roughness. For each region, the left panel shows a sagittal slice of the brain (Z-coordinate of slice indicated in bottom left
corner). The right panel shows the decoding accuracies for each of the 13 participants and the rightmost value indicates the average accuracy across the
participants. Error bars indicate standard errors and a chance level is marked by the dashed line (20%). Note that the data from participants 6, 7, and 10 were
excluded from the analysis.

doi:10.1371/journal.pone.0129777.g002
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size> 100) across the five different roughness levels (see S2–S6 Tables). Taken together, the
univariate analysis revealed distinct clusters mainly in the contralateral S1, contralateral M1,
and V1, whereas the MVPA for stimulus roughness information identified significant clusters
in the SMA, contralateral S1, and bilateral STP.

Correlation Analysis
Having found specific brain regions that provided useful information for roughness classifica-
tion as presented above, we investigated how regional classification accuracy of individual par-
ticipants varied with their perceptual roughness discriminative sensitivity (JND). Data from 13
participants were used in this analysis; data from three were excluded (participants 6, 7, and
10). The pairwise correlation analysis revealed a significant correlation between JND and de-
coding accuracy in the SMA (r = -0.756, p< 0.01), but not in other regions: contralateral S1
(r = -0.245, p = 0.42), contralateral STP (r = -0.486, p = 0.09), and ipsilateral STP (r = -0.195,
p = 0.52) (Fig 4). The negative correlation in the SMA indicated that a higher decoding accura-
cy from the SMA was obtained in those participants who showed a smaller JND value (i.e., bet-
ter roughness discrimination). Another correlation analysis of decoding accuracy with
percentage of correct answers did not show any significant correlation for all the searchlight
clusters (all r< 0.3, p> 0.32).

Discussion
In the present study, we demonstrated the feasibility of decoding the tactile information about
degrees of roughness from brain activity using a searchlight MVPA. In particular, the SMA, the
contralateral S1, and the bilateral STP appeared to carry useful information for roughness dis-
crimination. In addition, we derived JNDs from the psychometric function for evaluating each
participant’s perceptual sensitivity to tactile roughness and correlated them with the neural de-
coding accuracies resulting from the brain regions explored above. A significant correlation

Fig 3. Confusion matrices for decoder predictions of fMRI activity in the significant clusters. The rows
of the matrix indicate the actual roughness provided to the participants and the columns indicate the
predictions by a neural decoder. The cells of highest accuracy in each row are highlighted in red and the
frequent confusions, of which the misclassification rates exceeded the chance level (20%), are highlighted in
light red.

doi:10.1371/journal.pone.0129777.g003
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was found only in the SMA. It is noteworthy that SMA exhibited not only a correlation be-
tween the JNDs and decoding accuracies but also provided the most accurate and reliable de-
coding results. To our knowledge, this is the first attempt to show that neural decoding
performance can predict individual perceptual sensitivity to tactile roughness.

It is well-established that the SMA is implicated in the preparation and execution of volun-
tary movements. Particularly, several studies have suggested that differences in movement in-
tensity and speed during the active tactile exploration task could evoke distinct patterns of
SMA activity [27–29]. For instance, Simoes-Franklin and colleagues considered significant
SMA activities to be the reflection of the motor components of the active task, rather than tac-
tile roughness categorization per se [29]. According to their consideration, in our fMRI data
analysis, the fact that participants actively explored the tactile surfaces with their finger during
the brain signal acquisition could potentially affect the multi-voxel response patterns in SMA.
However, the significant SMA activation was observed during passive tactile discrimination
tasks as well [30], indicating its potential role in tactile discrimination. Therefore, our observa-
tion lends support to the conjecture that the SMAmay carry essential information for the dif-
ferentiation of tactile roughness.

One of the key findings in the present study is the significant correlation between behavioral
performance of tactile discriminability and neural decoding accuracy in the SMA. Previous
studies in primates reported that neuronal activity in the SMA are associated with behavioral
performance [31–33]. For example, Romo and Salinas reported that the neural activation pat-
terns in the S1 reflect the physical properties of the tactile stimulation, regardless of how the
monkeys perceived the stimulus, whereas neural activation patterns in the SMA were more
closely correlated with their behavioral responses [33]. What then, could be a possible explana-
tion for this correlation between SMA activity and behavioral performance (i.e., perceptual
discriminability in our case)? An explanation may be provided in terms of how the somatosen-
sory system achieves a neural representation of roughness. Tactile sensation is related to the

Fig 4. Correlations between behavioral and neural decoding accuracies for roughness
discrimination. The 13 participants’ neural decoding accuracies are plotted over the JND values in the
behavioral experiments. The solid lines show robust fits of linear relationships.

doi:10.1371/journal.pone.0129777.g004

Neural Correlates of Perceived Tactile Roughness

PLOS ONE | DOI:10.1371/journal.pone.0129777 June 11, 2015 11 / 17



variation in sensory afferent firing rates, with each afferent delivering information about a dif-
ferent texture or tactile property [34, 35]. In particular, the neural activity of roughness percep-
tion are modulated by the physical properties of the touched surface (e.g., the spatial
distribution, height, and diameter of the grits), and it has been suggested that temporal charac-
teristics of stimulation are important in the perception of tactile roughness [36–38]. Our results
suggest that such differentiable neural representations of temporal characteristics may be ex-
hibited most saliently in the SMA. Several primate studies support such a role of the SMA in
representing temporal aspects of stimuli. For instance, using electrophysiological recordings in
monkeys, Mita and colleagues found that neurons in the SMA and pre-SMA encode the infor-
mation of time intervals between finger movements [39]. It was also shown that neurons in the
SMA encode the memorized stimulus frequency and generate a neural signal correlating with
the output of the animal’s decision [40]. Similarly, lesions and neuroimaging studies in humans
demonstrated that SMA is engaged in both perceptual and motor timing processing [41–43].

Our results showed that the STP is also involved in the discrimination of tactile roughness
levels. While the STP is widely known for auditory and language processing, several studies
have suggested that the temporal lobe may also be involved in somatosensory functions, based
on the fact that both auditory and tactile sensations rely on the transduction of physical events
into neural coding of frequency [44]. Vibrotactile stimuli consistently activated the superior
temporal gyrus together with the secondary somatosensory cortex [45] and temporal lobe epi-
lepsy patients were severely impaired in a tactile grating orientation discrimination task [46].
The left superior temporal gyrus was activated by active and passive dynamic touches during a
roughness categorization task [29].

A large number of studies have shown the involvement of S1 in tactile discrimination. Ani-
mal studies using single- and multi-unit recordings have shown that S1 neurons were able to
reliably encode distinct frequency and texture stimuli [47, 48]. Human studies reported activa-
tion in the S1 during a roughness estimation task in a PET study [49, 50] and an fMRI study
[51]. Our present results are consistent with these findings on tactile roughness information
processing in the S1. However, it is rather unexpected that S1 activity did not correlate with in-
dividual perceptual sensitivity to roughness across participants despite its involvement in a va-
riety of tactile roughness tasks.

It is worth noting that brain regions activated by the searchlight MVPA and the GLM analy-
ses did not coincide; the S1 area was found to be significant in the searchlight MVPA and the
GLM analyses, the SMA and STP areas were identified only in the searchlight MVPA, and the
M1 area was identified only in the GLM analysis. This discrepancy could be explained by the
motor involvement. On the one hand, the GLM analysis contrasted roughness exploration
against resting periods. Since there were additional finger movements for stimulus exploration
during the exploration period, GLM results can be influenced by motor information as well as
tactile information. On the other hand, the searchlight analysis decoded five level of roughness
information using fMRI data elicited solely during the roughness exploration periods, not the
resting periods. Moreover, our fMRI experiments were designed to minimize the effects of indi-
vidual differences of finger movements. Participants were instructed to explore the tactile sur-
face using horizontal movements; the participants moved their right index fingertip from side
to side. Since the size of the abrasive paper was relatively small (3 × 3 cm2), we assumed that all
participants explored the provided stimulus in a similar manner throughout the experiment.
Therefore, all input data to searchlight MVPA involved similar movements and we supposed
that the classifier was unlikely to be influenced by the differences in finger movements. Taken
together, the searchlight MVPA identified brain areas (e.g., the SMA, S1, and STP) exhibiting
distinct roughness information and the GLM analysis identified brain areas (e.g., S1 and M1)
exhibiting both motor and tactile roughness information. Our results thus support the
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following hypotheses: The SMA and STP encode different levels of roughness information in-
dependent of motor information, S1 plays a role in both motor and roughness information
processing, and M1 activation reflects only the motor information.

We investigated cortical activation patterns with respect to the contrast of tactile exploration
against resting periods. The univariate GLM group analysis identified activated clusters in V1,
contralateral M1, and contralateral S1. It is not surprising that S1 and M1, the primary areas
for sensorimotor processing, were activated by tactile exploration. The presence of S1 and M1
activities is in line with previous findings showing that these regions are engaged in tactile ex-
ploration [52]. A rather unexpected observation of activated clusters in V1 might be partly at-
tributed to differences in visual instructions. During image acquisition, a fixation cross, ‘+’, was
presented for the resting period and a Korean word, ‘자극’ (meaning ‘Stimulation’ in English),
was shown for the exploration period on the screen. A previous fMRI study demonstrated that
even subtle changes in visual stimuli could be identified from the BOLD signals in V1 [53].
Similarly, contrasting V1 activity between exploration and resting might capture distinct
BOLD signals generated by different visual stimuli. However, further investigation is needed to
verify this V1 activity differentiation with a fixation cross and a visual stimulus cue.

Since there is a clear relationship between age and tactile perceptual sensitivity [2, 54], we
examined whether there were any effects on perceptual tactile sensitivity of gender or age. We
found no significant influence on tactile sensitivity of either factor: gender (r = -0.099, p = 0.72)
and age (r = -0.038, p = 0.89). Hence, our results suggest that the individual perceptual sensitiv-
ity to roughness observed in our study is related to brain properties independent of gender
and age.

Our findings may be limited by the fact that participants did not perform any discrimina-
tion tasks during the fMRI experiments, in contrast to the behavioral experiments. In this re-
spect, it is unclear if our correlation analysis between perceptual and neural discriminative
performance was the most appropriate method. Another concern is an unusual method used
in psychophysical experiment: We did not use a standard stimulus surface as reference. To par-
tially solve this issue, we had performed the additional correlation analysis with percentage of
correct answers, but no significant correlation was found. Thus, we cannot rule out the possi-
bility of unexpected bias to the reported data due to non-linear roughness perception. Lastly, it
should be stressed that we cannot assume the human brain to use the same tactile information
as the neural decoder built in our study in order to discriminate roughness. Since this study
mainly focuses on the feasibility of decoding tactile roughness information and correlation be-
tween neural decoding results and behavioral performance, we have not yet explored optimiz-
ing decoder parameters. As such, the SMA may not be the only brain region underlying
individual variations of perceptual sensitivity to tactile roughness. Hence, it will be worth inves-
tigating these aspects in further studies.

Conclusions
In this study, we statistically assessed each set of voxel response patterns across the whole brain
and revealed that the SMA, the contralateral S1, and the bilateral STP exhibit neural activity
patterns specific to roughness discrimination. We observed that the SMA showed a significant
correlation of the behavioral and neural decoding performances. In addition, the SMA con-
tained the most accurate and reliable multi-voxel sets for tactile roughness decoding. Our find-
ings suggest that the multi-voxel pattern of activity in the SMA is more closely related to the
human behavior in a roughness discrimination task. More work will be needed to verify the
role of these areas; however, we have provided fundamental evidence on brain regions that
contribute to the successful decoding of tactile stimuli. In addition, these results could motivate
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subsequent studies to examine the role of individual brain regions in tactile processing from
the perspective of human behavior.
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