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A New Drug Combinatory Effect Prediction Algorithm
on the Cancer Cell Based on Gene Expression and
Dose–Response Curve

C Pankaj Goswami1, L Cheng2,3,4, PS Alexander2, A Singal2 and L Li2,3*

Gene expression data before and after treatment with an individual drug and the IC20 of dose–response data were utilized to
predict two drugs’ interaction effects on a diffuse large B-cell lymphoma (DLBCL) cancer cell. A novel drug interaction
scoring algorithm was developed to account for either synergistic or antagonistic effects between drug combinations.
Different core gene selection schemes were investigated, which included the whole gene set, the drug-sensitive gene set, the
drug-sensitive minus drug-resistant gene set, and the known drug target gene set. The prediction scores were compared with
the observed drug interaction data at 6, 12, and 24 hours with a probability concordance (PC) index. The test result shows the
concordance between observed and predicted drug interaction ranking reaches a PC index of 0.605. The scoring reliability
and efficiency was further confirmed in five drug interaction studies published in the GEO database.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, e9; doi:10.1002/psp4.9; published online on 00 Month 2015.

Cancer is a serious and highly prevalent disorder that is
triggered by a complex interplay of genetic factors. Drugs
designed to act against individual molecular targets can’t
usually combat the multigenic disorder disease.1,2 Combi-
nation drugs that impact multiple targets simultaneously
are better at controlling complex disease systems than the
single drug. Drug-combination therapy has showed greater
cell growth inhibition and population than either agent
alone in cancers, which has been reported in many
researches.3,4 Compared to the single drug therapy, multi-
drug therapy is less prone to drug resistance and risk,2

and has less toxicity in small combining doses,5 as well as
a higher therapeutic effect.6–8 It has become gradually the
standard of care in cancer therapeutic areas.3,9 Generally,
combinatorial drug effects could be classified into three
types: additive, synergism, and antagonism: (i) When the
effect of the drug combination is equal to that of the sum
of the effects of the individual components, it is defined as
additive; (ii) Synergistic action refers to the drug combina-
tory effect exceeding the additive effect of two individual
components; (iii) Antagonism action refers to a reduced
combinatory effect when compared with the effect of the
most effective individual substance.10 It remains a chal-
lenge to predict drug combinatory effects from two single
drugs’ effect. Our current understanding of the drug inter-
action mechanics in multidrug therapy is more or less
drug targeted-based.1,11 During the drug discovery pro-
cess, predicting the drug combination effect in vitro heavily
relies on the experiment. However, testing all possible
combinations in vitro in cancer is not feasible due to the
large combinatorial search space. Computational predic-
tion may assist in identifying potential drug combination

effects at the molecular level, such as an integrating
method by molecular and pharmacological data,4 a
machine learning-based prediction of drug–drug interac-
tions (DDIs) by integrating drug phenotypic, therapeutic,
chemical, and genomic properties,12 and large-scale phar-
macogenomic screens of cancer cell lines.13 These meth-
ods are promising strategies to predict unknown DDIs.
However, these methods can’t solve the key problem: how
to detect and compare the dose response between the
single and the combination drugs. The drug dose eventu-
ally needs to balance the benefit and risk from its efficacy
and toxicity. On the other hand, some other methods
emerged which were based on pathways of gene sets.
These methods advanced our understanding about the
drug responsive cellular processes.14,15 However, because
of the potential knowledge bias of existing pathway data-
bases, some critical genes may well not have been anno-
tated for their functions and associated pathways. Hence,
their roles in DDIs will be missed in these pathway-based
approaches. Therefore, we hypothesize that drug respon-
sive gene expression data are the most powerful and
unbiased approach in predicting DDIs. In our study, we
designed a new score schema to predict the drugs combi-
nation effect based on gene expression and their dose–
responsive curve in cancer cell lines.

In 2006, Gustavo Stolovitzky and Andrea Califano
founded the Dialogue on Reverse Engineering Assessment
and Methods (DREAM) project. DREAM’s purpose was to
provide a reliable and reproducible platform to compare a
large number of computational biology methods based on
golden standard data. The inspiration for the DREAM pro-
ject came from the success of the Critical Assessment of
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Structure Prediction (CASP) competition.16 During the
CASP competition, contestants were challenged to predict
the final structure of a protein when given the amino acid
sequence.17 DREAM7-4 subchallenge 2 problem
(DREAM7-4-2) asked the participating teams to predict
the interactive activity of pairs of compounds in the OCI-
LY3, a diffuse large B-cell lymphoma (DLBCL) cell line.18,19

Figure 1 describes the task overview. All contestants were
given the gene expression data after separating treatments
with 14 individual drugs at time intervals of 6, 12, and 24
hours in triplicate. The cells were also treated with dimethyl
sulfoxide (DMSO) as controls. Dose–response curves of 9
out of 14 single drugs at 24 hours were also given. Using
these curves, IC20 (20% inhibitory concentration) values
were determined. Each contestant team was asked to pre-
dict pairwise drug interactions ordered from the most syner-
gistic to the most antagonistic.19

In this study we hypothesize that these changes in gene
expression after exposure of a drug can be used to predict
these drug interaction effects. In particular, two drugs hav-
ing significantly differentiated gene expression changes,
where a number of specific genes in the same direction
(up or down) will have a synergistic effect. The more spe-
cific genes affected in the same direction will be directly
correlated to a higher synergistic effect. Conversely, the
more specific genes affected in opposite directions will be
directly correlated to a higher antagonistic effect. Our
research attempts to infer the synergistic or antagonistic
effect from two drugs based on the above biological
assumption. A novel drug interaction scoring algorithm
was then developed. There are some factors that remain
unknown in influencing the prediction performance for
the drugs interaction. One factor is the optimal drug expo-
sure time for the drug responsive gene expression mea-

surement; and the other factor is the core gene set
selection, which include genes that are responsible for
drug interaction prediction. In this work these two prob-
lems were extensively investigated using the dose–respon-
sive curves and the gene expression data of the single
drug response from the OCI-LY3 DLBCL cell line of
DREAM7-4-2. Finally, the performance of our drug interac-
tion score and its biological assumption was evaluated in
five published GEO databases from six drug interaction
studies.

RESULTS
Overview
Our method hypothesizes that a single drug effect on the
OCI-LY3 cell can be attributed to the expression change
from a particular set of genes, i.e., core genes set. The
synergistic/antagonistic effects between a pair of drugs was
derived and predicted from this core genes set. Figure 2
shows the whole drug interaction prediction process in
detail. It has three parts: (i) the drug interaction scoring and
prediction in the core genes set (left side of Figure 2); (ii)
the drug interaction calculation from the observed dose
response curve (right side of Figure 2); (iii) the probabilistic
concordance (PC) index calculation between the experi-
mental drug interaction ranking and the predicted drug
interaction ranking (the bottom of Figure 2). The drug inter-
action prediction algorithm is the essential part of the study.
It includes seven steps (left side of Figure 2): (1) Input
data is prepared, including the gene expression profiles of
all samples in different drug treatment groups and the
DMSO control group; (2) quality control analysis is con-
ducted. It uses principle components analysis (PCA) to
identify and remove outlier samples; (3) differential

Figure 1 Overview of DREAM7-4 task. OCI-LY3 cell lines are treated with 14 different drugs at two different drug concentrations (IC20

at 24 and 48 hours, where IC20 is defined as concentration of drug needed to kill 20% of cells). The gene expression profiles (GEP) of
the cells in different drugs were generated in triplicate at three different timepoints (6, 12, 24 hours) and the GEP of the cells in DMSO
treated was eight times at the same timepoints. In addition, the drug–response curve from single agent treatment of OCI-Ly3 is also
given. The challenge is to use the provided data to predict the order of efficacy of 91 pairs of drug combinations from the most syner-
gistic to the most antagonistic.
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expression genes are identified between drug treatment
and DMSO through ANOVA method; (4) core genes set is
selected (see Figure 3), including the whole genes set, the
drug sensitive genes set, the drug sensitive minus drug
nonsensitive genes set, and the known drug target genes
set; (5) calculate the drug interaction score; (6) store the
prediction result for each drug pair; (7) the scoring algo-
rithm comprises all drug pairs, and all the predicted drug
interactions were ranked from the most synergistic to the
most antagonistic. The drug interaction calculation from the
observed dose response curve (right side of Figure 2),
includes three steps: (a) Calculate the expected fractional
inhibition fxy from two individual drugs’ IC20; (b) measure
the fAB from the cell treated with two drugs together; (c)
calculate and rank the drug interaction index, excess over
bliss(eob), from fxy and fAB, collectively.

Data preprocessing
PCA is conducted first for the quality control of gene
expression data. PCA achieves the dimensionality reduction
by finding new axes, i.e., principal components (PCs),
where top PCs can account for the majority of variance in

the data.20 In general, PC1 and PC2 represent the highest
of the variance in data among all the PCs; here they are
routinely used to express the main intrinsic factor of sam-
ples variance. Supplementary Figure 1 shows the prepro-
cessing result of gene expression by using PCA for outliers’
recognition. It can be seen that there were two outlier sam-
ples from the drug-treated groups: mitomycin C (denoted
as TH001_AP_100427_01C_E02 in experience) and H-7
(dihydrochloride, denoted as TH001_AP_100427_01C_H09
in experience). They were far away from all the other sam-
ples, hence they were removed from the follow-up analysis.
Therefore, drug-treated groups of mitomycin and dihydro-
chloride have only two replicates, while the other drugs
have three.

Core gene selection is an essential part of our drug inter-
action algorithm development. When the cell is treated with
different compounds, their impact on cell growth will be
channeled through a set of genes. This gene set is so
called the core gene set. In this study, four different sets of
core genes are proposed (see description in Methods and
Figure 3). The first set includes every probe set in the Affy-
metrix array (ncore548;789). The second core gene set

Figure 2 Schematics of data processing. The data processing flow included three parts: (1) The drug interaction scoring by its gene
expression on the left; (2) the drug interaction observation by calculation of single drug response curve, which is shown on the right;
(3) the calculation of the PC index of which the comparison between the scoring prediction and the result of the observed experiment,
which is shown on the bottom.
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includes all of the drug-sensitive gene probes from five
drugs (aclacinomycin A, camptothecin, doxorubicin hydro-
chloride, geldanamycin, and trichostatin A) with low IC20

(the core genes number ncore5 12500, 9000, 9862 for 6,
12, and 24 hours, respectively). The third core gene set is
the drug-sensitive gene probes from five drugs of low IC20

minus the nonsensitive gene probes, where the nonsensi-
tive gene probes are from the other four drugs (etoposide,
H-7 dihydrochloride, mitomycin C, and rapamycin) with high
IC20 (the core genes number ncore5 2567, 4004, 3204 for
6, 12, and 24 hours, respectively). The fourth core gene set
is derived from the drug targets reported in MetaDrug
(ncore5 80).21

Time-dependent analysis of the drug interaction
prediction based on four different sets of core genes
The drug interaction scores are calculated at three differ-
ent timepoints after the drug treatment, 6, 12, and 24
hours for all 91 drug combinations in 14 compounds. The
ranked scores are compared to observed interaction
scores (i.e., eob) through the normalized PC index. A
higher PC index represents a better concordance between
the observed drug interaction and the predicted drug inter-
action. The highest score is 0.90 here, not 1.00, because
of the noise of the experimental data. Figure 4 shows the
comparison result of the drug interaction prediction in four
sets of core genes at 6, 12, and 24 hours. It can be
observed that the gene expression after a 12-hour drug
treatment had a better performance than the 6- and 24-
hour timepoints because of its high PC index in four differ-

ent probes set, and the PC index reaches the largest
value of 0.605. In addition, the performance of the sensi-
tive probes is better than the other three core gene selec-
tions at 12 hours.

Gene expression based probe selection vs. known
drug target-based probe selection
These two core gene selection schemes are based on two
totally different assumptions. Gene expression-based probe
selection is a purely discovery-based approach, whereas
drug target-based probe selection is a candidate target
approach. It focuses on the known protein targets of
the drugs from the MetaDrug database.21,22 According to

Figure 3 Core gene selection is used to determine the effectiveness of synergism for all the 91 possible two drug combinations. (a) All
possible gene probes are used. (b) The gene set is determined by selecting all the sensitive probes from the union of all five low IC20

drugs. (c) The third set is determined by subtracting the union of all nonsensitive differentially expressed gene probes from the four
high IC20 drugs. (d) The fourth scheme only selects the drug targeted gene probes reported in MetaDrug database. (e) The genes set
of a–d will take part in the drug interaction score respectively to test the reliability of the drug combination.

Figure 4 Comparison result of the drug interaction prediction for
four sets of core genes at different times. The y-axis is the prob-
abilistic concordance-index (PC index) and shows that the con-
cordance between the predictions result and the gold standard
at 6, 12, and 24 hours.
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our time-dependent analysis of drug interaction prediction
between these two core genes set selection schemes, the
gene expression based on the drug-sensitive core gene
set outperformed the target gene core set at any timepoint
of 6, 12, and 24 hours. After 12 hours of drug treatment,
the PC index of the drug sensitivity core set has a PC
index of 0.605, while the drug target score has a PC index
of 0.540 (Figure 4). These results confirm our hypothesis
that the discovery-oriented and less biased drug sensitive
core gene set outperforms the knowledge-driven and
potentially biased drug target core gene set for DDI
prediction.

Drug interaction prediction
Using the drug sensitivity core gene set after 12 hours
drug treatment, a score was calculated for each drug pair.
Ranks are assigned to drug pairs using these scores. The
final scores range from 124.06% (most synergistic) to
–2.33% (most antagonistic). Whenever drug combinations
had the same score, a higher ranking is given to the drug
pair that has a greater number of total genes affected by
the two drugs. Table 1 is a list of drug combinations with
their ranks in terms of synergism. The most synergistic
pair has the highest rank. The pair with the most antago-
nistic effect has the lowest rank. Each pair that results in
lower ranking than the trichostatin A & vincristine combina-
tion has a positive score and will have a synergistic effect
in silico. All pairs that result in scores higher than the tri-
chostatin A & vincristine pair will have an antagonistic
effect in silico.

Drug interaction scoring algorithm validation using
GEO datasets
Six drug interactions were reported in five published GEO
datasets (Supplementary File 2). Both the single drug
responsive gene expression profiles and their combina-
tory effect gene expression profiles are available. In order
to verify the sensitive genes set of a single drug, the
main factor for the synergistic or the antagonistic contri-
bution is the combination drug efficacy. The consistency
of differentially expressed genes is compared between a
single drug and combinatory drug treatment. Our score
algorithm in Figure 5 assumes that the combinatory
effect of two drugs is more consistent with the concord-
ance between two single drug effects if they are synergis-
tic than they are not. In Table 2, it can be seen that
among six drug pairs three drug pairs have an additive
effect, and the other three pairs have a synergy effect.
Column (A) of Table 2 displays the number of differen-
tially expressed genes by the combinatory effect of two
drugs. Column (B) shows how many genes in column (A)
had the same directional differential expression from both
the single drug treatments, which is the primary assump-
tion in our algorithm (Figure 5). Column (C) presents the
ratio of (B) over (A), i.e., a concordance ratio. It is inter-
esting to see that the additive drug pairs have a concord-
ance rate (0.46, 0.34, 0.50), while the synergistic drug
pairs have a higher concordance rate (0.51, 0.54, 0.73).
These results support that the synergistic drug interaction
has a stronger concordance rate than the additive drug
interaction.

DISCUSSION

Multidrug combinations are thought to attack drug resist-
ance in cancer. By utilizing treatments involving more than
one drug, it is thought that one drug will kill the cells resist-
ant to the other drug and the other drug will kill the cells
resistant to the first drug; thereby, the combination drugs
treatment prevents the regrowth of the disease with resist-
ance to the current therapy.9,23 This method has been very
popular for fighting cancer.24 However, testing all possible
combination in vitro in cancer is not feasible due to the
large combinatorial search space. DREAM7-4 provided a
platform to develop models that predict the synergistic/
antagonistic activity of drug pairs in the OCI-LY3 cell line.19

We are one of 31 contestants for the DREAM7-4 challenge.
In this work, based on the gene expression profile of before
and after treatment of a single drug and its dose–
responsive curve, a novel drug interaction scoring algorithm
was developed to predict the synergistic or the antagonistic
effects of two drug combinations in cancer. Fourteen drugs
and their combinatory experiments in a DLBCL cancer cell
were investigated. The drugs’ interaction effect was scored
by counting the differentially expressed genes in the core
gene set that went in either the same or the opposite direc-
tion between two drug treatments under their IC20s. The
prediction scores were compared with the observed drug
interaction data at 6, 12, and 24 hours with a PC index.
The test result shows that the drug-sensitive gene set can
achieve the best prediction result and its PC index equals
0.605, which was extremely close to the best prediction PC
index 5 0.613 in the DREAM7-4-2 challenge. In addition,
using only the known drug targets cannot provide compara-
ble drug interaction prediction performance, as the core
gene sets do, which were drug-responsive genes selected
from whole genome differential expressed genes. Finally,
our score schema is validated by using drug interaction
data collected from the GEO. Using the additional gene
expression data after the combined two exposures, we
found that differentially expressed genes in the synergistic
drug interaction pairs had higher concordance rates than
those of additive drug interaction pairs. This study provides
a valuable drug-combinatory effect predictive model that
can screen synergistic drug interaction pairs from single
drugs’ gene expression profiles.

Our current best drug interaction performance, a PC
index of 0.605, is still far from the optimal prediction, 0.90.
There are strategies that will likely improve the drug inter-
action prediction. First, our current best core gene set,
drug-sensitive genes, are only based on five sensitive
drugs. We believe more sensitive drugs and their respon-
sive genes will help to improve the prediction. Second, our
current drug interaction prediction algorithm is not a truly
supervised method; it is based on a biological assumption
of concordantly differentially expressed genes between sin-
gle drugs and their combinations. We still expect to design
a more proper supervised machine learning algorithm com-
bining our method to gain better performance in the future.
Third, the current scoring scheme is a highly simplified
method, which does not differentiate or weight the highly or
lowly expressed genes. It is worthwhile to investigate the

Transcriptome-Based Drug Interaction Prediction
Goswami et al.

5

www.wileyonlinelibrary/psp4



drug interaction prediction performance with more sophisti-
cated methods. Finally, a drug interaction net provides us a
new view to obtain drug combination efficiency by integrating
molecular, therapy, and pharmacological data.4,23,25 Based
on a drug network and multiple data merging technology,
looking for the core genes set by drug-targeted and disclos-
ing the rule between the drugs and the genes from DDIs will
provide us much clinic direction for cancer treatment in the
future, as will also be our goal in the next study .

Table 1 Ranking of pairwise drug combinations based on the gene expres-

sion profiling scoring, discussed in the Methods

Drug combination Rank

Observed

ranking

(gold standard)

Camptothecin & H-7 1 10

Camptothecin & Trichostatin A 2 56

Cycloheximide & H-7 3 9

Cycloheximide & Rapamycin 4 78

Geldanamycin & Rapamycin 5 47

Camptothecin & Doxorubicin 6 16

Camptothecin & Etoposide 7 15

Cycloheximide & Trichostatin A 8 37

Doxorubicin & Etoposide 9 24

Monastrol & Rapamycin 10 48

Camptothecin & Methotrexate 11 62

Monastrol & Trichostatin A 12 18

Camptothecin & Mitomycin C 13 5

H-7 & Trichostatin A 14 19

Rapamycin & Trichostatin A 15 60

Geldanamycin & H-7 16 31

Camptothecin & Cycloheximide 17 59

Doxorubicin & Mitomycin C 18 4

Etoposide & Mitomycin C 19 3

Etoposide & Trichostatin A 20 11

H-7 & Rapamycin 21 27

Cycloheximide & Monastrol 22 12

Etoposide & Rapamycin 23 83

Doxorubicin & Trichostatin A 24 8

Cycloheximide & Etoposide 25 69

Doxorubicin & Rapamycin 26 87

Blebbistatin & Rapamycin 27 57

Camptothecin & Monastrol 28 67

Blebbistatin & H-7 29 7

Methotrexate & Trichostatin A 30 55

Geldanamycin & Trichostatin A 31 58

Etoposide & Methotrexate 32 76

Geldanamycin & Monastrol 33 75

Doxorubicin & H-7 34 1

Etoposide & H-7 35 6

Mitomycin C & Trichostatin A 36 13

Aclacinomycin A & H-7 37 26

Etoposide & Monastrol 38 90

Geldanamycin & Vincristine 39 29

Blebbistatin & Cycloheximide 40 85

Cycloheximide & Mitomycin C 41 17

Methotrexate & Mitomycin C 42 28

H-7 & Mitomycin C 43 2

H-7 & Monastrol 44 14

Aclacinomycin A & Geldanamycin 45 61

Cycloheximide & Methotrexate 46 64

H-7 & Vincristine 47 43

Blebbistatin & Monastrol 48 21

Aclacinomycin A & Vincristine 49 49

Rapamycin & Vincristine 50 42

Methotrexate & Monastrol 51 35

Aclacinomycin A & Rapamycin 52 65

Table 1. cont.

Drug combination Rank

Observed

ranking

(gold standard)

Blebbistatin & Doxorubicin 53 72

Doxorubicin & Methotrexate 54 73

Cycloheximide & Doxorubicin 55 68

Doxorubicin & Monastrol 56 91

Cycloheximide & Geldanamycin 57 81

Cycloheximide & Vincristine 58 38

Aclacinomycin A & Doxorubicin 59 53

Blebbistatin & Geldanamycin 60 39

Doxorubicin & Geldanamycin 61 46

Blebbistatin & Camptothecin 62 88

Blebbistatin & Trichostatin A 63 80

Blebbistatin & Methotrexate 64 52

Aclacinomycin A & Blebbistatin 65 74

Blebbistatin & Vincristine 66 30

Mitomycin C & Rapamycin 67 66

Blebbistatin & Mitomycin C 68 34

Aclacinomycin A & Camptothecin 69 86

Monastrol & Vincristine 70 20

Mitomycin C & Monastrol 71 82

Trichostatin A & Vincristine 72 50

Blebbistatin & Etoposide 73 79

Aclacinomycin A & Mitomycin C 74 22

Doxorubicin & Vincristine 75 41

Methotrexate & Vincristine 76 25

Aclacinomycin A & Methotrexate 77 77

Mitomycin C & Vincristine 78 70

Aclacinomycin A & Etoposide 79 45

Aclacinomycin A & Monastrol 80 23

Aclacinomycin A & Cycloheximide 81 33

Etoposide & Vincristine 82 32

Geldanamycin & Mitomycin C 83 63

Camptothecin & Vincristine 84 51

Etoposide & Geldanamycin 85 44

Aclacinomycin A & Trichostatin A 86 84

Methotrexate & Rapamycin 87 40

Geldanamycin & Methotrexate 88 54

H-7 & Methotrexate 89 36

Camptothecin & Geldanamycin 90 71

Camptothecin & Rapamycin 91 89

Compound pair with additive

activity (IC36)

Trichostatin A &

Vincristine

Ranking is from most synergistic to most antagonistic. Trichostatin A & vin-

cristine showed a purely additive effect.
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METHODS
Cell culture, drug treatment, and gene expression
profiling
The diffuse large B-cell lymphoma (DLBCL) cell line was
obtained from the University Health Network (Toronto, Can-
ada) and was cultured under standard conditions (37�C in
humidified atmosphere, with 5% CO2) in Iscove’s modified

Dulbecco’s medium (IMDM) supplemented with 10% fetal
calf serum (FCS). Each drug was titrated in the OCI-LY3
cell line in a 20-point titration curve. Cell viability following
drug treatment was determined using the CellTiter-Glo
(Promega, Madison, WI). An IC20 value for each drug was
calculated using Dose Response Fit and Calculate ECx
(epirubicin, cisplatin, and Xeloda) components from the

Table 2 Concordance between drug combinatory effect in experiment and the concordance ratio

Data sets Cancer type Drug combination

Drug interaction

affection in biology

experience

Differential expressed

genes by the

combinatory effect

of two drugs (A)

The genes number

of the same variation

direction (B)

Concordance

ratio (C)

GSE45587 Neuroblastoma All-trans retinoic

acid & valproic acid

The treatment of valproic

acid is augmented by

all-trans retinoic acid

(Additive)

6965 3212 0.46

GSE11550 Melanoma Elesclomol & paclitaxel Drug combination has

significant effect in

cancer (Additive)

5578 1903 0.34

GSE43452 Glioblastoma Temozolomide &

Y.15 (FAK inhibitor)

Combination can

significantly reduce

tumor growth

(Additive)

6479 3249 0.50

GSE33366 Breast cancer Tamoxifen & BMS754807 Synergy 5191 2664 0.51

GSE33366 Breast cancer Letrozole & BMS754807 Synergy 3440 1843 0.54

GSE6914 Nonsmall cell

lung cancer

Bexarotene & gemcitabine Resensitized

(Sysnergy)

4587 3368 0.73

Figure 5 The scoring scheme of the drug combination effect based on analyzing gene expression data. The score formula and a spe-
cific calculation processing of Drug A and Drug B at high IC20 in 24 hours is given.
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Pipeline Pilot Plate Data Analytics collection. For drugs for
which more than 20% viability reduction could not be
reached, a default concentration of 100 lM was used. For
generation of gene expression profiles, the OCI-LY3 cells
were seeded in tissue culture-treated 96-well plates at a
density of 50,000 cells per well (100 lL) and treated at the
IC20 concentrations of each of the drugs at 24 and 48
hours. In the assay, three timepoints (6, 12, and 24 hours)
were analyzed for gene expression profiling. All profiles
were generated in triplicate biological replicates except
DMSO-treated samples, which were hybridized in octupli-
cate since they were used as internal controls for each
timepoint. To confirm viability data at each step, identical
plates were produced and cell viability assessed using the
CellTiter-Glo reagent (Promega). Total RNA was isolated
with the Janus automated liquid handling system (Perkin
Elmer, Boston, MA) using the RNAqueous-96 Automated
Kit (Ambion, Austin, TX), quantified by a NanoDrop 6000
spectrophotometer and quality checked with an Agilent Bio-
analyzer. 300 ng of each of the samples with RIN value >7
were converted to biotinylated cRNA with the Illumina
TotalPrep-96 RNA Amplification Kit (Ambion) using a stand-
ard T7-based amplification protocol and hybridized on the
Human Genome U219 96-Array Plate (Affymetrix, Santa
Clara, CA). Hybridization, washing, staining, and scanning
of the array plates were performed on the GeneTitan instru-
ment (Affymetrix) according to the manufacturer’s protocols.
The drugs for which IC20 values were reported includes
aclacinomycin A, camptothecin, doxorubicin hydrochahlor-
ide, geldanamycin, trichostatin A, etoposide, H-7 dihydro-
chloride, mitomycin C, and rapamycin. For blebbistatin,
cycloheximide, methotrexate, monastrol, and vincristine,
IC20 values were not reported. All of the detailed informa-
tion has been provided by the DREAM project.18,19

Experimental determination of synergy
For each drug, IC20 was determined (as described above)
at 60 hours following drug treatment by measuring cell via-
bility and generating a dose–response curve. Each drug
combination was then tested at the respective IC20 (or 100
lM) concentration of the individual drugs in five replicates.
All drugs and combinations are diluted in DMSO, with a
final DMSO concentration of 0.4%. Cells were placed at a
density of 2,000 cells per well in 384-well plates and drugs
were added at 12-hour intervals after seeding by drug
transfers of serially diluted drugs. Assay plates were then
incubated for 60 hours followed by addition of 25 lL of
CellTiter-Glo (Promega) at room temperature. Plates were
read on Envision (Perkin Elmer) using an enhanced lumi-
nescence protocol.

Data available for drug interaction prediction and
validation
The experimental data were generated by the NCI-
nominated lab, and each competition team receives the
data and conducts the computation. The single drug treated
and untreated gene expression data at 6, 12, and 24 hours
were used. Only 9 out of 14 drug dose-responsive curves
are used for developing the drug combinatory synergy pre-
dictive model. Among these nine drugs, five drugs are

highly sensitive (IC20 <1 lM), and the other four are not
sensitive (IC20 >10 lM). The predictive performance is
then compared to the observed drug interaction data meas-
ured by the Excess over Bliss (called eob, see the following
description).

Gene expression-based drug combinational effect
model
Drug-induced differential gene expression. All gene
expression samples were normalized with the Robust Mul-
tichip Averaging (RMA) normalization method using the
Bioconductor package in R.26 At each timepoint of drug
treatment, differential gene expression analysis was con-
ducted between treated samples and DMSO samples. The
analysis of variance method (ANOVA) was used to ana-
lyze the differences between group means and their asso-
ciated procedures (such as "variation" among and
between groups). It is useful in comparing (testing) two or
more means (groups or variables) for statistical signifi-
cance. Here the differentially expressed gene probe selec-
tion was selected by ANOVA statistical analyses between
DMSO and drug treatment samples (using the ANOVA
function in R), with P < 0.05 regarded as the significant
threshold.

Core gene set selection. To test our hypothesis correc-
tion, four schemes of core gene set selection were selected
(Figure 3). Differentially expressed genes for all drugs
were identified by comparing their drug treatment samples
with control (DMSO) samples. All differentially expressed
gene probe with a significant P value (P � 0.05) were com-
bined in each IC20 at 24 hours after drug treatment. The
first scheme simply selects all the probes (Figure 3a). The
second scheme selects only the sensitive probes derived
from the union of all the differentially expressed gene
probes from five low IC20 drugs (Figure 3b). The third
scheme selects the sensitive probes to five low IC20 drugs,
but not the nonsensitive probes. The nonsensitive probes
are derived from the union of all the differentially expressed
gene probes from the four high IC20 drugs (Figure 3c). The
second and third schemes are used in determining which
probes can be kept as different sets used in determining
synergism. The fourth scheme only selected the drug tar-
geted gene probes reported in MetaDrug (Figure 3d). The
drug targets are reported in Supplementary Table 1.

The drug interaction score is constructed based on a
scoring scheme presented in Figure 5. The denominator of
the score is the number of core gene probes. The core
gene selection follows the previous point. Then the synergy
score between two drugs is the number of gene probes
that are consistently up- or downregulated (i.e., showing
the same direction of gene expression change) after the
drug treatment. The antagonism score is calculated as the
number of the genes showing the reversed regulation direc-
tion. The drug interaction score is the synergistic score
minus the antagonism score normalized by the number of
core gene probes. In Figure 5, a specific calculated exam-
ple for the score of Drug A and Drug B is shown in IC20 24
hours. The probe changing direction in Drug A or Drug B is
decided by the ANOVA statistical analyses result between
the DMSO group and the drug treatment group.
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Excess over Bliss as a measurement for synergy
The Bliss additivism (or Bliss independence) model27 pre-
dicts that if the i-th pair drug Dx and Dy , with experimentally
measured fractional inhibitions fx and fy , have an additive
effect, then the expected fractional inhibition, fixy , induced
by their combination should be:

fixy 512ð12fxÞ3ð12fy Þ5fx 1fy 2fx 3fy

Here the IC is 20%, fx 5fy 50:2, fixy 50:36. Excess over
Bliss is determined by computing the difference in fractional
inhibition induced by its observed value of Drug A and
Drug B combination fiAB and expected fractional inhibition fixy

eob 5 fiAB2fixy

fiAB is a ratio with the observed cell viability after drug com-
bination treatment in time 60 hours to the ones of before
single drug treatment plus. When the drug pair for � 0, it
has an additive behavior, whereas the drug pair with posi-
tive (or negative) eob values has synergistic (or antagonis-
tic) behavior. In fact, here the propagation of errors using
the standard error mean of fractional inhibitions is used to
compute the standard error of the mean eob.

Scoring using probabilistic concordance index
In order to calculate the concordance between predicted
and observed ranks of drug-pairs, a concordance index
(c-index) is designed to compute the proportion of concord-
ance between them to quantify the quality of ranking of all

predictions. To compute the c-index, we first rank the
observed drug pairs fo1; o2 . . . omg and the predicted drug
pairs fp1; p2; . . . pmg from most synergistic to most antago-
nistic for each of the possible pairwise combinations. A
score sij is computed as follows:

sij 5

1; if ðoi > oj & pi > pj or oi < oj & pi < pjÞ

0; if ðoi > oj & pi < pj or oi < oj & pi > pjÞ
1
2
; otherwise

8>>><
>>>:

and define the concordance index as

c2index5
2

mðm21Þ

Xm-1

i51

Xm

j5i11

sij

Where m is the number of drug pairs, in DREAM7-4-2
problem, 14 drugs have m 5 91 pairs. Quantification using
the c-index assumes that there is no ambiguity in the
observed rankings, and therefore both the prize and penalty
for concordance and discordance is extreme. The above
design method is for a specific discrete event. When it
becomes a continual description in large events, the
concordance index expectation can be expressed by the
following formula spij ; we called it the probabilistic
concordance-index (PC-index) to measure the concordance
between the observed and the predicted in large events.

spij 5

1
2

11erf
eobi2eobjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sem2
eobi

1sem2
eobj

q
0
B@

1
CA

0
B@

1
CA; if

oi > oj pi > pj

or oi < oj pi < pj

0
@

1
A

1
2

12erf
eobi2eobjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sem2
eobi

1sem2
eobj

q
0
B@

1
CA

0
B@

1
CA; if

oi > oj pi < pj

or oi < oj pi > pj

0
@

1
A

1
2
; otherwise

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

where erf’ is an error function defined as erf ðxÞ5 2ffiffi
p
p

ðx

0

e2t2
dt ;

eob is excess over Bliss, sem is the standard error of the mean
excess over Bliss. The probabilistic concordance (PC) index is
thus defined as:

PC2index5
2

m3ðm21Þ

X
i51 . . . m

j5i11 . . . m

spij

For a specific event, when the predicted and the observed
list of drug pairs are entirely concordant, the c-index can
reach a maximum score of 1. But due to noise in the large
data, the PC-index is less than 1, even for the average
experimentally measured eob in practice. In our study, all of

the challenge results and other test results find that the
maximum PC2index (PCmax) is 0.90. The minimum
PC2index (PCmin) corresponds to a prediction with exactly
the opposite order compared to the average experimentally
measured eob. Note that PCmin512PCmax. Hence, the nor-
malized PC2index is defined as:

PC2indexnorm5
PC2index2PCmin

PCmax 2PCmin

Drug interaction data from GEO
We identified five datasets from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). Their accession numbers are
GSE45587, GSE11550, GSE43452, GSE33366, and
GSE6914. These five datasets contain six drug interaction
pairs (Supplement DataGEO.doc).
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Acronyms

Abbreviation Definition

CASP critical assessment of structure prediction

c-index concordance index

DDI drug–drug interaction

DLBCL diffuse large B-cell lymphoma

DMSO dimethyl sulfoxide

DREAM dialogue on reverse engineering assessment and methods

ECx epirubicin, cisplatin and xeloda

eob excess over bliss

FCS fetal calf serum

IC inhibitory concentration

IMDM Iscove’s modified Dulbecco’s medium

PC-index probability concordance index

PCs principal components

PCA principal component analysis

RMA robust multichip averaging

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THIS
TOPIC?

� It is known that many cancers develop resistance to treat-
ment involving one drug alone. Drug combination therapy
can actually become synergistic in their killing power,
resulting in a smaller amount of drugs needed for suc-
cessful treatment.

WHAT QUESTION DID THIS STUDY ADDRESS?

� What is the best way to predict drug interaction on a spe-
cific cell line? Using gene expression data before and
after treatment of individual drugs and their IC20 values, it
is possible to predict the synergistic power of drug–drug
combinations with relatively high accuracy.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

� Gene expression data seems to be one of the most impor-
tant features in predicting DDI. Our core gene selection
and gene expression-based synergy score performs well
in predicting the drug combinatory synergy.

HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS

� The development of treatments for individuals can be made
more effective by utilizing the gene expression data of
biopsies of the patient’s tumor response shortly after indi-
vidual drug exposures.
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