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Prevention of bone fractures is one goal of therapy for patients with chronic kidney disease-mineral and bone disorder (CKD-
MBD), as indicated by theKidneyDisease: ImprovingGlobalOutcomes guidelines. CKDpatients, including those on hemodialysis,
are at higher risk for fractures and fracture-related death compared to people with normal kidney function. However, few clinicians
focus on this issue as it is very difficult to estimate bone fragility. Additionally, uremia-related bone fragility has a more complicated
pathological process compared to osteoporosis.There aremany uremia-associated factors that contribute to bone fragility, including
severe secondary hyperparathyroidism, skeletal resistance to parathyroid hormone, and bonemineralization disorders. Uremia also
aggravates bone volume loss, disarranges microarchitecture, and increases the deterioration of material properties of bone through
abnormal bone cells or excess oxidative stress. In this review, we outline the prevalence of fractures, the interaction of CKD-MBD
with osteoporosis in CKD patients, and discuss possible factors that exacerbate the mechanical properties of bone.

1. Introduction

Elderly people are susceptible to diseases such as hyperten-
sion, diabetes mellitus, and chronic obstructive pulmonary
disease. Osteoporosis and chronic kidney disease (CKD) are
also common, and the prevalence of these diseases is increas-
ing globally, in part due to the increasing aging population.
Osteoporosis under uremic conditions and management of
the disease have not been widely studied. The prevalence
and risk of fractures are higher in CKD patients compared
to healthy people. Patients on dialysis, in particular, have
an approximately fourfold greater risk for hip fractures than
sex- and age-matched individuals in the general population
[1, 2]. Their fracture risk correlates positively with age,
duration of dialysis, high or low parathyroid hormone (PTH)
level, female gender, low body mass index, and presence of
peripheral vascular calcification. Several studies report that
nondialysis patients aged over 50 with estimated glomerular
filtration rate (eGFR) below 60mL/min/1.73m2 also have a
twofold greater risk for hip fractures than individuals without
CKD [3–7]. A hip fracture critically limits activities of daily

living and increases fracture-related mortality [8–10], and
this trend ismore evident in dialysis patients [11, 12]. Japanese
dialysis patients, however, have relatively better prognosis
with regard to survival after a hip fracture [13]. A tool called
FRAX� that can predict fracture risk appears to be useful
for predicting death among Japanese hemodialysis patients
[14]. Even though it remains unclear why FRAXwas useful to
predict mortality in Japanese dialysis patients, elucidation of
the pathogenesis of decreased bone strength and treatment
of fractures in patients with CKD are important to improve
survival and the quality of life in this patient population. In
this review,we describe the current status of fragility fractures
and their treatments in CKD patients.

2. Risk Factors of Fragility Fractures in
CKD Patients

Clinicians and researchers agree that risk factors for fractures
in CKD are complicated because patients have many abnor-
malities that may increase fracture incidence. Advanced
muscle weakness [15], frailty [16], and deteriorated cognitive
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Table 1: Components of bone quality.

Structural properties Material properties
Analytical method Parameter Analytical method Parameter

Bone histomorphometry

Trabecular number Bone histomorphometry Mineralization
Trabecular thickness

Trabecular connectivity FTIR, Raman Relative mineralization
Cortical thickness Collagen crosslinking ration

Crystal size, purity, perfection

MicroCT, pQCT, HR-pQCT

Cortical thickness HPLC Collagen crosslinking type
Cortical porosity
Trabecular number Back scattered electron imaging Mineral density distribution
Trabecular thickness

Trabecular connectivity EDX Elemental analysis
Bone histomorphometry, CMS Microdamage length, density X-ray diffraction Apatite orientation
Micro-CT, microcomputed tomography; pQCT, peripheral quantitative computed tomography; HR-pQCT, high-resolution peripheral quantitative computed
tomography; CMS, contact microradiograph; FTIR, Fourier transform infrared spectroscopy; HPLC, high-performance liquid chromatography; EDX, energy-
dispersive X-ray spectroscopy.

function [17] are potential contributors to increased risk for
falling among CKD patients. Falls are especially common
in older CKD patients [18]. Lack of exposure to sunlight,
which contributes to muscle strength, may be a risk factor,
because the risk for hip fractures tends to be higher in high-
latitude regions of the United States [19]. Despite the high
prevalence of hip fractures, clinical studies have failed to
elucidate why falling affects the risk for hip fractures but
not fractures of other parts of the body such as vertebrae
and wrist. In addition, CKD patients also have deteriorated
mineral metabolism.

3. Definitions of CKD-MBD, Renal
Osteodystrophy, and Osteoporosis

The three key bone lesions accompanying CKD are CKD-
mineral bone disorder (CKD-MBD), renal osteodystrophy,
and osteoporosis, but their definitions are often ambiguous.
CKD-MBD is a syndrome defined by the Kidney Disease:
Improving Global Outcomes (KDIGO) guidelines as a sys-
temic mineral metabolic disorder associated with CKD,
which could result in disorders of bone metabolism and/or
the cardiovascular system [20]. CKD-MBD consists of three
components; abnormalities of calcium, phosphorus, PTH,
and vitamin D metabolism; abnormalities in bone turnover,
mineralization, volume, and strength; and soft tissue cal-
cification including vascular calcification. This disease may
manifest one component or any combination of the three.
According to this definition, “renal osteodystrophy” indicates
bone morphologic changes in patients with CKD and is one
measure of the skeletal disorder component of CKD-MBD.

Bone lesions accompanying renal dysfunction are symp-
toms of CKD-MBD, but worsening of mechanical bone
strength is not typically mentioned. Impairment of mechan-
ical properties of bone comes under the term “osteoporosis,”
as defined by the National Institute of Health. This patho-
physiology is characterized by compromised bone strength
predisposing a person to increased risk of fractures [21].
In this definition, bone strength is a composite of bone
mass and bone quality. Bone mass is a strong determinant

of bone strength and is useful as a diagnostic tool for
osteoporosis in people with extremely low bone mass. As
there are no other tools to predict and/or monitor bone
strength in clinical practice, bone mass measurement is
considered the most informative and useful tool available to
diagnosis osteoporosis. Bone mass, however, is not the only
determining factor. Other factors affecting bone mechanical
strength include “bone quality.” Bone quality is used to
describe the ability of bone to perform mechanical load-
bearing functions. This definition includes all characteristics
that influence the load-bearing capacity, including bone
microarchitecture and material properties [22, 23], Table 1.

A question often arises as towhich plays amore important
role in bone mechanical strength, bone mass or bone quality.
However, the contribution of each of the two parameters
remains unclear, because several cohort studies suggest that
one-half of all fragility fractures are observed in post-
menopausal womenwith aT-score above−2.5 SD, the thresh-
old for diagnosing osteoporosis defined by the World Health
Organization [24–26]. Additionally, postmenopausal women
with fragility fractures had poor bone microarchitecture and
alteredmaterial properties, which influence bonemechanical
properties [27–29]. Therefore, bone mass measurement is
strictly not the standardmethod for diagnosing osteoporosis.

With the progression of renal function impairment,
fracture risk is remarkably high in CKD. While we suspect
that osteoporosis may underlie the increased risk of fracture
in CKD, the mechanism may differ from that of primary
osteoporosis characterized by marked reduction in bone
mass. It is also unclear whether osteoporosis (bone fragility)
associated with CKD is derived from CKD-MBD or factors
other than CKD-MBD.

4. Possible Factors Related to Weakening of
Bone Strength

Both clinical and preclinical studies suggest that loss of bone
strength in CKD patients has two possible components, loss
of bone mass and deterioration of bone quality. The KDIGO
guidelines published in 2009 do not recommend routine
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Table 2: Molecular abnormalities that affect bone loss and bone quality.

Category Factor Loss of bone mass Deterioration of bone quality

Humoral factors

PTH Activating bone resorption and modulating
bone turnover [42, 43, 46–50] Modulating microarchitecture [41]

FGF23 Inhibiting bone formation [64] Inhibiting mineralization [65]
Sclerostin Inhibiting bone formation [66–68, 70, 71, 75] Inhibiting mineralization [71]

Modulating material property [74]
Vitamin D Inhibiting bone formation [76, 77] Inhibiting mineralization [76]

Uremia-specific Uremic toxins and
advanced oxidative stress Modulating bone turnover [92–97] Modulating material property

[51, 83–88]

Bone aspects Microcrack accumulation,
osteocytes apoptosis Modulating material property [101–103]

Numerals are reference numbers.

bone mineral density (BMD) testing because BMD does not
predict fracture risk in patients with kidney disease as it
does in the general population [30]. However, a recent meta-
analysis reveals that BMD is significantly lower in predialysis
patients with fracture compared to those without [31]. A
prospective study has shown that BMDmeasured by dual X-
ray absorptiometry (DXA) predicts incident fracture in stages
3–5 CKD patients, and the prediction ability is comparable to
that using high-resolution peripheral quantitative computed
tomography [32]. Furthermore, two studies have reported the
assessment of BMD using DXA to predict fractures in CKD
patients including those on hemodialysis [33, 34]. Therefore,
BMDmeasured by DXA may be useful to assess loss of bone
mass or fracture risk. On the other hand, cortical bone loss
that increases in advanced stage of CKD is not well depicted
by DXA. Therefore, DXA still has limited clinical utility in
advanced stage of CKD. More attention should be paid to
other factors affecting bone strength. Factors contributing
to bone strength comprising bone loss and bone quality are
discussed below and summarized in Table 2.

5. Humoral Factors Related to
Mineral Metabolism

Progressive changes in serum biochemical parameters such
as phosphorus, PTH, 1,25(OH)

2
vitamin D

3
, and fibroblast

growth factor 23 (FGF23) levels indicate CKD-related distur-
bances of mineral and endocrine factors [35, 36]. Increased
PTH levels powerfully impact bone mechanical properties,
because PTH modifies the activities of bone cells, which
regulate bone turnover leading to altered bone mass. PTH
stimulates the osteoclastic resorption and remodeling speed,
thereby increasing bone turnover. Reduction in cortical BMD
and thickness together with increase in cortical porosity
assessed by DXA or high-resolution peripheral quantitated
tomography (HR-pQCT) have been reported to result in
increased bone fragility [37–40]. In stable dialysis patients,
Kazama et al. [41] showed that circulating PTH level cor-
relates inversely with cortical porosity but not with can-
cellous bone volume assessed by bone histomorphometry.
Parathyroidectomy in patients on maintenance hemodialysis
reduced fracture risk [42]. Additionally, elevated serum
alkaline phosphatase due to excessive PTH secretion is
associated with higher risk of hip fracture [43]. However,

contradicting results on the relationship between PTH level
and structure-related bone strength have also been reported
[44, 45]. Moreover, medical and surgical treatments for
severe hyperactive parathyroid function have progressed, and
moderate hyperparathyroidism is unlikely to be a major risk
factor for skeletal fragility.

Disturbed bone remodeling (marked decreases in both
bone resorption and bone formation) caused by suppressed
PTH secretion or skeletal resistance to the action of PTH
under uremic condition exits in low-turnover bone lesions
in CKD [46–48]. This condition is called “adynamic bone,”
and is an increasingly common occurrence [49, 50]. Ady-
namic bone constitutes 50% of all CKD-MBD in patients
on peritoneal dialysis and 19% in patients on hemodialysis
[30]. Several clinical and animal studies have suggested an
increased fracture risk in adynamic bone disease [51–54].

To summarize, the relationship between fracture risk
and PTH level, which alters bone remodeling and bone
microstructure, remains controversial. Regardless of high or
low PTH level, it is currently difficult to predict fracture risk
by PTH level.

FGF23 is derived from osteocytes and is an endocrine
hormone that regulates phosphate metabolism. FGF23 stim-
ulates urinary phosphate excretion, suppresses absorption in
the gut, and accelerates degradation of 1,25(OH)

2
vitamin D

3

in response to a high phosphate diet or a state of impaired
phosphate excretion as seen in CKD. FGF23 level is elevated
prior to changes in phosphate, 1,25(OH)

2
vitamin D

3
, and

PTH levels accompanying decline in GFR [55–57]. While
some studies reported an association between elevated FGF23
secondary to early CKD and risk of fracture in elderly
men with decreased eGFR [58–60], other reports found no
significant relationship [61, 62]. Isakova et al. [63] analyzed
2234 subjects and reported that FGF23 level was not asso-
ciated with bone loss or fracture risk in a community-based
population of well-functioning older adults. A recent report
found that elevated FGF23 induced by high phosphorus diet
increased the expression of secreted frizzled-related protein 4
and Diccopf-1, which areWnt signal inhibitors, and inhibited
the Wnt signal pathway [64]. Another report showed that
FGF23 also had a physiological role in local bone mineral-
ization, regulating osteopontin indirectly through transcrip-
tional control of tissue nonspecific alkaline phosphatase in
a vitamin D- and klotho-independent manner [65]. These
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reports suggest that high FGF23 levelmay affect bone fragility
by decreasing mineralization through inhibition of the Wnt
pathway.

Sclerostin is a Wnt pathway inhibitor secreted by
osteocytes. The canonical Wnt/𝛽-catenin signaling pathway
directly affects osteoblast differentiation, proliferation, sur-
vival, and bone formation. Sclerostin antagonizes Wnt sig-
naling and inactivates the pathway. The relationship between
sclerostin and fracture risk is not consistent among studies
[66–69]. Serum sclerostin is high in early CKD and is
maintained at a high level in the advanced stages [70–73].
In an animal study, higher serum phosphate concentration
derived from a high phosphorus diet was found to elevate
sclerostin expression despite increased osteocyte apoptosis
[74]. Combination therapy of anti-sclerostin antibody with
PTH-suppressive agent was effective in improving bonemass
and mechanical properties [75]. It is possible that a high scle-
rostin level is an aggravating factor of bone fragility.

Vitamin D [25(OH)D
3
and 1,25(OH)

2
D

3
] deficiency

and altered vitamin D metabolism occur in CKD patients.
Because vitamin D is required for normal bone formation
and mineralization, 25(OH)D

3
deficiency (<15 nmoL) is

associated with less bone formation and mineralization in
trabecular bone [76]. A lower vitamin D status is associated
with increased fracture incidence and risk [77–80]. Recently,
Murali et al. [65] showed that 1,25(OH)

2
D

3
inhibits local

mineralization by augmenting the expression of the inhibitor
osteopontin. To elucidate the involvement of 1,25(OH)

2
D

3

in bone mineralization in CKD, further in vivo and in vitro
experiments are required.

An increased incidence of bone fragility was observed in
CKD irrespective of variations in PTH, 1,25(OH)

2
D

3
, FGF23,

and sclerostin levels that reflect disturbances of mineral and
endocrine metabolism. Factors other than CKD-MBDwhich
may aggravate weakening of bone mechanical properties in
CKD patients should be considered.

6. Uremic Conditions Deteriorate Bone
Material Properties

Bone is composed of two organic materials, type I colla-
gen and hydroxyapatite. The number of collagen crosslinks
formed by both enzyme-induced and non-enzyme-induced
processes as well as tissue mineral content (density) confer
bone elasticity and strength. Various abnormalities in bone
material properties are found in CKD patients.

The chemical composition of bone can be analyzed by
vibrational spectroscopic methods such as Fourier transform
infrared or Raman spectroscopy [81, 82]. These methods
provide data on mineral parameters including the mineral-
to-matrix ratio (indicating the degree of mineral apposition),
the degree of carbonate substituting for phosphate in the
apatite lattice, and crystallinity (representing the mineral
crystal size and perfection). Additionally, collagen maturity
can be obtained by calculating the ratio of mature crosslinks
to immature crosslinks. Alterations of these parameters in the
bones have been reported in animal models of CKD [51, 83–
85] and bone biopsy samples from hemodialysis patients
[86, 87].

Nonphysiological collagen crosslinks formed by the
actions of advanced glycation end-products are modified
crosslinks and are found in increased numbers in bone biopsy
samples from dialysis patients [88] and animal models of
CKD [51, 83–85]. Immunostaining analysis of bones in a
rat model of CKD also demonstrated increase in crosslinks
modified by advanced glycation end-products and reduced
lysyl oxidase protein, an enzyme required for generating
physiological collagen crosslinks [89]. The degree of biologi-
cal bone apatite orientation, which is related to bone elasticity,
was assessed by X-ray diffraction [90] and was found to
be exacerbated in a rat model of early kidney injury [84].
Interestingly, in experimental uremic animals, these changes
were complicated by the progression of renal dysfunction
[51], and some changes were independent of bone turnover
[84]. The changes were reduced by administration of AST-
120, an oral charcoal adsorbent of uremic toxins [83]. AST-120
did not change mineral metabolism. Therefore, the uremic
condition may modify the material properties directly.

Uremic conditions are known to create an excess oxida-
tive stress environment [91]. Uremic condition or a specific
uremic toxin inhibits osteoblasts [92–96] and osteoclasts
[97]. Although whether the material properties are altered
in CKD patients with fragile bone has not been confirmed,
uremia-related osteoporosis causing bone fragility should
exist in CKD.

7. Microcracks and Osteocyte Apoptosis

Because one of the purposes of bone remodeling is to repair
microdamage that occurs in bone from daily mechanical
stress, suppression or absence of remodeling will result in
accumulation of microdamage. Excessive accumulation of
microdamage can cause fragility fractures. Although there are
no reports that indicate impairedmicrodamage repair in low-
turnover bone associated with CKD, findings that suppressed
bone turnover increases fragility and fracture risk suggest
accumulation of microdamage [98–100].

The rates of osteocyte apoptosis and reduced density are
higher in fractured bone than in normal bone [101–103].
Empty lacunae (absence of osteocytes in lacunae) are found
in renal osteodystrophy. PTH fragment, especially the c-
terminal PTH fragment, increases osteocyte apoptosis [104].
The c-terminal PTH fragment is accumulated in CKD, and
the amount increases depending on renal insufficiency [105].
From these findings, increased osteocyte apoptosis appears to
be associated with fragility fractures in CKD patients.

To summarize, bone fragility in CKD is probably caused
by loss of bone mass and deterioration of bone quality
through changes in blood levels of humoral factors and the
presence of uremic toxins (Figure 1).

8. Pharmacological Therapeutics for Bone
Fractures in CKD Patients

In the general population, pharmacotherapy is the mainstay
ofmanagement for osteoporosis. Patientswith primary osteo-
porosis are treated with different types of drugs. Guidelines
for primary osteoporosis recommend antiresorptive drugs
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(i) Formation/resorption disorders
(ii) Skeletal resistance to PTH
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Figure 1: Possible factors involved in bone fragility. Both mineral metabolism disorders and uremic condition induce bone fragility. The
detailed mechanisms and interactions are described in the text. Gray-shaded boxes indicate the phenomena induced by mineral metabolism
disorders. Detailed descriptions of components of bone quality are shown in Table 1. Pi, phosphorus; Ca, calcium; FGF23, fibroblast growth
factor 23; conc, concentration.

(bisphosphonates, antagonists of osteoclasts, and selective
estrogen receptor modulators) and stimulators of bone for-
mation (teriparatide) as well as active vitamin D and calcium
supplementation. However, these drugs present problems for
CKD patients, because some are excreted via the kidneys.
TheKDIGOguidelines [30] indicate that extrapolating results
from studies of osteoporosis in general population to patients
with CKD stages 3–5D may not be valid, with concerns over
long-term safety because the pathogenesis differs between
primary osteoporosis and CKD-MBD-related osteoporosis.
On the other hand, due to the increases in osteoporosis and
CKD with advancing age and the proven safety profile of
osteoporotic agents, theKDIGOguidelines approve the use of
these agents in early CKD patients with high risk of fracture,
including patients with osteoporosis and CKD stages 1-2.
Potential treatments with antiosteoporotic agents in different
CKD stages are summarized in Table 3. Additional informa-
tion for some agents will be discussed in detail below.

Although bisphosphonates have become a standard treat-
ment for osteoporosis, bisphosphonates should not be used
in patients with stages 4-5 CKD because these drugs are
excreted by the kidney.The accumulation of bisphosphonates
in bone also needs to be considered. Ott [106] reported
the accumulation of bisphosphonate in the bone of dialysis

patients treated with these agents. The use of bisphosphonate
in dialysis is a growing concern, as there is the possibility
of causing “frozen bone” with extremely low bone turnover.
Bisphosphonate exposure over a 5.5-year periodwas reported
to aggravate bone viscoelasticity andprovoke atypical femoral
fractures [107]. This phenomenon may be a consequence
of reduced heterogeneity of material properties through
suppressed bone turnover [108]. Use of bisphosphonates
may increase the fracture risk through exacerbation of bone
mechanical properties and increase atypical fractures [109–
111]. Since the degree of bisphosphonate accumulation and
the efficacy of bisphosphonates both depend on their affinity
to hydroxyapatite, existing data suggest treatment durations
of up to 5 years with alendronate, 3 years with zoledronate,
and 1 year with risedronate, although the optimal length
of a “drug holiday” has not been established [112]. If it is
necessary to use bisphosphonates for the management of
severe osteoporosis in patients with CKD, bisphosphonates
that have low affinity to hydroxyapatite crystals, such as
risedronate and ibandronate, should be chosen.

Denosumab, a human monoclonal antibody for the
receptor activator of nuclear factor-kappa B, does not accu-
mulate in the body because its point of action is limited.
Its efficacy in CKD is expected to be the same as that in
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Table 3: Pharmacotherapies for osteoporosis according to stage of chronic kidney disease (CKD).

Agents CKD stage ≤ 3 without biochemical abnormalities CKD stage > 3 with biochemical abnormalities Dialysis (stage 5D)
Alendronate + − +
Risedronate + − −

Etidronate − − −

Ibandronate + + +
Minodronate + + +
Denosumab + + +
Raloxifene + + +
Teriparatide + + +
+: use with caution; −: avoid use.

primary osteoporosis. A previous study reported that the
efficacy of denosumab, which increases BMD and suppresses
fractures, did not differ depending on kidney function
[113]. Another study reported that denosumab significantly
increased BMD of the lumber spine and femoral neck in
hemodialysis patients, although the sample size was small
[114]. Denosumab may induce hypocalcemia through strong
suppression of bone resorption, which tends to be amplified
in CKD patients [115]. Denosumab should be prescribed with
active vitamin D to regulate the calcium balance.

Raloxifene, a selective estrogen receptor modulator
improved BMD in postmenopausal women with CKD, and
greater increases in BMD were associated with lower crea-
tinine clearance [116]. In another study, patients on ralox-
ifene showed slower progression of kidney disorders and
significantly fewer kidney-related adverse events compared
to the placebo group [117]. However, reduced serum calcium
concentration and increased PTH secretion were reported.

Teriparatide is a recombinant protein of PTH (1–34)
and an anabolic agent for the treatment of postmenopausal
osteoporosis. Although teriparatide should be used with cau-
tion in osteoporotic patients with CKD due to higher blood
PTH level in secondary hyperparathyroidism associated with
CKD, intermittent PTH administration can be used to induce
an anabolic effect on bone in CKD. Some studies have
reported that teriparatide treatment increases BMD [118–120]
and ameliorates bone turnover [120]. Subjects of these studies
showed decreased endogenous PTHconcentration compared
to appropriate controls. The effect of teriparatide treatment
on CKDpatients with normal or slightly higher PTH remains
unknown.

Anti-sclerostin monoclonal humanized antibodies such
as romosozumab and blosozumab, a new class of drugs
with novel mechanisms of action, are being developed
for osteoporosis treatment. In clinical trials, romosozumab
and blosozumab have been shown to increase bone mass
concomitant with increase in bone formation marker and
decreases in bone resorptionmarkers [121, 122]. Increases not
only in trabecular BMD but also in cortical thickness and
stiffness assessed by HR-pQCT were observed in subjects
taking romosozumab compared to placebo controls [123].
Although elevated levels of sclerostin have been reported
in CKD stages 3 to 5D patients [73, 124, 125], there are no
clinical data on anti-sclerostin antibody treatment in CKD

patients. In phase 2 in clinical trial of romosozumab, subjects
who had estimated creatinine clearance as low as 30mL/min
were included [121]. Since romosozumab was associated with
favorable effects on bone turnover in that study population,
its efficacy in improving bone fragility in CKD patients may
be anticipated.

In addition to the apparent relationship between scle-
rostin and bone strength, blood level of sclerostin has been
shown to be associatedwith aorta valve calcification [126] and
cardiovascular mortality in CKD patients [127, 128]. Further
studies are needed to investigate the efficacy of sclerostin
antibody treatment not only for fracture prevention but also
for reducing cardiovascular mortality in CKD patients.

Control of hyperphosphatemia is important for CKD
patients to prevent cardiovascular events and reduce the
risk of death. From a secondary analysis of the EVOLVE
trial, cinacalcet reduced the rate of clinical fractures by
16–29% [129]. The BONAFIDE trial demonstrated that long-
term treatment with cinacalcet substantially reduced PTH
and diminished elevated bone turnover as well as several
biomarkers [130]. Yamamoto et al. [131] reported that dial-
ysis patients who received angiotensin-converting enzyme
inhibitors or angiotensin II type I receptor blockers had
an approximately 30% lower risk of hospitalization for any
fracture. It is possible that, in addition to traditional antios-
teoporotic drugs, the use of inhibitors of specific pathophys-
iological conditions associated with renal failure is an appro-
priate strategy for the treatment of osteoporosis in CKD.

9. Conclusion

Determining the pathogenesis of osteoporosis and treatment
efficacy is difficult in CKD patients because of the com-
plicated mineral and bone abnormalities in these patients.
As described above, many factors such as BMD, humoral
factors, and alterations of material properties potentially
affect bone strength. However, the factors that contribute to
bone strength in the setting of CKD and their mechanisms
of action remain unknown. For example, no changes in
structural parameters and bone mechanical parameters were
observed 6months after kidney transplantation, even though
BMD was ameliorated [132]. Other report revealed that
cortical porosity is not superior to BMD determined by DXA
hofr identification ofHDpatients with fragility fracture [133].
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Moreover, clinical assessment of human femoral mechanical
properties by reference point indentation (RPI), which is
a novel technique that allows direct measurement of bone
material or biomechanical properties, indicated that BMD
did not discriminate fracture cases form controls [134].These
recent studies suggest that bone strength in CKD patients
may be affected by many factors in a complicated manner,
and the major factor and its degree of contribution remain
unidentified. Therefore, more studies are required to assess
bone mechanical properties using a multitude of factors
including BMDand humoral factors. If PRI can be used easily
in clinical studies, we may be able to discuss the diagnosis
or grading of bone fragility in CKD patients. CKD patients
are at increased risk for fractures regardless of whether they
are on dialysis. The KDIGO working group is scheduling
a selective revision of the guidelines [135]. However, until
then, patients at risk of fragility fractures still need to be
managed. Researchers, clinicians, pharmacologists, nurses,
drug companies, and other authorities should pay particular
attention to osteoporosis in CKD patients to determine
suitable management.
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[107] R. C. Güerri-Fernández, X. Nogués, J. M. Quesada Gómez et
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