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Obstructive sleep apnea (OSA) is a disorder characterized by repeated pauses in
breathing during sleep, which leads to deoxygenation and voiced chokes at the end of
each episode. OSA is associated by daytime sleepiness and an increased risk of serious
conditions such as cardiovascular disease, diabetes, and stroke. Between 2 and 7%
of the adult population globally has OSA, but it is estimated that up to 90% of those
are undiagnosed and untreated. Diagnosis of OSA requires expensive and cumbersome
screening. Audio offers a potential non-contact alternative, particularly with the ubiquity of
excellent signal processing on every phone. Previous studies have focused on the classifi-
cation of snoring and apneic chokes. However, such approaches require accurate identifi-
cation of events. This leads to limited accuracy and small study populations. In this work,
we propose an alternative approach which uses multiscale entropy (MSE) coefficients
presented to a classifier to identify disorder in vocal patterns indicative of sleep apnea.
A database of 858 patients was used, the largest reported in this domain. Apneic choke,
snore, and noise events encoded with speech analysis features were input into a linear
classifier. Coefficients of MSE derived from the first 4 h of each recording were used to
train and test a random forest to classify patients as apneic or not. Standard speech analy-
sis approaches for event classification achieved an out-of-sample accuracy (Ac) of 76.9%
with a sensitivity (Se) of 29.2% and a specificity (Sp) of 88.7% but high variance. For OSA
severity classification, MSE provided an out-of-sample Ac of 79.9%, Se of 66.0%, and
Sp=88.8%. Including demographic information improved the MSE-based classification
performance to Ac=80.5%, Se=69.2%, and Sp=87.9%. These results indicate that
audio recordings could be used in screening for OSA, but are generally under-sensitive.

Keywords: audio, MSE, OSA, LPC, MFCCs

1. Introduction

Obstructive Sleep Apnea (OSA) is a disorder that causes breathing to be interrupted repeatedly
during sleep. An interruption in breathing results in deoxygenation, leading to a brief arousal (a
period of light sleep or wakefulness which is usually not noticed by the individual). Repeated
arousals lead to short-term problems, such as daytime sleepiness and poor concentration. OSA is
also associated with increased risk of serious chronic conditions, including cardiovascular disease
(Monahan and Redline, 2011) and diabetes (Rosenfeld, 2014).
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OSA is relatively common, affecting 2–7% of the global adult
population; the prevalence is similar in the developed and devel-
oping world, with a high variance across ethnic groups (Young
et al., 1993; Bearpark et al., 1995; Ip et al., 2001, 2004; Kim et al.,
2004; Udwadia et al., 2004; Sharma et al., 2006; Lam et al., 2007). It
is usually diagnosed on the basis of an overnight sleep study, where
data including photoplethysmography (PPG), respiratory effort,
electrocardiography, audio, and activity are typically recorded
(Roebuck et al., 2014). Because of the amount of data that are
collected and analyzed, the screening process can be expensive,
typically costing more than $1000 (Epstein and Dorlac, 1998).
In addition, the screening process removes patients from their
normal sleeping environment, preventing repeatable unbiased
studies. It is estimated that up to 90% of individuals with OSA
are undiagnosed and untreated (Young et al., 1997). Screening
of OSA is particularly poor in developing countries, where the
resources required for conventional screening and diagnosis are
often unavailable. While conventional screening of OSA is expen-
sive, some treatment for those diagnosed with the condition can
be relatively cheap; oral appliances, which attempt to enlarge the
pharyngeal airway during sleep by holding the tongue or jaw
forward, are available for as little as £35 (Somno-Guard 3, Tomed,
Bensheim, Germany). Lifestyle changes such as losing weight can
often resolve mild to moderate OSA, and oral appliances are
available for more serious cases. A cheap method of screening
for OSA could therefore greatly reduce the burden of OSA on
the healthcare system, particularly in developing countries where
sleep lab facilities are very limited.

Since audio recordings are particularly easy to collect, and
most mobile phones have in-built high quality audio recording
capabilities, this article explores whether audio analysis alone is
sufficient to diagnose OSA. This is a comparison between two
contrasting methods; a standard approach from speech analysis,
which has been done before, and a novel approach which captures
non-stationary periodicities. There are a number of approaches
that are used to determine whether an event is apneic or not,
or whether a subject suffers from OSA. Events can be analyzed
using LPC (Ng et al., 2008a), mel-frequency cepstrum coeffi-
cients (MFCCs) (Cavusoglu et al., 2007), power spectrum (Ng
et al., 2008b), energy distribution (Jones et al., 2005, 2006a,b;
Cavusoglu et al., 2007), and pitch (Abeyratne et al., 2005). Active
devices (Michaelson et al., 2006) and using audio recorded while
the subject is awake (Goldshtein et al., 2011) are both methods
used to determine whether a subject has apnea or not. Although

event detection is more common, it is also more laborious as
there needs to be a gold standard for comparison. This involves
annotating the entire night’s recording for each subject in the data
set. Active devices and using speech signals allow for the subject
to be diagnosed rather than identifying individual events. LPC
and MFCCs were chosen as the standard approach from speech
analysis because they are two of the most common methods used
to determine whether an event is apneic or not. From the litera-
ture, it can be seen that LPC classifies apneic snores from benign
snores with Se= 88% and Sp= 82% for LPC (Ng et al., 2008a);
while MFCCs achieve Se= 82% (Cavusoglu et al., 2007). LPC can
provide accurate estimates of speech parameters while not being
computationally intensive (Rabiner and Schafer, 2007). However,
it does assume stationarity, which may not be true over the event
duration. MFCCs were used (where the frequency bands are
equally spaced on the mel scale) as they approximate the human
auditory system’s response more closely than the linearly spaced
frequency bands used in the normal cepstrum. This frequency
warping can allow for better representation of sound.

2. Materials and Methods

2.1. Data
The data used in this study were provided retrospectively by
collaborators at the Respiratory Medicine Group at the Churchill
Hospital (Oxford, UK)1. Each subject used a portable home sleep
study device, Grey Flash (Stowood Scientific Instruments Ltd.,
Oxford, UK), which recorded a finger PPG from which oxygen
saturation and pulse rate were derived, nasal airflow and nasal
sound from a nasal cannula, body movement and body position
from an accelerometer, and audio from a microphone placed on
the nasal cannula. It should be noted that the subject was in charge
of connecting themselves to the device, and that each device
was calibrated to have approximately constant gain for the audio
signal.

A total of 1354 overnight recordings with associated diagnoses
were reviewed, of which only 858 were used in this study; 496
recordings were excluded for being too short (less than 4 h) or
for having a diagnosis unrelated to OSA, such as lung disease
and asthma. The demographics for the subjects can be found
in Table 1, broken down by severity of OSA. The table also

1This study was approved by the NHS HRC National Research Ethics Service
(NRES) South West REC Centre, Bristol, UK (REC reference SW/12/0211).

TABLE 1 | Subject demographics for each sub-group: normal, snorer, mild OSA, moderate OSA, and severe OSA (mean±±±σσσ).

Group Normal Snorer Mild Moderate Severe

Gender 80 m, 75 f 166 m, 91 f 79 m, 28 f 94 m, 30 f 167 m, 48 f
Age (years) 45.9± 17.1 46.5± 12.0 50.5± 11.4 53.1± 12.4 52.5± 12.6
Neck (cm) 39.4± 4.6 41.4± 4.3 41.9± 4.1 42.9± 3.8 45.0± 4.8
Height (cm) 171.2± 10.7 173.5± 10.4 174.2± 9.9 173.0± 9.7 175.0± 9.1
Weight (kg) 77.7± 23.0 96.0± 24.2 212.0± 48.8 221.2± 49.5 247.3± 74.4
AHI (events/h) 4.4± 7.5 6.4± 7.4 10.6± 9.0 21.5± 11.6 47.5± 24.5
ODI (events/h) 3.7± 3.5 6.0± 5.2 10.3± 7.0 22.0± 11.6 56.8± 32.4
BMI (kg/m2) 29.6± 7.9 32.0± 8.4 31.9± 7.9 33.8± 8.5 36.9± 11.2
ESS 11.0± 5.6 12.0± 5.2 12.2± 4.7 12.7± 4.7 14.1± 5.3

Neck, neck circumference; m, male; f, female.
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shows the apnea hypopnea Index (AHI), the oxygen desaturation
index (ODI), and the Epworth sleepiness score (ESS). The AHI
is the average number of apneas (cessations of breathing) and
hypopneas (episodes of shallow breathing) per hour. The ODI
is the average number of oxygen desaturations per hour [where
a desaturation is defined as at least a 4% decrease below the
previous high; no desaturation can be scored unless the saturation
subsequently rises bymore than 3% (Stradling andCrosby, 1990)].
The AHI and ODI were automatically calculated by the software
used to analyze the data in the clinic (Visi-Download, Stowood
Scientific Instruments Ltd., Oxford, UK). ODI definition given
above is used by Visi-Download to calculate the ODI. The ESS was
derived from a standardized questionnaire designed to measure
daytime sleepiness (Johns, 1991).

2.2. Annotation and Segmentation of Data
Twenty-two subjects had specific events identified and labeled
using the Visi-Download software; their demographics can be
found in Table 2. These subjects were chosen because they were
the first subjects that were collected that met the selection criteria,
i.e., they were diagnosed as normal, snorer, mild/moderate/severe
OSA, and the recordings were longer than 4.5 h with all signals
present. The labeling of events followed a protocol that involved
dragging an event marker across the relevant section of data. The
annotations were made by a clinical research fellow, with 2 years
of experience in sleep medicine. Each event was labeled with one
of three classes: F, first breath after apnea (or choke); S, snoring;
and N, noise events. Only 22 records were annotated due to the
time and financial constraints (to annotate a single record took at
least one hour). A total of 175 choke/first breath (F) events, 201
snoring (S) events, and 190 noise (N) events were annotated. The
entire event, regardless of duration, was annotated.

2.3. Methods
The analysis is separated into two approaches. First, linear dis-
criminant analysis (LDA) was used to build a classifier to dif-
ferentiate between choke/first breath events (F) and snoring or
noise events (S/N) using standard features taken in the literature
(linear predictive coding (LPC) and cepstral coefficient analysis).
Detection of candidate events was performed by hand. These two
methods were chosen as they are standard state of the art, and
can be used as a baseline comparison. Then, a novel approach
for feature extraction (at least in audio analysis) which requires
no segmentation of data, multiscale entropy (MSE), was applied

TABLE 2 | Demographics of annotated subjects (mean±±±σσσ), m, male; f,
female.

Parameter Subjects (mean±±±σσσ)

Gender 17 m, 5 f
Age (years) 48.9±15.3
Neck (cm) 45.7±3.8
Height (cm) 177.3±10.7
Weight (kg) 107.4±24.4
AHI (events/h) 32.4±31.6
ODI (events/h) 35.7±34.5
BMI (kg/m2) 34.3±8.9
ESS 11.7±5.3

to the raw audio. Both LDA and a random forest (RF) were then
trained to classify patients as either requiring treatment or not.
Before describing the experimental set-up, a brief overview of the
techniques is given.

2.3.1. Linear Predictive Coding
Linear predictive coding is a commonly used speech analysis
technique as it provides an accurate representation of speech.
Specification of the parameters of the linear predictor is a wide
topic and a large number of other approaches have been proposed.
In fact, the autocorrelation method is the most common (Rabiner
and Schafer, 2007) and it is used, for example, for speech coding
in the GSM standard. Full details can be found in Chapter 6 of
Rabiner and Schafer (2007).

2.3.2. Cepstral Analysis
Bogert et al. (1963) defined the cepstrum as the inverse Fourier
transform (IFT) of the log magnitude spectrum of a signal. Cep-
stral analysis makes use of the source-filter model of speech
production. It is widely used in speech processing, particularly
for pitch estimation (Rabiner and Schafer, 2007). The cepstrum is
created by taking the IFT of the logarithm of the estimated spec-
trum of a signal. There is a complex cepstrum, a real cepstrum,
a power cepstrum, and phase cepstrum. The power cepstrum is
often used in the analysis of human speech. Weighted cepstrum
distance measures have a direct equivalent interpretation in terms
of distance in the frequency domain. This is important in models
for human perception of sound which are based on frequency
analysis carried out in the inner ear (Rabiner and Schafer, 2007).
Davis and Mermelstein (1980) used this fact as the basis of the
MFCCs. The idea behind MFCCs is to compute a frequency
analysis based on a filter bank with approximately critical band
spacing of the filters and bandwidths. The frequency bands are
equally spaced on the mel scale, which approximates the human
auditory system’s response better than the normal cepstrum. See
Chapter 5 of Rabiner and Schafer (2007) for more details.

2.3.3. Multiscale Entropy
Multiscale entropy is a method of measuring the complexity of
a finite length time series (Goldberger et al., 2000; Costa et al.,
2003; Vrhovec, 2009). MSE has been applied to heart rate and
movement data, which has similar issues to the audio signal,
such as non-stationarity. Costa et al. (2002) noted that traditional
algorithms indicated that certain pathological processes had a
higher complexity than healthy dynamics with long-range corre-
lations. The authors suggested that this paradox was due to the
fact that conventional algorithms fail to account for the multiple
time scales inherent in healthy physiological dynamics. Due to
this hypothesis, MSE was developed and was found to robustly
separate healthy and pathological groups. Our motivation for
using the technique here is that it may catch the low entropy at
short time scales (a few minutes) and the fractured sleep (and
hence higher entropy at longer time scales – of the order of hours)
inherent in OSA.

MSE is calculated as follows: given an N-point time series
{x1, . . ., xi, . . ., xN}, a consecutive coarse-grained time series can
be constructed by averaging a successively increasing number of
data points in non-overlapping windows.
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Each element of the coarse-grained time series, y(τ)j , is calcu-

lated according to the equation: y(τ)j = 1
τ

jτ∑
i=(j−1)τ+1

xi where τ

represents the scale factor and {1≤ j≤N/τ }. The length of each
coarse-grained time series is N/τ . For scale τ = 1, the coarse-
grained time series is simply the original time series. The sam-
ple entropy (Hs) is then calculated for each of the time series
and can be plotted as a function of the scale factor. Hs quan-
tifies the regularity of a time series and is the negative natural
logarithm of the probability that two sequences similar for m
points remain similar at the next point, where self-matches are
not included. Given N data points from a time series x(n)= x(1),
x(2),. . ., x(N), the algorithm forms N −m+ 1 vectors X(1),. . .,
X(N −m+ 1) defined by X(i)= [x(i), x(i+ 1),. . ., x(i+m− 1)],
for {1≤ i≤N −m+ 1}. The vectors, X, represent m consecutive
values of the signal, commencing with the ith point. The distance
between X(i) and X( j), d= [X(i), X( j)], is then calculated as
the maximum absolute difference between their respective scalar
components as follows: d[X(i), X(j)]=maxk = 1,2,. . .,m(|x(i+ k)
− x(j+ k)|) For a given X(i), the number of j’s {1≤ j≤N−m, i
̸= j} are counted, such that the distance between X(i) and X(j) is
less than or equal to r SDs and the following function is calculated:
Bm
r (i) = 1

N−m−1
∑N=m

j=1,j̸=i Θ(r.σ − d[X(i),X(j)]) where Θ is the
Heaviside function (Θ (z≥ 0)= 1) and (Θ (z≤ 0)= 1), σ is the
standard deviation of the signal x(n) and r is a tolerance window.
Bm
r is calculated as follows: Bm

r = 1
N−m

∑N−m
i=1 Bm

r (i). The dimen-
sion is then increased to m+ 1 and Am

r (i) is calculated as follows:
Am
r (i) = 1

N−m−1
∑N=m

j=1,j̸=i Θ(r.σ− d[X(i),X(j)]) Am
r is then given

by: Am
r = 1

N−m
∑N−m

i=1 Am
r (i) and the sample entropy is given by

the negative logarithm of the ratio of Am
r to Bm

r : HS(m, r,N) =

−ln
(

Am
r

Bm
r

)
. From these equations, it is clear that Hs, and hence,

MSE is a function of three parameters: m, r and N.

2.3.4. Classification
Two classifiers were compared for the estimation of OSA severity:
a simple linear classifier and a RF. These methods were chosen as
standard linear and non-linear benchmark classifiers. Since there
were less than 1000 labeled events for classifying choke/first breath
vs. snore/noise, only a linear approach was used on that data.

2.3.4.1. Linear discriminant analysis
Linear discriminant analysis is a well-known method for drawing
a linear boundary between the values of a feature set, and has
been used in a variety of applications such as image retrieval and
face recognition. Classical LDA projects the data onto a lower-
dimensional vector space such that the ratio of the between-class
distance to the within-class distance is maximized, thus achieving
maximum discrimination. The optimal projection can be com-
puted by applying the eigen-decomposition on the covariance
matrices (Ye et al., 2004).

2.3.4.2. Random forest classification
Random forests are a type of ensemble classifier based on decision
trees (Breiman, 2001). Decision trees form a predictive model
which uses a set of binary rules to calculate a target value. Training

data are passed to the decision tree, which builds a model deter-
mining which variable to split on at a given node, what the value
of the split is, whether to stop or to split again and when to assign
a terminal node to a class. When a large number of trees have
been generated, they vote for the most popular class. For the kth
tree, a random vector Θk is generated, independent of the past
random vectorsΘ1,. . .,Θk–1 but with the same distribution. A tree
is grown using the training set andΘk, resulting in a classifier h(x,
Θk) where x is an input vector. A RF is a classifier consisting of a
collection of tree-structured classifiers h(x, Θk), k= 1,. . . where
the Θk are independent identically distributed random vectors
and each tree casts a unit vote for themost popular class at input x.

A tree-based classifier, developed by Johnson et al. (2012)
using a Bayesian framework. The algorithm has many advantages,
including high overall performance and automatic handling of
missing data, outliers, and normalization. Each tree selects a sub-
set of observations via two regression splits. These observations
are then given a contribution, equal to a random constant times
the observation’s value for a chosen feature plus a random inter-
cept. Furthermore, the tree also assigns a contribution to missing
values for this chosen feature based upon a scaled surrogate.
The contributions across all trees are summed to provide the
contribution for a single “forest,” where a “forest” refers to a group
of trees plus an intercept term. The predicted probability output by
the forest is the inverse logit of the sum of each tree’s contribution
plus the intercept term. The intercept term is set to the logit of the
mean observed outcome.

The core of the model is the custom Markov chain Monte
Carlo (MCMC) sampler which iteratively optimizes the forest.
This sampling process has a user-defined number of iterations and
a user-defined number of resets (each reset involves reinitializing
the forest and restarting the iterative process). After mapping the
training data onto the quantiles of a normal distribution, the forest
is initialized to a null model, with no contributions assigned for
any observations.

At each iteration, the algorithm selects two trees in the forest
and randomizes their structure. That is, it randomly reselects
the first two features which the tree uses for splitting, the value
at which the tree splits those features, the third feature used
for contribution calculation, and the multiplicative and additive
constants applied to the third feature. The total forest contribution
is then recalculated and a Metropolis-Hastings acceptance step
is used to determine if the update is accepted. The Metropolis-
Hastings algorithm is a MCMC method2 for obtaining a sequence
of random samples from a probability distribution for which
direct sampling is difficult (Metropolis et al., 1953; Hastings,
1970). If the update is accepted, the two trees are kept in the forest,
otherwise they are discarded and the forest remains unchanged.
After a set fraction of the total number of iterations to allow
the forest to learn the target distribution (20%), known as the
burn-in period, the algorithm begins storing forests at a fixed
interval, i.e., once every set number of iterations.Once the number
of user-defined iterations is reached, the forest is reinitialized as

2MCMCmethods involve sampling fromprobability distributions by constructing a
Markov chain (a memoryless mathematical system that undergoes transitions from
one state to another, among a finite number of possible states) that has the desired
distribution as its equilibrium distribution.
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before and the iterative process restarts. Again after the set burn-
in period, the forests begin to be saved at a fixed interval. The
final result of this algorithm is a set of forests, each of which will
contribute to the final model prediction.

2.4. Analysis Protocol
2.4.1. Event Classification
For LPC and MFCC analysis, an assumption was made that an
event detectorwould be used to find the sections of interest, or that
the entire night would be analyzed on an approximately second-
to-second basis. Therefore, only a specified amount of time for
each event was analyzed, i.e., the first 0.5, 1, 2, or 3 s of an event.
These window sizes are sufficient as only snores/chokes/noise
events are being analyzed, and not apneas which, by definition,
last>10 s. If an event duration was less than the specified window
size, it was not included in the analysis. This meant that as the
window size increased, less data were analyzed; Table 3 shows the
number of each event type at the different window sizes.

2.4.1.1. LPC
From speech analysis, a general rule of thumb is that, for voiced
sounds, two coefficients provide information about each formant
frequency. It has been suggested that voiced sounds are identifi-
able from the first two or three formants (Rabiner and Schafer,
2007). Using a filter order of 8 ensures that the first three formants
can be estimated, which is useful in identifying sections of speech
in the audio signal. The work of Ng et al. (2008a) looked at the first
three formants, and achieved promising results in distinguishing
between apneic and non-apneic snoring. Figure 1 shows the pole-
zero plots for a choke and a snoring event. There are clear dif-
ferences between the events, indicating the LPC could be used to
distinguish between them.

2.4.1.2. MFCCs
The sampling frequency of the audio data was 4 kHz. Each audio
window of interest was detrended and then multiplied by a Ham-
ming window of the same length. A filterbank with 24 filters was
used and the entire length of each event was taken to be a single
frame, resulting in 12 MFCCs per event.

2.4.1.3. Classification
Five-fold cross-validation was performed. Different combinations
of features (LPC, MFCCs, and demographics) were used to fix a
boundary between the two classes (F vs. S and N, i.e., identifying
apneic sounds from non-apneic sounds). The folds were stratified
by subject. Dividing the folds by event would mean that events
from a single subject may appear in both data sets, which could
lead to a bias in results. For LDA, the discriminant function used
fitted a multivariate normal density to each group, with pooled

TABLE 3 | The number of each event type at the four different window sizes
used.

Window 0.5 s 1 s 2 s 3 s

F 175 175 155 82
S 201 201 201 159
N 190 189 185 167

estimates of a diagonal covariancematrix (essentially a naive Bayes
classifier).

2.4.2. OSA Severity Classification
2.4.2.1. Feature extraction
Only 240min of the audio data were analyzed, beginning 30min
into the recording (to remove wakefulness and light sleep at the
start of the recording) and ending at 4.5 h. This maximized the
number of subjects that could be used, while providing a signif-
icant number of events for any given subject. The 4 h window
was also recommended by a clinical expert (personal communi-
cation; 2010 conversation between Dr. John Stradling and Aoife
Roebuck), as OSA will almost certainly manifest within this
period if the subject has OSA. The data were preprocessed by tak-
ing the variance every 0.5, 1, or 2 s and then the natural logarithm
of that time series was taken. This process exaggerated the peaks in
the signal, but suppressed large spikes which could overwhelm any
metric. Nine MSE coefficients were calculated per subject (τ = 1,
2, 4, 8, 16, 32, 65, 130, 180) for m= 1:1: 8 and r= 0.1: 0.05: 0.25.
The scales chosen attempted to capture the time scales that occur
during repeated apneas at both short and long time scales andwere
fixed per earlier studies (Roebuck and Clifford, 2012; Roebuck,
2014). The values used form and r are based on reasonable ranges
for physiological data taken from Costa et al. (2003).

2.4.2.2. Classifier training and testing
Again, five-fold cross-validation was carried out on the data. Each
time, onefold was held separately to be the test set, while the other
four folds were used as the training data set.

The training set was further divided (five times) into training
and validation data sets (in the ratio 70:30) in order to find the
optimal MSE downsampling rate (dsr), m value and r value. This
was performed by a grid search over every possible combination
of dsr, m, r and noting the classification accuracy for LDA and
the RF separately. The best overall combination was taken to be
the one that was chosen most often in the five iterations. Once
this combination had been found, the classifier was trained using
the entire training set, and tested on the unused test data, for two
different feature sets: MSE alone, and MSE plus demographics.

For the RF, 500 trees were used with each tree split on three
variables/features. The process was repeated twice with a new seed
for 2× 106 iterations.

3. Results

As a comparison, Table 4 shows the performance when using
the common clinical thresholds on a variety of features. It is
worth noting that both the AHI and ODI are associated with
multiple thresholds used for classifying subjects into different
categories. Subjects are said to be normal or a snorer if below a
threshold of 5 and have mild, moderate, or severe OSA otherwise;
10 or 15 is normal/snorer/mild vs. moderate/severe; 20 or 30 is
normal/snorer/mild/moderate vs. severe.

The results of the standard speech-based event classification
analysis can be found in Table 5, while the results of the MSE
analysis using LDA and a RF can be found in Tables 6 and 7
respectively. The best results for each analysis are in bold font in
the tables.
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FIGURE 1 | Pole-zero plots for a choke event and a snoring event. There
are clear differences between the locations of the poles between the two events
types, indicating that it might be possible to distinguish between the two.

(A) Pole-zero plot for a choke event, where the poles are indicated by the blue
crosses. (B) Pole-zero plot for a snoring event, where the poles are indicated by
the blue crosses.

Note that the standard speech analysis techniques have an
extremely low sensitivity. Adding demographics to the analysis
almost always increases the sensitivity, but only by a moderate

amount. Increasing the window size has a moderate effect, but
the sensitivity remains low and the variance is high. For the
classic speech analysis approach, the best results were consistently
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obtained when using a combination of LPC, MFCCs, and
demographics, for a 3-s window size, achieving Ac= 76.9%,
Se= 29.2%, Sp= 88.7%, AUC= 0.73.

As can be seen in Tables 6 and 7, the best performance is
obtained when MSE+ demos are used in the analysis; the RF
achieved Ac= 80.5% and AUC= 0.88 during validation. How-
ever, using MSE alone achieves comparable results within the

TABLE 4 | Statistics when using clinical thresholds on the demographics,
AHI and ODI where both AHI and ODI were automatically calculated by the
software.

Feature Threshold Se (%) Sp (%) PPV (%) NPV (%) Ac (%)

Gender male 77.5 36.7 45.1 70.8 53.1
Age 50.0 61.7 59.0 50.2 69.6 60.0
Neck 40.0 84.9 40.4 51.7 78.1 59.5
BMI 35.0 45.0 73.8 53.4 66.8 62.3
ESS 15.0 46.4 66.4 48.5 64.5 58.3

AHI 5.0 97.4 55.3 59.2 96.9 72.1
AHI 10.0 92.9 80.1 75.6 94.4 85.2
AHI 15.0 83.5 87.6 81.7 88.8 86.0
AHI 20.0 71.4 94.4 89.5 83.2 85.2
AHI 30.0 53.0 97.9 94.4 75.8 80.0

ODI 5.0 97.6 54.2 58.7 97.2 71.6
ODI 10.0 94.0 81.1 76.8 95.3 86.3
ODI 15.0 85.3 90.9 86.2 90.3 88.7
ODI 20.0 74.3 96.0 92.5 84.9 87.3
ODI 30.0 56.2 98.6 96.4 77.2 81.6

The metrics in bold are the baseline to beat as this is the classification problem being
addressed: normal/snorer/mild OSA vs. moderate OSA/severe OSA.

TABLE 5 | Performance when using standard speech analysis techniques and LDA on the test data.

Window Data Se (%) Sp (%) PPV (%) NPV (%) Ac (%) AUC

0.5 s L 2.6±3.6 96.3±2.5 12.4±17.0 69.7±8.6 68.0±8.2 0.58±0.13
C 5.1±5.0 89.7±7.4 17.3±17.4 68.8±9.2 64.1±7.8 0.51±0.10
L and C 12.6±4.0 81.4±17.3 31.5±17.2 67.0±5.4 60.0±10.7 0.53±0.14
L and D 29.8±38.9 66.2±28.7 34.6±41.7 71.1±6.2 56.7±12.7 0.57±0.09
C and D 18.2±20.0 80.2±12.2 29.0±16.8 70.8±12.1 60.7±4.0 0.57±0.14
L, C, and D 38.8±37.7 69.9±27.3 33.5±31.8 75.6±17.6 57.0±13.5 0.61±0.17

1 s L 0.9±1.3 97.8±2.2 NaN±NaN 69.0±9.8 68.0±9.3 0.48±0.07
C 6.9±6.1 90.6±5.5 21.7±15.9 69.6±11.7 66.1±12.6 0.50±0.08
L and C 5.6±4.7 86.1±5.6 19.4±19.4 68.7±12.7 62.1±9.0 0.49±0.07
L and D 26.4±27.9 72.4±22.0 29.7±27.9 69.4±11.2 61.2±14.0 0.53±0.15
C and D 20.1±11.9 75.4±6.9 26.6±18.3 69.3±2.6 59.2±4.4 0.54±0.15
L, C, and D 18.5±16.5 80.2±17.8 20.6±15.2 70.1±12.9 63.2±12.9 0.53±0.08

2 s L 9.1±7.2 93.9±5.8 NaN±NaN 73.1±16.3 69.8±13.9 0.57±0.06
C 25.8±12.3 85.6±6.4 42.6±13.7 74.4±4.5 68.6±5.9 0.67±0.08
L and C 26.0±14.7 86.2±11.7 45.3±15.5 73.7±10.3 67.7±10.2 0.65±0.11
L and D 31.5±34.8 80.8±20.8 NaN±NaN 75.6±11.5 64.9±6.9 0.62±0.07
C and D 31.0±19.2 83.0±11.2 37.5±31.2 76.4±11.2 68.5±8.1 0.65±0.09
L, C, and D 39.4±19.6 85.0±7.6 48.5±20.5 77.6±10.6 70.6±7.0 0.73±0.03

3 s L 6.4±6.1 93.9±4.9 25.5±27.7 80.4±7.5 77.0±8.2 0.61±0.08
C 10.0±13.7 94.5±5.0 NaN±NaN 81.8±9.3 78.9±10.5 0.62±0.08
L and C 28.7±25.6 93.6±7.4 45.3±41.0 86.0±13.0 82.1±11.0 0.71±0.19
L and D 17.3±19.7 86.3±13.0 14.2±8.5 81.0±13.3 73.8±15.4 0.68±0.17
C and D 34.8±19.1 89.7±10.6 52.6±19.4 84.4±6.5 77.6±4.9 0.76±0.10
L, C, and D 29.2±17.4 88.7±8.9 49.1±29.9 83.3±9.1 76.9±±±10.6 0.73±±±0.11

L= LPC, C=MFCC, D=demographics. NaN indicates that the classifier never identified a true positive. The metrics in bold indicate the best performance.

variance over the folds. There is a better balance between
Se (66.0%) and Sp (88.8%), unlike in the event classification
approach, and the AUC is also higher (0.86 compared to 0.84).

4. Discussion

As can be seen in Table 4, demographics or questionnaires alone
lead to a poor performance for classifying OSA severity; they
are either sensitive or specific, never both, and accuracy is only
slightly better than random chance (ranging from 53 to 62%). This
is not unexpected, particularly when subjects have been asked to
note down these figures themselves rather than being measured
and recorded by a healthcare professional; studies have shown that
people are poor at self-reporting height and weight (Engstrom
et al., 2003). It would therefore be prudent to move away from
the use of such information and perhaps rely on objective signals
only, if they provide a lower error rate. Both the AHI and ODI
are good classification features. It is clear from Table 4 that a
threshold of 15 provides the best classification. This separates
normal/snorer/mild vs. moderate/severe, and is appropriate for
this work as this is the classification problem being addressed.
Using this threshold gives performance statistics in the high-80%
to low-90% range.

It is clear that the data used for the standard speech-based
classifier approach is heterogeneous, and that each fold is signif-
icantly different, as evidenced by the large SD values for some
of the metrics. This is likely due to the lack of annotations,
i.e., there are insufficient data for this analysis or there are too
many features. It should be noted that in the training data set,
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TABLE 6 | LDA Performance when using MSE and demographics on the test data.

Features Data set Se (%) Sp (%) PPV (%) NPV (%) Ac (%) AUC

MSEaud Train 42.0±14.0 81.8±9.5 62.5±7.2 68.7±2.8 66.2±1.1 0.66±0.01
Test 41.1±14.3 78.5±11.7 58.8±15.6 67.1±8.2 63.3±5.2 0.64±0.03

MSEaud +demos Train 57.0±4.0 78.7±3.3 63.8±1.3 73.7±1.6 70.2±1.3 0.76±0.01
Test 59.1±7.7 77.5±2.8 64.2±5.8 73.1±7.5 69.6±3.4 0.74±0.03

TABLE 7 | Performance of the RF when using MSE and demographics on the test data.

Features Se (%) Sp (%) PPV (%) NPV (%) Ac (%) AUC

MSE 66.0±6.8 88.8±1.8 79.0±5.1 80.1±4.1 80.0±3.2 0.86±0.04
MSE+demos 69.2±5.9 87.9±3.9 79.0±5.3 81.2±5.8 80.5±±±4.9 0.88±±±0.04

The metrics in bold indicate the best performance.

there are up to 30 features (when LPC+MFCCs+ demos are
combined) but only 56 subjects. This causes the problem to
be under-specified, and leads to poor results on the test data.
In addition, using three or more annotators would make the
annotations more robust. Only those events where two or more
annotators agree would be used in the analysis, and could improve
the performance of the classifier.

The standard speech-based approach was unable to exceed
an Ac of 82% when classifying by subject. Table 5 indicates
that using LDA results in a very specific classifier (in the high
90 s), but very low sensitivity (less than 40%). In addition,
the PPV could not be computed for some of the combina-
tions of features, because the classifier never identified a true
positive.

The fact that the combination of LPC and MFCC consistently
provided the best accuracy in determining whether the event was
either a choke or noise/snore, regardless of window size, indicates
that the LPC coefficients and the MFCCs provided complemen-
tary information. The addition of demographics also improved
performance. It is worth noting that less data were used at 3 s than
at 0.5 s (decreased from 391 noise/snore events, 175 chokes at 0.5 s
to 326 noise/snore, 82 chokes at 3 s). The ratio between the classes
has completely changed at 3 s.

There are a number of limitations to this approach. Annotating
the data is labor intensive and, ideally, there should be three
annotators to ensure the quality of the annotation. In this work,
one clinical research fellow with 2 years of training labeled the
data, which is not optimal.

Assuming that the data were recorded in a low noise envi-
ronment, the performance achieved is insufficient for screening
subjects. Even with the performance metrics as good as they are
here, the accuracy needs to be much higher (high 80%) for this
approach to be clinically acceptable (Collop et al., 2007), although
the ability of portablemonitors to correctly diagnose subjects with
OSA needs further validation.

The results presented here are lower than those reported in
the literature [Se= 88% and Sp= 82% for LPC (Ng et al., 2008a);
Se= 82% for MFCCs (Cavusoglu et al., 2007)]. However, many
approaches consider in-sample classification which leads to a sig-
nificant over-estimation of out-of-sample performance. In addi-
tion, the literature considers a different classification problem,

i.e., thresholding on a given feature to differentiate apneic snores
from benign snores, whereas, in the analysis above, the first
breath after an apnea has been differentiated from benign snores
and noise, which will also influence performance. The poorer
performance could be due to the lack of annotations in this
analysis, resulting in an under-specified system. In addition,
none of the snoring events used in this analysis have been
graded. The availability of a grading may have improved per-
formance. It is worth noting that the classification performance
is on the classes of sounds themselves, and not for a subject
overall.

Finally, the need for an event detector, and then downstream
classification to turn the classified events into a diagnosis are likely
to degrade the performance further.

In contrast to the speech-based approaches and events clas-
sification, the MSE approach yielded a much higher Se, PPV,
and AUC with marginal drops in Ac and Sp. Moreover, the
addition of demographics made little difference to the clas-
sification performance, indicating that the technique may be
more suitable as a general tool. The use of an RF applied
to MSE coefficients requires very little preprocessing and no
segmentation or event detection. While the sensitivity does
not surpass 70%, this technique may be suitable as a post-
screening test after screening with a pulse oximeter, particu-
larly in settings where there is significant noise from external
sources.
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