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Mediterranean diet (MD) is a well-known healthy dietary pattern, linked to: (1) high intakes
of olive oil as main the culinary fat, plant-based foods (fruits, vegetables, legumes, whole grains,
tree nuts, and seeds), and fish; and (2) a moderate consumption of white meat, eggs, dairy products
such as yogurt and cheese, and wine always with meals [1]. Its protective effects on cardiovascular
disease have been broadly described [2]. In addition, its consumption has also been associated with a
decreased risk of suffering other chronic diseases such as diabetes, neurodegenerative disease, and
even cancer. As published by Schwingshackl et al. having a high MD adherence is linked to a lower
risk of developing colorectal, breast, gastric, liver, head/neck, and prostate cancers, as well as to
a reduced cancer mortality in observational studies [3]. When focusing specifically on prospective
trials, this meta-analysis highlighted significant decreases in the risk of suffering colorectal and breast
malignancies and in cancer mortality among subjects with high MD adherence, and found single cohort
studies describing decreases in the incidence of liver, gallbladder, and biliary tract malignancies. In line
with these findings, two randomized controlled trials have studied the effect of this dietary pattern on
cancer incidence. Adherence to the traditional Mediterranean diet in the context of the PREDIMED
Study demonstrated a decrease in the incidence of invasive breast cancer in older women [4], while
following a Mediterranean-type diet was associated with a lower general cancer incidence among
patients in secondary prevention of cardiovascular diseases [5].

Schwingshackl et al. highlighted in their systematic approach that the consumption of fruits,
vegetables, whole grains, and low-to-moderate doses of alcohol is particularly associated with the
MD anti-cancer effects [3]. In meta-analyses of prospective human studies, fruit intake has been
associated with a decreased risk of suffering total [6], colorectal [7], breast [8], gastric [9], bladder [10],
lung [11], and liver cancers [12], as well as with lower cancer mortality [13]. Vegetable consumption
has been linked in these studies with decreased incidence of total [6], colorectal [7], bladder [14], and
lung cancer [11], and also with reductions in cancer mortality [13]. Finally, whole grain intake has
been related to decreases in the incidence of colorectal [15] and gastric cancer [16], as well as with
reductions in cancer mortality [17]. The consumption of other fiber and antioxidant sources such as
legumes have also been associated with reductions in the risk of suffering colorectal [18] and prostate
cancer [19] in other meta-analyses of prospective human studies (and intake of overall dietary fiber
is linked to reduced risk of colorectal [20], breast [21], and ovarian cancer [22], and to lower cancer
mortality [23]). Regarding ethanol, as stated by Schwingshackl et al. the attribution of anti-cancer
effects to its consumption seems controversial, considering that it is categorized by the International
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Agency of Research on Cancer as a Group 1 carcinogen for humans [24] and by the World Cancer
Research Fund as a convincing carcinogen for mouth, pharynx, larynx, esophagus, stomach, liver,
colorectal, and breast malignancies [25]. However, it cannot be forgotten that a low-to-moderate wine
consumption contributes to higher MD adherence scores (linked to the previously described benefits)
and that no dose-response effect of the toxicity of alcohol or wine intake can be inferred from their
conclusions. Additionally, wine provides high doses of some bioactive compounds such as flavonoids
(potentially responsible for some anti-cancer effects) [26] and the possible counterregulatory effects of
the entire dietary matrix against the toxicity of ethanol on cancer has not been explored. Finally, other
changes in food consumption related to the MD may also contribute to its anti-cancer effects. On the
one hand, polyunsaturated fatty acids (PUFAs) coming from nuts or fish can moderate low-grade
inflammation states and, therefore, decrease cancer risk. In meta-analyses of prospective human
studies, nut intake has been associated with decreases in total [27] and colon cancer risk [28], and
fish consumption has been linked to reductions in the risk of suffering colorectal [15], breast [29], and
liver cancer [30]. On the other hand, the moderations in the intake of red and processed meats in
MD (substituted for healthier options) could also contribute to the anticancer effect. As observed in
meta-analyses of prospective human trials, red meat consumption is associated with increases in the
risk of developing colorectal [31], lung [32], and pancreatic cancer [33], and processed meat intake
is linked to incremented risk of suffering colorectal [34], breast [35], gastric [36], prostate [37], and
pancreatic malignancies [33].

MD consists of a healthy nutrient matrix whose individual components may moderate cancer risk
by complementary mechanisms (Scheme 1).
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The first one is focused on the role of oxidative stress on cell proliferation, since MD is known
to be an antioxidant-rich dietary pattern [1]. On the one hand, antioxidants may directly neutralize
reactive species of oxygen and nitrogen (RONS). RONS are able to promote the activation of signaling
pathways such as those related to phosphoinositol-3-kinase (PI3K) and some mitogen-activated protein
kinases (MAPKs) [38]. PI3K- and MAPK-related signaling cascades are physiologically initiated by
growth factors and cytokines in different cell types and promote cell proliferation (essential in body
growth and defense). In addition, these pathways activate the nuclear factor kappa beta (NF-κβ), a
protein complex responsible for the production of cytokines and growth factors, which can in turn
induce a positive feedback in the previous signaling pathways [39]. The RONS-mediated stimulation
of PI3K- and MAPK-related pathways out of physiological circumstances leads to an uncontrolled
acceleration of cell cycle, division, and low-grade inflammation, and these processes may promote
cancer development [38]. Therefore, the antioxidant-mediated neutralization of RONS may reduce
cancer risk. On the other hand, RONS may also oxidize DNA nitrogenous bases (especially guanine and
adenine), which are no longer read correctly, and induce the appearance of mutations. These mutations
may increase cancer risk whether they silence genes that downregulate cell proliferation or increase the
expression/function of proliferative genes [40]. Therefore, the neutralization of RONS may decrease
the mutation frequency rate in DNA. In addition, other typical MD antioxidants such as flavonoids
regulate the previous pathways beyond their capacity to scavenge RONS. First, flavonoids have shown
to directly modulate the excessive activation of PI3K- and MAPK-related signaling pathways [41].
Second, some flavonoids promote the activation of AMP-activated protein kinase. It is an enzymatic
complex able to decrease the synthesis of lipids and proteins, to moderate NF-κβ activation, to slow
down cell cycle, and to promote the synthesis of DNA-repairing and antioxidant enzymes [42,43], all
of them essential processes in cancer development. Finally, flavonoids have also shown to inhibit some
cytochrome P450 subunits involved in the activation of pro-carcinogens into active carcinogens, as
well as to induce some phase II enzymatic processes (glucuronidation, conjugation with glutathione)
responsible for carcinogen metabolism. Therefore, they promote a lower activation and a greater
elimination of these substances [44].

Fiber is also a key component in the MD healthy nutrient matrix because of its several mechanisms.
First, dietary fiber (and the prebiotic one in particular) is metabolized by the intestinal microbiota in
a process that leads to the release of short-chain fatty acids (SCFAs), essentially butyric, propionic,
and acetic acids [45]. Locally, these SCFAs cannot be used as energy source by cancerous colonocytes,
accumulate, and inhibit the action of histone deacetylase enzymes in these cells. This process alters
the epigenetic regulation of gene expression in cancerous colonocytes, decreasing their proliferation
and promoting their apoptosis [46]. SCFAs can also bind to specific receptors in some enterocytes
(GPR family receptors such as GPR43 and GPR109), which lead to the downregulation of NF-κβ.
The activation of these receptors decreases the local pro-inflammatory responses that can promote
the development of malignant enterocytes [47]. Some local and circulating immune cells also present
GPR receptors on their surface (lymphocytes, neutrophils, dendritic cells) and its regulatory function
on carcinogenesis may also be boosted by SCFAs [47,48]. Second, dietary fiber in an essential
nutrient for the proliferation of probiotic bacteria. Probiotic species do not release pro-inflammatory
endotoxins (e.g., lipopolysaccharide, mainly released by dysbiotic, unhealthy populations), avoid
the excessive growth of other non-beneficial bacterial strains, and contribute to maintaining a correct
intestinal permeability. Thus, fiber decreases the generation and absorption of endotoxins, and is
able to promote low-grade inflammation because of their capacity to stimulate immune cells such
as macrophages [49,50]. Finally, dietary fiber also contributes to decreasing glycemic index of foods.
Low glycemic index carbohydrates are associated with lower post-prandial RONS peaks [51], which
will decrease RONS-mediated cancer promotion. In addition, low glycemic index carbohydrates are
also related to lower levels of insulin and insulin-related growth factors (such as insulin-like growth
factor-1), therefore decreasing the uncontrolled promotion of growth responses [52].
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Other MD dietary characteristics may also contribute to its cancer prevention effects. On the
one hand, its richness in unsaturated fats (monounsaturated fatty acids –MUFAs– and PUFAs) may
contribute to decreasing low-grade inflammation. First, MUFAs and PUFAs are necessary activators
for the biochemical response of peroxisome proliferator-activated receptors, known to be able to
downregulate NF-κβ-related signaling pathways [53]. Second, PUFAs are able to bind to fatty acid
receptors such as GPR120 in some immune cells (e.g., macrophages), decreasing their pro-inflammatory
activation [54]. Finally, PUFAs are also transformed into less pro-inflammatory eicosanoids
(prostaglandins, thromboxanes, and leukotrienes) when they are metabolized by cyclooxygenases and
lipoxygenases [55]. On the other hand, the substitution of red and processed meats for other healthier
options in MD can also contribute to its anti-cancer capacity. Several substrates originating in the large
intestine by the bacterial metabolism on the digestion residuals of red and processed meats (hydrogen
sulfide, other sulfur compounds, nitrosamines, ammonia, amino acid metabolism residues, etc.) may
compromise the intestinal integrity. This process increases the colon permeability to pro-inflammatory
endotoxins such as lipopolysaccharide, released by dysbiotic bacteria [56]. In addition, cooking
derivatives of these foods and some components of processed meats (polycyclic aromatic hydrocarbons,
heterocyclic amines, N-nitroso compounds) are pro-carcinogenic agents [57]. Polycyclic aromatic
hydrocarbons are also known to promote pro-inflammatory responses through the activation of aryl
hydrocarbon receptors [58].

In summary, MD seems clearly linked to prevent the development of cancer, as reported in
observational studies and their meta-analyses. Its individual components (fruits, vegetables, whole
grains, legumes, nuts, fish, and a reduced intake of red/processed meats) have also been linked to
cancer prevention benefits in meta-analyses of prospective human studies, with several molecular
mechanisms supporting this hypothesis. However, further efforts in the context of dietary intervention
trials are needed to confirm this protective effect with the highest level of scientific evidence.
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