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Abstract
Stereomatching is essential and fundamental in computer vision tasks. In this paper, a

novel stereomatching algorithmbased on disparity propagation using edge-aware filtering

is proposed. By extracting disparity subsets for reliable points and customizing the cost vol-

ume, the initial disparitymap is refined through filtering-baseddisparity propagation. Then,

an edge-aware filter with low computational complexity is adopted to formulate the cost col-

umn, which makes the proposedmethod independent on the local window size. Experimen-

tal results demonstrate the effectiveness of the proposed scheme. Bad pixels in our output

disparitymap are considerably decreased. The proposedmethod greatly outperforms the

adaptive support-weightapproach and other conditional window-based local stereomatch-

ing algorithms.

Introduction
Stereo matching solves the correspondence problem between stereo image pairs, which for a
long time has been one of the most fundamental and challenging computer vision tasks. As
designed by Scharstein and Szeliski [1], and which is widely acknowledged by later researches,
a four-step framework of Stereo matching (as Fig 1 shows): matching cost computation, cost
aggregation, disparity computation and disparity refinement may generate the dense and two-
frame stereo problem. Most existing algorithms, including local, global as well as semi-global
ones, perform all or some of these four steps.

Local stereo matching algorithms usually perform cost computation and aggregation by a
simple winner-take-all (WTA) strategy. In contrast, global approaches transform the problem
to an energy-minimizationmodel, which formulate a global optimization function composed
of a data term and a smoothness term, and perform global disparity optimization [2–9] by
dynamic programming (DP), graph cuts (GC) [10,11] or belief propagation (BP) [12–15].
Although high accuracy can be achieved for disparity estimation through global optimization,
the large computation and time cost also limits its implementation in real-time applications.
Moreover, segment-based approaches utilize plane fitting from the initial disparities on each
segment, based on the assumption that disparities vary smoothly and continuously within each
homogeneous color segment. The result can be further improved by a global optimization
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model to find optimal parameters of disparity plane, as the labeling space is relatively small.
Recently the concept of semi-global stereo matching is also proposed based on a recognition
stage that the support pixels for cost aggregation should be selected from the whole image and
not restricted in a local matching window. Representatively, Hirschmuller introduced the
mutual information to compute pixel wise matching cost and aggregate the costs along multi-
ple paths that end in the current pixel [16]. Yang built a graph using all image pixels as nodes
and compute the matching cost adaptively based on pixel similarity on a minimum spanning
tree (MST) [17]. Matching cost aggregation plays a critical role to reduce the mismatching rate
when using the per-pixel matching function. For most local stereo matching algorithms this is
achieved by summing up or averaging the matching costs in a surrounding window centered
by the current pixel. Using adaptive support-weight [18,19] for neighbor pixels will take edges
or textures into account and bring better performance by adapting big date processing technol-
ogies [20–24].

In this paper a filtering-based stereo matching algorithm is proposed. Based on the percep-
tion that aggregating matching costs in a rectangular window is equivalent to filter the cost vol-
ume, we conducted the adaptive support-weight cost aggregation through filtering. Particularly
we used the edge-aware guided filter which has linear time complexity with respect to the
image size, it would reduce the computational complexity and greatly save the running time.
Then the reliable and unreliable points were obtained through crosschecking of two rough-esti-
mated disparity maps. Lastly, the high confidence disparity estimates are propagated from reli-
able points to unreliable ones by filtering a customized cost volume. A feedback-based
optimization can also be achieved by integrating the initial disparity map into the guide image
and re-execute the filtering progress. The main novelty of the proposed method is the utilize of
reliable points, by propagating of these point, high performance of stereo matching would be
achieved.

The rest of this paper is organized as follows. Section 2 explains the idea that matching cost
aggregation is equivalent to the cost volume filtering. In Section 3 the concept of reliable point
and disparity subset is first introduced, then we show how to customize a new cost volume to
propagate the useful information from reliable points to unreliable ones by applying edge-
aware filtering. Experimental results are demonstrated in Section 4, along with some analysis
and evaluation. Finally, we conclude our paper and discuss the future work in Section 5.

Cost Aggregationby Cost Volume Filtering
The robust dissimilarity measure taking both SAD and gradient into account [13] is used as the
pixel-wise matching cost function. Then a cost aggregation procedure which sums up costs in a
window is usually implemented for local stereo matching. In this way, cost aggregation is

Fig 1. Four-step framework of Stereomatching.

doi:10.1371/journal.pone.0162939.g001
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equivalent to applying filtering on the initial cost volume. Furthermore, the adaptive support-
weight can be achieved by an edge-aware filter such as bilateral filter. For non-linear filtering
each output pixel is calculated in O(r2) if the kernel size is r � r, thus the computational com-
plexity shoots up as the kernel size increases. The so-calledO(1) or constant time bilateral filter
[25,26], meaning the computational complexity is invariant to the kernel size, is designed for
fast implementation.

In this paper we adopt the guided filter proposed by He et al. [27] to conduct the cost vol-
ume filtering. The guided filter is based on a local linear model, assuming that in a local win-
dow the filtering output q can be expressed as a linear transform of the guided image I:

qi ¼ aT
k Ii þ bk; 8i 2 ok ð1Þ

Where (ak, bk) are linear coefficients which are constant in ωk, Considering the constraints
from the filtering input p the linear coefficients can be derived as:

ak ¼ ðSk þ εUÞ� 1
ð

1

jwj

X

i2wk

Iipi � mk�pkÞ

bk ¼ �pk � aT
k mk

ð2Þ

Here, Sk is the 3�3 covariance matrix of I in ωk, and U is a 3�3 identity matrix, μk is the
mean of image I. Then compute the output q using:

qi ¼ �aT
i Ii þ

�bi ð3Þ

The guided filter is also edge-aware like bilateral filter, yet has better performance near edge
locations. Another advantage of guided filtering is that the time complexity is only O(1) for
each pixel and O(N) for an image of N pixels. In contrast, traditional edge-aware filters such as
bilateral filter has O(r2) time complexity for each pixel when the local filter window has size of
r � r, thus for the whole image it’s O(Nr2) time. As the size of filter kernel increases, the time
cost for such filters increases rapidly as well. Although the guided filter follows the local linear
assumption, its computation complexity is unrelated to the local window size. This property
makes it more practical for cost volume filtering.

When performing guided filtering on the cost volume C, the input image to be filtered is a
certain slice at disparity candidate d in the cost volume, and the input color image of reference
view is used as the guide image. An initial disparity map can be generated using the winner-
take-all (WTA) strategy based on the filtered cost volume.

DisparityPropagation of Reliable Points
The left-right consistency check is widely used to verify the accuracy of the disparity estimation
for each pixel. In this work pixels that pass the cross-check are marked as reliable points, and
accordingly the others are unreliable ones. It is reasonable that the information of reliable
points in the cost volume has higher confidence and should do favor to other pixels.

A. Building Disparity Subsets
Denote the full disparity range as Dfull, a small subset Dsub(p) is built for each reliable pixel p
containing a couple of disparity candidates corresponding to the |Dsub(p)| minimal matching
costs in the cost volume. The size of the subset should be small as |Dsub(p)|≪ |D|. The
extracted disparity values have the highest confidence among all candidates for the current
pixel. Disparities out of this subset will be punished when filtering the cost volume. Fig 2 (a)
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shows the result of the cross-check based on the initial disparity map in (b). The unreliable pix-
els failing the cross-check are marked in red. Computing disparities in these red regions has to
consult to the useful information from nearby reliable points.

B. Disparity PropagationBase on CustomizedCost Volume
We customize a new cost volume based on the initial disparity map and the disparity subsets of
reliable points:

C0dðpÞ ¼
jd � DðpÞj þ dðp; dÞ; p 2 Preliable

0; else

(

ð4Þ

Where Preliable is the set of reliable pixels. D is the dense disparity map, δ(p, d) is the penalty fac-
tor. The costs for unreliable points are set to 0 hence to eliminate the negative impact of wrong
estimates, while for reliable points, disparities closer to the initial estimate D(p) still have
smaller values in the new cost volume. δ(p, d) is the penalty term to avoid being too far away
from the disparity subset in the new estimation.

dðp; dÞ ¼ 2 � expð� l1

X

ds 2 DsubðpÞ

jd � dsj � 1

jd � dsjÞ � expð� l2

X

ds 2 DsubðpÞ

jd � dsj>1

jd � dsjÞ ð5Þ

Where λ1< λ2 indicating that disparities far from the subset Dsub(p) will lead to larger pen-
alty. However, the penalty is limited as we use the exponential function.

Once again we perform the WTA optimization at each pixel and get a refined disparity
map. A constant-time median filter is then applied as post-processing to fill holes and remove
peaks.

C. IntegratingDisparity into Guided Filtering
The RGB image of the reference view is used as the guide image when filtering the cost volume.
Notice that before the new volume is generated an initial disparity map is available. The esti-
mated disparity can feed back to the filtering procedure as an extra channel of the guide image,
and bear a hand in filtering the customized cost volume. We integrate the disparity channel
into the RGB reference image and form a new RGB-D guide image. For guided filtering this
means simply replace the three-dimensional vector Ii in Eqs (2) and (4) with a four-

Fig 2. The “Tsukuba” test image. (a) Unreliable regionsmarked in red. (b) Initial disparitymap. (c) Refined
disparitymap after filtering-based disparity propagation.

doi:10.1371/journal.pone.0162939.g002
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dimensional one. Then disparity propagation using the new guide image and the customized
cost volume will lead to refinement and optimization of the disparity map.

ExperimentalResults
Our method is evaluated on the standard Middlebury benchmark. All the experiments run on
a PC platform equipped with Intel Core i5 CPU and 4GB memory. The size of the disparity
subset Dsub = 2, and parameters λ1 and λ2 are set to 0.04 and 1.2, respectively. Fig 3 shows the
left view of the four test image pairs “Tsukuba”, “Venus”, “Teddy”, “Cones” and their corre-
sponding ground truth disparity. The third column shows the disparity maps generated using
the proposed algorithm. Bad pixels with absolute disparity error larger than 1.0 are marked out
in the last column. It can be observed that the proposed algorithm recovers satisfactory dispar-
ity maps even for complicated scenes. Most of the bad pixels lie near edges where occlusion
often occurs and is challenging for all stereo matching algorithms.

Table 1 gives the quantitative evaluation indicators of our results with error threshold = 1,
along with results of some other representative algorithms such as adaptive support-weight
approach and global optimization algorithms using Graph Cuts or Belief Propagation. Our
method outperforms the others with respect to the average percent of bad pixels, especially for
the “Cones” image pair on which our method is in the top 3 considering all 3 indicators includ-
ing bad pixels in regions near discontinuities, non-occluded regions and all regions. For the
other test image pairs our results still occupy the advanced level among all algorithms listed
here. The proposed guided filtering-baseddisparity propagation outperforms the adaptive-
weight approach for all test images except for “Tsukuba”. Moreover, out algorithm maintain
the edge-aware property just as adaptive-weight yet has obvious advantage on computation
complexity, as guided filtering is O(1) time for each pixel and regardless of the filter kernel size.
This makes it easier to use bigger local window size when handling images of large size without
concern of sharp rise of the time cost.

Fig 3. Results of the proposed algorithm. (a) Left view of the input image pair. (b) Ground truth disparity
map. (c) Resulting disparitymap using our method. (d) Bad pixels with error lager than 1.0.

doi:10.1371/journal.pone.0162939.g003
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The running time of proposed method is as Table 2 shows, All the experiments run on a
Laptop T450s equipped with Intel Core i5-5200U CPU and 4GB memory.

We also test various combinations of parameters including the size of disparity subsets as
well as λ1, λ2 in the penalty term. Table 3 gives the average percent of bad pixels on the above 4
test image pairs when using various combinations of parameters, which is denoted in the form
of (|Dsub|, λ1, λ2). Our experience suggests that the size of disparity subsets |Dsub| in the range
[2,3], and [0.02,1.0], [0.8,2.0] for λ1, λ2 respectively can achieve approximately optimal results.
The selection of parameters is based on the experimental results on the test images, as listed in
Table 3. Empirically the size of disparity subsets is set to be small, for the initial disparity value
of a reliable points is regarded to be of relatively high confidence, thus large penalty should be
given to avoid large deviation from the subsets.

Conclusions
This paper proposes a stereo matching algorithm based on disparity propagation using edge-
aware filtering. By extracting disparity subsets for reliable pixels and define a new cost volume

Table 1. Middlebury error rates of different algorithms (Error Threshold = 1).

Algorithm Tsukuba Venus Teddy Cones Bad pixels(%)

nonoc all disc nonoc all disc nonoc all disc nonoc all disc

Ours 1.73 2.14 7.54 0.33 0.75 4.5 7.39 13.1 17.9 2.57 8.52 7.56 6.17

CostAggr+occ 1.38 1.96 7.14 0.44 1.13 4.87 6.8 11.9 17.3 3.6 8.57 9.36 6.2

MVSegBP [7] 1.06 2.78 5.57 0.2 0.61 2.02 6.53 11.3 14.8 5.29 11.3 14.5 6.34

RandomVote 4.85 5.54 17.7 0.13 0.45 1.86 5.4 9.54 14.8 2.62 7.93 7.54 6.53

GradAdaptWgt [11] 2.26 2.63 8.99 0.99 1.39 4.92 8 13.1 18.6 2.61 7.67 7.43 6.55

AdaptWeight [10] 1.38 1.85 6.9 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

EnhancedBP [6] 0.94 1.74 5.05 0.35 0.86 4.34 8.11 13.3 18.5 5.09 11.1 11 6.69

SemiGlob [8] 3.26 3.96 12.8 1 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.9 7.5

RealtimeBP 1.49 3.4 7.87 0.77 1.9 9 8.72 13.2 17.2 4.61 11.6 12.4 7.69

GC+occ [3] 1.19 2.01 6.24 1.64 2.19 6.75 11.2 17.4 19.8 5.36 12.4 13 8.26

doi:10.1371/journal.pone.0162939.t001

Table 2. Running time of proposedmethod.

Image Running time (s)

cones 11.591

teddy 12.044

venus 2.618

tsukuba 4.570

doi:10.1371/journal.pone.0162939.t002

Table 3. Error rates for various parameters (|Dsub|, λ1, λ2).

Parameters Bad pixels(%)

(1,0.04,1.2) 6.25

(2,0.04,1.2) 6.17

(2,0.04,0.8) 6.18

(2,0.10,1.2) 6.18

(3,0.04,1.2) 6.31

(4,0.04,1.2) 6.35

doi:10.1371/journal.pone.0162939.t003
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accordingly, mismatches in the initial disparity map are corrected through disparity propaga-
tion from nearby reliable points. The guided filtering is integrated to conduct the propagation
in O(1) time, which shows great advantage compared to traditional window-based cost aggre-
gation methods. Future work will focus on how to customize a more reasonable cost volume
which is essential to the disparity propagation. Occlusion handling and post processing of the
disparity map also remain to improve.
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