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SUMMARY

Synaptic structural plasticity, key to long-term memory storage, requires translation of localized 

RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and 

regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two 

members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either 

kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C 
enhances it. KIF5C function is a rate-determining component of local translation and is associated 

with ~650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated 

RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and 

contextual fear memory, whereas gain of function specifically enhances spatial memory and 

extinction of contextual fear. KIF5C-mediated long-distance transport of local translation 

substrates proves a key mechanism underlying structural plasticity and memory.
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In brief

Swarnkar et al. show that molecular motor KIF5C is a critical regulator of excitatory synaptic 

transmission, structural plasticity, and local translation. While knockdown of KIF5C impairs both 

contextual and spatial memory, its overexpression specifically enhances spatial memory.

INTRODUCTION

Transcription activation and local translation leading to structural plasticity at the synapse 

are critical components of long-term memory (LTM) in sea slugs (Alberini et al., 1994; 

Martin et al., 1997; Miniaci et al., 2008), worms (Kwak et al., 2008; Sharifnia and Jin, 

2015), flies (Davis, 2011; Pai et al., 2013; Wu et al., 2017), and mammals (Bekinschtein et 

al., 2008; Fioriti et al., 2015; Nakayama et al., 2017). In sensory and motor neurons of sea 

slug Aplysia, a homolog (ApKHC1) of a member of the Kinesin superfamily of proteins 

(Kifs) plays a key role in coordinating transcriptional and translational changes associated 

with LTM (Puthanveettil et al., 2008; Puthanveettil, 2013). Kifs are molecular motors 

moving from the minus end of microtubules to the plus end, mediating long-distance 

transport of organelles (Nangaku et al., 1994; Sekine et al., 1994), proteins (Kanai et al., 

2004; Liu et al., 2014; Ohashi et al., 2002; Puthanveettil et al., 2008), and RNAs (Dictenberg 

et al., 2008; Lyons et al., 2009; Puthanveettil, 2013). Long-distance transport by specific 

Kifs could be modulated to regulate the availability of gene products at synapse—although 
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the role of Kifs in coordinating communication between genes and synapses remains 

unclear.

Few studies show the role of Kifs in structural plasticity and LTM, either. Transgenic mice 

lacking KIF21B showed learning and memory deficits (Morikawa et al., 2018; Muhia et al., 

2016), and studies reflect cumulative effects of loss of function in the entire animal or large 

brain areas from early development. Mice overexpressing KIF17 in the forebrain showed 

improved spatial memory (Wong et al., 2002), and Zhao et al. (2020) found that conditional 

KIF5B knockout results in hippocampal long-term potentiation (LTP) deficits for learning 

and memory. Whether expression of Kifs in specific neuronal populations constrains LTM, 

how the Kifs are regulated, and how they function are all lingering questions. Compositions 

of cargos transported by Kifs, critical for memory storage, remain equally elusive. We 

executed loss-of-function and gain-of-function experiments in vitro and in vivo to assess 

whether manipulation of kinesin restricted to CA1 neurons of the hippocampus impacts 

learning and memory.

We first assessed the role of long-distance transport in neuronal morphology. Loss of 

function of two Kifs (KIF3A, a Kinesin-2 family member, and KIF5C, a Kinesin-1 family 

member) expressed in the same hippocampal (HP) neuron (Liu et al., 2014) diminished 

excitatory synaptic transmission, dendritic arborization, synapse density, and morphology. 

We found that the expression of KIF5C constrains local translation, a key mechanism 

determining structural plasticity at the synapse. Furthermore, KIF5C expression in dorsal 

CA1 neurons of the mouse hippocampus constrains spatial memory and contextual fear 

memory. Together, these observations shed mechanistic insight into Kif-mediated regulation 

of local translation, structural plasticity, and LTM.

RESULTS

Expression of KIF5C and KIF3A necessary for excitatory synaptic transmission and 
maintenance of spines and dendritic arbors

Since structural plasticity underlies LTM, we asked whether KIF5C and KIF3A 
differentially impact spine density and dendritic arborization, as they are associated with 

distinct protein cargos. We reasoned that both Kifs could be critical for synapse function, but 

that specific knockdown (KD) of either would result in a distinct phenotype. Loss of 

function could also produce a similar phenotype because the distinct pathways regulated by 

each are critical components governing synapse function and architecture. Following RNAi-

mediated KDs, we studied excitatory synaptic transmission, spine density, spine 

morphology, and dendritic arborization in mature HP neurons. In primary HP neuronal 

cultures, spines begin to form within 7–9 days in vitro (DIV) and mature from DIV 17 

(Hayashi et al., 2011; Rui et al., 2013).

First, we measured the effect of KIF5C or KIF3A KD on miniature excitatory postsynaptic 

currents (mEPSCs). Because mEPSC amplitude is directly related to postsynaptic strength—

whereas frequency is correlated with presynaptic release and inputs from a large number of 

synapses (Turrigiano et al., 1998)—we assumed that mEPSC measurements would 

distinguish pre- and postsynaptic effects of Kif KD, suggesting whether KD of different Kifs 
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produces different effects on excitatory synaptic transmission. A scrambled nontargeting 

short hairpin RNA (shRNA) acted as control. Electrophysiology measurements showed 

significant reduction in amplitude and frequency of mEPSCs in Kif KD neurons (n = 14, p = 

0.0009, one-way ANOVA followed by post hoc Tukey test; Figures 1A–1G; Table S1), 

suggesting the involvement of pre- and postsynaptic mechanisms. A multiplicative shift in 

mEPSC amplitude is a proven indicator of cell-wide changes in synaptic strength (O’Brien 

et al., 1998; Turrigiano et al., 1998). Our calculations of multiplicative shifts in KD neurons 

(KIF5C KD, 0.61; KIF3A KD, 0.62; relative to control) suggest that both KIF5C and KIF3A 
KD reduce synaptic strength across excitatory synapses, meaning expression of both KIF5C 
and KIF3A is critical for excitatory synaptic transmission contributed by both functional and 

morphological changes at synapse (Figures S1A–S1P).

We next examined spine density and morphology. Two different shRNAs (KD-C and KD-D) 

knocked down KIF5C and KIF3A expression in DIV 14 neurons. Spine morphology and 

dendritic branching at DIV 17 were analyzed by confocal live-cell imaging. Both KIF5C KD 

and KIF3A KD reduced total spine density in HP neurons (n = 9, ***p < 0.0001, one-way 

ANOVA followed by post hoc Tukey test; Figures 1H–1L; Table S1).

We then examined effect of KDs on synapse morphology, particularly mushroom spines—

called “memory spines”—for their correlation with synaptic plasticity and memory 

(Mahmmoud et al., 2015). We found a significant decrease (~20%) in mushroom spines in 

KIF5C KD-C and KIF5C KD-D neurons compared to control. No significant changes were 

observed in stubby spine morphology with KIF5C KD compared to control, but there was a 

significant increase in thin spines (~15%) with KIF5C KD-C and KIF5C KD-D compared to 

control (Figure 1M; Table S1). KIF3A KD produced similar effects: ~15% reduction in 

mushroom spines in KIF3A KD-C and KIF3A KD-D neurons compared to control (Figure 

1N), but no significant difference in stubby spines or thin spines compared to control (*p < 

0.05, **p < 0.005, one-way ANOVA followed by post hoc Tukey test; Table S1).

Next, we examined Kif KD on dendritic arborization. Quantitative analysis of dendritic 

arbor by Sholl method (Raveendra et al., 2018) revealed significant differences in dendritic 

arborization following KIF5C or KIF3A KD (Figures 1O and 1P). We analyzed number of 

dendrites from 20 μm of soma and arborization changes up to 80 μm. Significant reduction 

in dendritic branching occurred in both KIF5C and KIF3A KD neurons (Figures 1Q and 1R; 

one-way ANOVA followed by post hoc Tukey test, *p < 0.05, **p < 0.005, ***p < 0.0005; 

Table S1). This suggests that both KIF5C and KIF3A play critical roles in excitatory 

synaptic transmission and neuronal architecture.

Gain of function of KIF5C but not KIF3A in HP neurons enhances mEPSCs

To assess whether long-distance transport mediated by Kifs is sufficient for synapse function 

and structural plasticity, we performed gain-of-function analyses to study effects of 

overexpression (OE) of KIF5C and KIF3A in HP neurons by cloning full-length (FL) 

cDNAs and expressing them as eGFP fusion proteins (C terminus) under control of CMV 

promoter in HP neurons. After confirming that KIF5C and KIF3A OE constructs are 

functional and results in enhanced transport of protein cargos in HP neurons (see STAR 

Methods), we asked whether OE of the Kifs changes synaptic transmission and executed 
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whole-cell patch-clamp recording to measure mEPSCs after 24 h of transfection in Kif OE 

primary HP neurons at DIV 16–17. Amplitude of mEPSCs significantly increased in KIF5C-

overexpressing neurons compared to control eGFP neurons (p = 0.021; unpaired, two-tailed 

Student’s t test). Change in frequency was comparable between KIF5C-overexpressing 

neurons and controls (p = 0.75; unpaired, two-tailed Student’s t test; Figures 2A–2F; Table 

S1), suggesting specific effect on mEPSC components. Next, we recorded mEPSCs after 

overexpressing KIF3A in primary neurons and found no change in amplitude or frequency 

with KIF3A OE compared to control (p > 0.05; unpaired, two-tailed Student’s t test; Figures 

S2A–S2F; Table S1). This indicates that KIF5C OE impacts a specific component of 

mEPSCs sufficient for enhancing excitatory synaptic transmission, whereas KIF3A OE is 

insufficient to produce synaptic enhancements in HP neurons. The multiplicative shift 

between OE and eGFP control neurons (KIF5C OE, 1.49; KIF3A OE, 0.94; compared to 

eGFP alone) suggests that, in contrast to KIF3A, KIF5C OE enhances strength of excitatory 

synapses.

Gain of function of KIF5C in HP neurons enhances dendritic arborization and synapse 
density

We next examined whether KIF5C OE change spine morphology and dendritic arborization. 

If enhancing dendritic localization of cargos by OE alone produces long-term change in 

morphology, we anticipated enhanced spine density, morphology, and dendritic arborization. 

We used DIV 14 cultures to overexpress KIF5C and analyzed spine morphology and 

dendritic branching at DIV 15. Neurons expressing eGFP alone served as controls. 

Consistent with our electrophysiological results, confocal live-cell imaging showed KIF5C 
OE in HP neurons increasing total spine density compared to controls. We also observed 

significant increase in mushroom spines in KIF5C OE neurons compared to controls. 

Significant decrease in thin spines was observed in OE neurons, with no significant change 

in stubby spines (n = 36; p < 0.005 unpaired, two-tailed Student’s t test; Figures 2G–2J; 

Table S1).

We then assessed KIF5C OE’s effect on dendritic arborization. Sholl analysis showed 

KIF5C OE significantly increased dendritic branching, starting at 20 to 80 μm in HP neurons 

(Figures 2K–2L; Table S1) and suggesting that increased expression of KIF5C can produce 

new branching points in HP neurons.

We next asked whether KIF5C OE recruits KIF3A to enhance synapse density and dendritic 

arborization. Our analysis of spine density and dendritic arborization in neurons that 

overexpress KIF5C but deplete KIF3A suggested that enhancements in spine density, 

mushroom spines, and dendritic arborization (p < 0.01; unpaired, two-tailed Student’s t test; 

Figures 2M–2R; Table S1) in KIF5C OE neurons are independent of KIF3A levels (see 

STAR Methods).

cAMP-PKA signaling regulates KIF5C expression and function

Modulation of synaptic transmission and architecture by KIF5C expression implied that 

KIF5C may play a key role in LTM, associated with remodeling synaptic connections. We 

determined whether learning-related signaling regulates KIF5C expression and therefore 
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asked whether activating cAMP signaling could enhance KIF5C mRNA levels, as the 

cAMP-PKA signaling pathway is critical for learning and memory (Bacskai et al., 1993; 

Kandel 2012; Ma et al., 2009). We examined changes in mRNA expression of KIF5C after 

stimulating HP neurons with forskolin, an activator of adenylyl cyclase and cAMP signaling. 

We observed significantly increased relative gene expression of KIF5C (1.5 ± 0.14; n = 3) 

30 min after forskolin treatment. Upregulated gene expression is blocked by treatment with 

PKA inhibitor 14–22 amide (cell-permeable specific inhibitor of PKA), suggesting that 

KIF5C mRNAs are upregulated by forskolin in a PKA-dependent manner (1.15 ± 0.11; n = 

3; *p < 0.005, one-way ANOVA followed by post hoc Tukey test; Figures 3A and 3B; Table 

S1).

To determine whether KIF5C expression impacts cAMP-dependent changes in synaptic 

transmission and spine morphology, we measured forskolin-induced changes in mEPSCs in 

neurons with either KIF5C KD or OE. Consistent with prior data (Raveendra et al., 2018; 

Bie and Pan, 2005; Chen and Regehr, 1997), we found forskolin exposure increased mEPSC 

amplitudes and frequencies. Increase in amplitude for mEPSCs was significantly reduced in 

KIF5C KD neurons compared to nontargeting shRNA control. Frequency changes in 

mEPSCs in the forskolin + KIF5C KD group were significantly higher than those in the 

KIF5C KD group alone (p < 0.0001, one-way ANOVA followed by post hoc Holm-Sidak 

test; Figures 3C–3F; Figures S2G and S2H; Table S1). mEPSC frequencies and amplitudes 

in forskolin + KIF5C KD neurons did not reach levels of forskolin alone, indicating that 

KIF5C is essential for forskolin-induced changes in synaptic transmission.

We observed no significant difference in forskolin-induced changes in mEPSC amplitude in 

KIF5C OE neurons compared to vehicle control. Change in frequency was comparable 

between control and KIF5C OE, whereas we observed a significant increase in frequency of 

forskolin-treated KIF5C OE neurons compared to KIF5C OE neurons alone (p < 0.0001, 

one-way ANOVA followed by post hoc Holm-Sidak test; Figures 3G–3J; Figures S2I and 2J; 

Table S1). Although KIF5C OE alone could increase mEPSC amplitudes, an additional 

increase in mEPSC amplitude was unobserved in the presence of forskolin, likely due to a 

ceiling effect on mEPSC amplitudes in KIF5C OE neurons. Consistent with prior data, spine 

morphology analysis indicated that KIF5C partly mediates mushroom spine morphology 

changes induced by cAMP signaling (*p < 0.01, *p < 0.001, and ***p < 0.0001, one-way 

ANOVA followed by post hoc Tukey test; Figures 3K–3N; Table S1; STAR Methods).

KIF5C regulates local translation

Through long-distance transport of RNAs, KIF5C may regulate availability of substrates for 

local translation. We therefore assessed whether forskolin-dependent changes in local 

translation require KIF5C. Having confirmed the quality of synaptoneurosome preparation 

(see STAR Methods), we studied effects of KIF5C KD on local translation by measuring 

peif2a/eif2a in synaptoneurosome proteins. After 72 hours of KIF5C KD, neuronal cultures 

were treated with forskolin or vehicle for 30 min. Synaptoneurosomes were isolated from 

control and KIF5C KD alone cells along with forskolin + KIF5C KD neurons. By 

quantifying changes in ratio of peif2a/eif2a, we found significant increase in ratio in KIF5C 
siRNA KD synaptoneurosomes (137.32 ± 12.92) compared to control (100 ± 9.88), 
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suggesting diminished translation in KIF5C KD synaptoneurosomes (n = 7, *p = 0.0486, 

one-way ANOVA; Figures 4A–4C; Figures S3A–S3F; Table S1). peif2a/eif2a ratios were 

comparable between KIF5C KD and forskolin + KIF5C KD synaptoneurosomes, suggesting 

KIF5C’s role in modulating local translation.

We questioned whether an increase in KIF5C levels resulted in enhanced local translation. 

First, we carried out puromycin labeling (Ravi et al., 2018) of newly synthesized proteins 

(STAR Methods) and asked whether KIF5C OE in HP neurons changes puromycin-labeled 

proteins. We then studied whether KIF5C OE enhances local translation. Western blot (WB) 

analysis of synaptoneurosomes (Figures 4D–4F) showed KIF5C OE increased puromycin-

labeled proteins, suggesting enhancement in local translation in KIF5C OE neurons (210.62 

± 29.6) compared to control (100 ± 24.5; n = 3; *p < 0.01; unpaired, two-tailed Student’s t 

test; Figure 4F; Figures S3G–S3I; Table S1). To confirm, we immunostained primary 

neurons. KIF5C OE resulted in increased staining of puromycin-labeled proteins in 

dendrites (1,204.3 ± 452.1, n = 8) when compared to eGFP control (452.10 ± 174.7, n = 7; 

**p < 0.001; unpaired, two-tailed Student’s t test; Figures 4G and 4H; Figures S3J–S3K; 

Table S1). This suggests that KIF5C is a key mediator of local translation in HP neurons.

KIF5C mediates long-distance transport of molecular substrates of local translation

KIF5C’s role mediating local translation suggests that it may transport mRNAs for 

translation at the synapse. RNA transport is achieved by interaction of kinesin with RNA-

protein complexes (ribonucleo-particles [RNPs]). Scott et al. (2011), Puthanveettil et al. 

(2008), Puthanveettil (2013), and Liu et al. (2014) have shown kinesins associated with 

multi-protein complexes, and RNA-binding proteins are associated with distinct populations 

of RNAs (Kiebler and Bassell, 2006; Tübing et al., 2010; Fritzsche et al., 2013). We 

assumed that RNA-sequencing (RNA-seq) analysis of kinesin complexes (KIF-seq) would 

unravel RNAs associated with multiple RNA-binding proteins interacting with kinesin, and 

we sought to identify KIF5C-transported RNAs by RNA-seq analysis of endogenous KIF5C 

complexes isolated from mouse hippocampus. Super-resolution images show endogenous 

KIF5C expression punctate throughout dendritic processes of matured hippocampal neurons 

(Figure S3L). Our KIF5C-seq analysis identified 651 coding and noncoding RNAs (>1.4-

fold enrichment, padjusted < 0.05; DEseq2; Tables S2 and S3) in KIF5C 

coimmunoprecipitation compared with control. To identify specific signaling pathways 

mediated by KIF5C-transported RNAs, we analyzed RNA-seq data by Gene Ontology (GO) 

and Reactome pathway analysis (Figures 4I–4L; Figures S3M–S3O). We found RNAs 

associated with KIF5C are involved in several key synaptic pathways—synapse 

organization, dendritic development, axon, postsynaptic density and specialization—

suggesting that KIF5C transports several synaptic-signaling RNAs. Because KIF5C-

associated RNAs indicate the component of global transcriptome that is actively transported, 

we sought to determine whether KIF5C-associated RNAs overlap with distally localized 

RNAs and with global hippocampal transcriptome. We compared an RNA-seq dataset 

generated from neuropil of rat hippocampus (Cajigas et al., 2012), mouse hippocampus 

(Farris et al., 2019), and hippocampal global transcriptome (Cembrowski et al., 2016), 

applying the criteria: average TPM cutoff of >2; padj < 0.05, log2FoldChange > 0 (for data 

from Farris et al. and Cembrowski et al.). We find that KIF5C-associated RNAs share 32% 
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and 34.5% sequences with neuropil-localized transcriptome of rat and mouse hippocampus, 

respectively, and 98% with hippocampal transcriptome (Figure S3P; Tables S2, S3, and S4). 

Since the localized RNA pool consists of populations transported by multiple molecular 

motors—localized, translationally repressed, and active RNAs—whereas KIF5C-associated 

RNAs are more dynamic, these data suggest enrichment of specific population of RNAs 

associated with KIF5C.

Next, we aimed to confirm whether KIF5C regulates availability of RNAs at synapse for 

local translation. First, focusing on 4 mRNA candidates (SYN1, UBAP21, NOVA2, EIF3G) 

identified from RNA-seq (Table S2), we assessed whether KIF5C KD decreases expression 

of candidate RNAs in synaptoneurosomes. qPCR of synaptoneurosome-enriched RNAs, as 

well as those from cytosol fractions and total homogenates prepared from KIF5C KD or 

control neurons, suggested a reduction in KIF5C reduces levels of all candidate mRNAs in 

synaptoneurosome fractions (Figures S3Q–S3R; n = 3 for all, *p < 0.05, one-way ANOVA 

followed by post hoc Tukey test; Figures 4M and 4N; Table S1). Second, qPCR analysis of 

synaptoneurosome-associated RNAs prepared from KIF5C OE-Lenti eGFP- or control 

eGFP-transduced neurons showed increasing KIF5C expression upregulated levels of 

candidate mRNAs in homogenate and synaptoneurosomes (Figures S3S–S3T; Table S1). 

Third, to confirm whether KIF5C-transported RNAs are used for local translation, we 

expressed tagged ribosomes (L10A-eGFP-tagged ribosomes; Drane et al., 2014) in HP 

neurons and isolated tagged ribosomes using anti-eGFP antibody (Figures S4A and S4B). 

Ribosome association suggests mRNAs being translated. Total RNAs were recovered from 

tagged ribosomes and eGFP-alone controls, and then analyzed by Bio-analyzer to confirm 

integrity and expression (Figure S4C). We next isolated tagged ribosomes from forskolin-

treated synaptoneurosome fractions (Figure 4O). qPCR analysis of ribosome-associated 

RNAs from synaptoneurosomes showed that KIF5C KD reduced levels of SYN1, UBAP21, 

NOVA2, and EIF3G RNA associated with ribosomes (n = 3 for all; *p < 0.05, one-way 

ANOVA followed by post hoc Tukey test; Figure 4P; Table S1; see also STAR Methods). 

Furthermore, dendritic localization these RNAs are independent of KIF3A levels (n = 6 for 

all; **p <0.005, one-way ANOVA followed by post hoc Tukey test; Figure S4D; Table S1). 

To further confirm KIF5C-dependent RNA transport, we studied the dendritic localizations 

of two RNA candidates EIF3G and SYN1 in hippocampal neurons. Using structured 

illumination microscopy (SIM), mRNA localization was visualized using DIG-labeled 

antisense riboprobes for fluorescence in situ hybridization (FISH) analysis. A sense 

riboprobe determined specificity. Consistent with the assumption that KIF5C transports 

EIF3G and SYN1, we found a decrease in dendritic localization of SYN1 and EIF3G with 

KIF5C KD (n = 3–4 for all, *p < 0.05; unpaired, two-tailed Student’s t test; Figures S4E–

S4I).

EIF3G constrains structural changes induced by KIF5C OE

We next focused on the role of EIF3G transport in structural changes. EIF3G regulates 

eukaryotic translation initiation and is a major target for translational control. FISH 

experiments show that enhancing levels of KIF5C could increase localization of EIF3G 
mRNAs in dendrites (Figures S4E–S4Q). To determine whether enhancing EIF3G RNA 

transport indeed increases eIF3g protein levels, we examined the protein levels in 
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synaptoneurosomes isolated from KIF5C OE HP neurons. Consistent with prior data 

(Figures S5A–S5C; Table S1), we found KIF5C OE enhanced eIF3g protein levels in 

synaptoneurosomes (234.92 ± 37.60) compared to control (100 ± 24.60, n = 3, **p <0.01; 

unpaired, two-tailed Student’s t test; Figures S5D–S5F; Table S1). We then studied 

puromycin-labeled proteins isolated from synaptoneurosomes. The WB analyses in Figures 

5A–5C (Table S1) show enhanced synthesis of eIF3g proteins in KIF5C OE neurons.

We questioned whether SHANK2, SYNGAP1, GLUR1, and CAMKIIβ-1—four other 

KIF5C RNAs—are among newly synthesized proteins due to KIF5C OE in HP neurons. 

Consistent with KIF5C’s role in local translation, we found expression of these proteins in 

synaptoneurosomes is significantly enhanced with KIF5C OE(n = 3 for all, *p < 0.05, 

unpaired, two-tailed Student’s t test; Figures 5A–5C; Table S1).

To confirm that KIF5C OE enhances translation of specific RNAs, we used the puro-PLA 

(puromycin-proximity ligation assay) method (Dieterich et al., 2010; tom Dieck et al., 2015) 

to visualize newly synthesized proteins in dendritic compartments. Following KIF5C OE at 

DIV 3, we executed puro-PLA at DIV 15–16 and analyzed three candidates, eIF3g, GluR1, 

and CamKIIβ−1 (Figures 5D–5K). Neurons transfected with GFP alone acted as controls. 

Consistent with prior data, KIF5C OE enhanced protein synthesis in dendrites with KIF5C 
OE (n = 3 for all, *p < 0.05, unpaired, two-tailed Student’s t test; Figures 5F–5H; Table S1) 

and further confirmed that KIF5C OE enhances translation (Figure 5E). We also observed 

translation enhancements of eIF3g and CamKIIβ−1 in neuronal soma in KIF5C OE (n = 3 

for all, *p < 0.05; unpaired, two-tailed Student’s t test; Figures 5I–5K; Table S1), suggesting 

KIF5C OE’s global effect on translation.

We studied two other indicators of translation in KIF5C OE neurons, pS6K/S6K (phospho-

S6K/total S6K) and pS6/S6 (phospho-S6/total S6), and found that pS6K and pS6 were 

enhanced in total protein extractions (n = 7, *p < 0.05, unpaired, two-tailed Student’s t test; 

Figures 5L–5O; Table S1). Based on prior findings that ApKHC1 OE in Aplysia presynaptic 

sensory neurons (Puthanveettil et al., 2008) and KIF17 OE in mouse forebrain (Wong et al., 

2002) resulted in activation of CREB-mediated transcription through feedback mechanism, 

we asked whether KIF5C OE could result in activation of CREB. Our WB data (Figures 5M 

and 5N) show that KIF5C OE (n = 9, *p < 0.05, unpaired, two-tailed Student’s t test; Figures 

5M and 5N; Table S1) indeed produced enhanced CREB phosphorylation, suggesting 

activation of CREB signaling in OE neurons (pCREB/CREB ratio: KIF5C OE: 124.02 ± 

8.54; control: 100 ± 7.32, n = 9).

Next, we explored EIF3G as a mediator of KIF5C OE-induced enhancement in dendritic 

arborization and synapse morphology. We carried out EIF3G KD by expressing EIF3G 
shRNAs in KIF5C OE neurons and quantified structural changes. If EIF3G levels were 

critical for KIF5C OE effects, EIF3G KD should inhibit structural changes in KIF5C OE 

neurons. We verified the extent of KD of EIF3G using two different shRNAs (Figures S5G–

S5J; Table S1). Spine density measurements indicated that EIF3G knockdown in KIF5C OE 

neurons caused significant decrease in total spine density (n = 20, **p < 0.001, one-way 

ANOVA followed by post hoc Tukey test; Figures 5O–5Q; Table S1).
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We then analyzed spine morphology changes in KIF5C OE + EIF3G KD HP neurons, and 

found that EIF3G KD in the KIF5C OE neuron reduced mushroom spines compared to 

KIF5C OE alone. We also observed significant decrease in mushroom spines by EIF3G KD 

compared to KIF5C OE (mushroom spines:n = 20, *p < 0.01, one-way ANOVA followed by 

post hoc Tukey test; Figure 5R; Table S1).

Next, we determined dendritic arborization and, consistent with spine density and 

morphology data, found a significant decrease in dendritic branching in KIF5C OE + EIF3G 
KD neurons compared to KIF5C OE neurons (n = 14; *p < 0.01, and unpaired, two-tailed 

Student’s t test; Figures S5K–S5M; Table S1). This suggests that KIF5C mediates local 

translation and structural plasticity through EIF3G localization in dendrites.

KIF5C KD in dorsal CA1 neurons produces specific learning and memory deficits in mice

The role of KIF5C in mediating dendritic and spine morphology and the regulation of its 

expression by cAMP signaling fueled our idea that KIF5C could be a critical component of 

LTM. We asked whether KIF5C expression is regulated by learning-related signaling in 

adult mouse hippocampus. We induced chemical LTP (cLTP) in mouse hippocampus (Ch’ng 

et al., 2012) and quantified KIF5C expressions by western analysis of proteins isolated from 

CA1 subregion. We incubated slices for 60 min in Mg2+-free artificial cerebrospinal fluid 

(ACSF) supplemented with rolipram, forskolin, and bicuculline (Kopec et al., 2006). As 

shown in Figures 6A and 6B, following cLTP stimulation, a robust increase in KIF5C level 

was detected in CA1 by immunoblotting proteins isolated from punches from the CA1 area 

of brain slices (n = 10; p = 0.031). A significant increase in GluR2 level with cLTP was 

detected by immunoblotting (p = 0.0023; unpaired, two-tailed Student’s t test; Figures 6C 

and 6D; Table S1). cLTP did not induce changes in KIF5C and GluR2 levels in other brain 

regions, including prefrontal cortex and striatum (n = 10; unpaired, two-tailed Student’s t 

test; Figures S5N–S5T; Table S1). These results indicate that KIF5C protein levels are 

upregulated in CA1 by cLTP.

We then wondered whether manipulating KIF5C expression in CA1 by KD or OE impacted 

two associative memory processes—spatial memory and contextual fear memory (Figures 

6E–6G; Figure S6A). Performance in Morris water maze (MWM) tested spatial memory, 

and contextual fear conditioning (CFC) assessed contextual fear memory.

First, we verified expression of lentiviral constructs (STAR Methods; Figures S6B–S6E). 

Then we studied effects of KIF5C KD on spatial memory. Control and KIF5C KD 

lentivirus-injected mice swam to a hidden platform (location P in quadrant Q1; Figure S6F). 

In the MWM, KIF5C KD virus-injected mice displayed poor spatial memory relative to 

control virus-injected mice (Figures 6F–6M). CA1 KIF5C KD mice also spent significantly 

less time in target quadrant (Q1) (34.1 ± 1.94; n = 16) compared to control (44.9 ± 2.8; n = 

17; p = 0.0042; unpaired, two-tailed Student’s t test; Figure 6H; Table S1). There were 

significantly fewer visits to Q1 by KIF5C KD (6.2 ± 0.4; n = 16) compared to control (7.7 ± 

0.42; n = 17; p = 0.022; unpaired, two-tailed Student’s t test; Figure 6I; Table S1). Time 

spent in drop quadrant (Q4) by KIF5C KD also increased (23.5 ± 2.04; n = 16) compared to 

control (15.1 ± 1.7; n = 17; p = 0.003; unpaired, two-tailed Student’s t test; Figure 6K; Table 

S1). Difference between total distances covered is comparable and similar speed was 
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maintained during probe test (Figures 6L and 6M; Table S1). Despite improving across 

training, latency of CA1 KIF5C KD mice was significantly higher (Figure S6G; Table S1) 

than control during second, third, and fourth days of training, indicating relatively poor 

learning ability. The two groups maintained comparable distance and speed during training, 

indicating no sign of motor impairment (Figures S6H and S6I; Table S1).

We next asked whether KIF5C KD in dorsal CA1 may be critical for contextual fear 

memory (Figures 6N–6Q). KIF5C KD virus-injected mice (28.9 ± 3.65) displayed 

comparatively weaker freezing responses during retrieval than control virus-injected mice 

(41.03 ± 3.8; n = 16; p = 0.043; unpaired, two-tailed Student’s t test; Figure 6O; Table S1). 

We also examined freezing response elicited per minute and found significant reduction in 

freezing at the first and third minute (Figure 6Q; Table S1), while distance traveled during 

test was not significantly different between groups (Figure 6P; Table S1). Freezing response 

and distance traveled in training were comparable between groups (Figures S6J and S6K; 

Table S1).

Gain of function of KIF5C in dorsal CA1 neurons improves spatial memory but not 
contextual fear memory

Based on effects of KIF5C OE on excitatory synaptic transmission and mushroom spine 

density in neuronal cultures, we assumed that KIF5C OE could potentially enhance LTM. To 

test this, we studied gain of function of KIF5C by KIF5C OE in dorsal CA1 neurons on 

spatial and contextual fear memories (Figure 7A). First we assessed KIF5C OE in spatial 

memory (Figures 7B–7I). Control and KIF5C OE lentivirus-injected mice swam to a hidden 

platform (location P in quadrant Q1; Figure S6F). CA1 KIF5C OE mice spent significantly 

more time (43.9 ± 3.3) in the platform-containing quadrant than controls (32.5 ± 2.4) during 

probe trial on day 7 (p value, 0.01; Figure 7D; Table S1), suggesting spatial memory 

improvement. Number of visits to Q1 was comparable between CA1 KIF5C OE mice (7.8 ± 

0.4) and controls (7.9 ± 0.7; Figure 7E; Table S1). Time spent in Q4 was comparable 

between KIF5C OE mice (18.13 ± 2.04) and controls (20.96 ± 3.1; Figure 7G; Table S1). 

Control and CA1 KIF5C OE mice did not differ in escape latencies on days of training 

(Figure S6L; Table S1). Similar speed was maintained during probe test in CA1 KIF5C OE 

mice (19.4 ± 0.65) and controls (19.8 ± 0.77). Moreover, distance traveled by KIF5C OE 

mice (1208.7 ± 40.5) was comparable to controls (1,256.4 ± 52.3), suggesting no motor or 

visual impairment (Figures 7H and 7I; Figures S6M and S6N; Table S1).

In contrast to spatial memory, we observed no enhancements to contextual fear memory 

(Figure 7J). Percent freezing measured at 24 h after training in KIF5C OE (42.2 ± 4.5) 

lentivirus-injected mice and controls were not significantly different (41.8 ± 5.0, 24 h after 

foot shock; Figures 7K–7M; Figure S6O and S6P; Table S1).

Our results suggest that KIF5C OE effects are selective exclusively for spatial memory, but 

we speculated that lack of effect on contextual fear could be due to the strong shock 

paradigm used during training, masking potential memory enhancements due to ceiling 

effect. We applied a lower-intensity foot shock paradigm (Figure 7N) and assessed two other 

fear memory-related paradigms, extinction of contextual fear and extinction recall. We 

examined percent freezing after foot shock in each session: habituation (KIF5C OE: 0.16 ± 
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0.06, n = 9; control: 0.33 ± 0.30, n = 11), session 1 (KIF5C OE: 1.25 ± 0.46, n = 9; control: 

1.42 ± 0.70, n = 11), session 2 (KIF5C OE: 7.65 ± 2.0, n = 9; control: 10.27 ± 1.72, n = 11), 

and session 3 (KIF5C OE: 8.59 ± 3.39, n = 9; control: 6.8 ± 2.32, n = 11). We observed 

percent change in freezing was comparable in control and KIF5C OE mice (Figure S6Q). 

Next, we examined whether training exposure induces generalization in KIF5C OE mice. 

We found the percent freezing per minute bin: min1 (KIF5C OE: 16.2 ± 2.72, n = 9; control: 

27.44 ± 4.62, n = 11), min2 (KIF5C OE: 41.43 ± 5.06, n = 9; control: 45.0 ± 5.25, n = 11), 

min3 (KIF5C OE:38.27 ± 6.77, n = 9; control: 37.71 ± 6.01, n = 11), min4 (KIF5C OE: 

35.66 ± 5.08, n = 9; control: 40.8 ± 6.16, n = 11), and min5 (KIF5C OE: 30.9 ± 7.17, n = 9; 

control: 27.34 ± 6.0, n = 11). No significant difference in consolidation of fear memory 

between control and KIF5C overexpressed mice appeared (Figure S6R).

Given that extinction trace decays over time, we tested fear memories for 30 min, tracking 

every 5 min (Table S1). We observed enhanced extinction of contextual fear in KIF5C OE 

mice (at 30 min, *p = 0.0497; Figure 7O). When control and KIF5C OE mice were assessed 

for extinction recall, freezing performance was comparable every minute for 5-min test 

among groups (Figure S6S; Table S1), suggesting KIF5C OE enhances extinction and does 

not impact consolidation or extinction recall of contextual fear memory.

Next, we examined whether the effects of KIF5C manipulation produced structural changes 

in vivo, similar to primary HP neurons (Figure S6T). Consistent with in vitro data, total 

spine density in CA1 neurons decreased with KIF5C KD but increased with KIF5C OE 

compared to eGFP control (*p = 0.01, one-way ANOVA followed by post hoc Dunnett’s 

test; Figure S6U; Table S1). Our analysis showed significant reduction in mushroom spines 

in KIF5C KD CA1 neurons and increase in mushroom spines in KIF5C OE CA1 neurons 

compared to control (*p <0.01, one-way ANOVA followed by post hoc Dunnett’s test; 

Figure S6V; Table S1).

DISCUSSION

Our aim in this work was to assess the role of Kif mediated long-distance transport in 

structural plasticity and memory. We studied contributions of KIF5C and KIF3A expressed 

in the same HP neurons (Liu et al., 2014) in excitatory synaptic transmission, spine density, 

morphology, and dendritic arborization. While both Kifs are critical for synaptic 

transmission and morphology, only KIF5C OE enhanced mEPSCs and structural plasticity 

in HP neurons.

Regulation of local translation by KIF5C-mediated transport of RNAs

Identification of localized RNAs provides important clues to local protein synthesis and 

informs us of proteins needed at synapse for structural plasticity associated with memory 

storage. Aplysia studies have identified several RNAs localized to sensory neuron terminals 

(Moccia et al., 2003; Moroz et al., 2006) and a molecular motor (ApKHC1) that mediates 

the transport of RNAs to neuronal terminals (Puthanveettil, 2013). Microarray and RNA-seq 

methodologies successfully identified several RNAs localized to mammalian neuronal 

dendrites (Kim et al., 2004; Sambandan et al., 2017), but Kifs involved in dendritic 

localization remain elusive. In mouse neurons, several RNA binding proteins have been 
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associated with the tail domain of KIF5C (Kanai et al., 2004), suggesting a role for KIF5C-

mediated transport of RNAs to dendrites. As structural changes at the synapse require local 

new protein synthesis, we considered that KIF5C might transport RNAs to dendrites for 

local translation. KIF5C KD decreased density of mushroom spines, whereas its OE 

enhanced it. Consistent with our assumption that KIF5C OE might enhance translation to 

produce structural changes at the synapse, we find from puromycin labeling experiments 

that KIF5C OE resulted in enhanced translation.

To identify populations of RNAs transported by KIF5C, we developed KIF-seq, isolating 

endogenous KIF5C complexes by coimmunoprecipitation (co-IP) from hippocampal 

neurons and analyzing components by RNA-seq. We identified ~650 RNAs (padj < 0.05) 

associated with KIF5C. These RNAs are involved in synapse function, protein synthesis, and 

neurodegenerative disorders. They may serve as substrates for local new protein synthesis 

(Figure 7P), suggesting a key role for KIF5C in dendritic RNA localization in HP neurons—

as KIF5C function could determine availability of these RNAs for local translation.

We found that synaptic localization of RNAs encoding key proteins involved in plasticity 

and memory, such as GLUR1, SYNGAP, SHANK2, and CAMKIIβ-1, is mediated by 

KIF5C (Figure 7P). These RNAs encode critical components of translational machinery and 

excitatory synapse. Taken together KIF5C-mediated transport is a key regulatory mechanism 

linking transcription, local protein synthesis, and structural plasticity in HP neurons.

KIF5C as key regulator of structural plasticity and LTM

Only a few genetic studies exist on loss of function of Kifs in LTM (Kondo et al., 2012; 

Muhia et al., 2016; Yin et al., 2011; Muhia et al., 2016; Makrythanasis et al., 2018; Zhao et 

al., 2020), and no exploration of kinesin OE in specific subregions of mammalian brain on 

memory and learning has been undertaken. Our imaging, electrophysiology, and molecular 

experiments described in Figures 1, 2, 3, 4, and 5 suggest that KIF5C is a key regulator of 

structural plasticity in cultured HP neurons. Consistent with these observations, we find that 

KIF5C levels in hippocampal CA1 neurons are regulated by neuronal activity and altering 

KIF5C levels produce a corresponding change in spine density and morphology of CA1 

neurons.

Next, we asked whether KIF5C-mediated long-distance transport in CA1 impacts different 

memories. We studied effects of KIF5C manipulation in CA1 neurons in spatial memory and 

contextual fear memory. We find that KIF5C depletion in CA1 interferes with encoding and 

retrieval of spatial memory as well as impairing contextual fear memory (Figure 6). These 

data indicate that restricted, post-developmental KD of KIF5C expression in CA1 impairs 

both spatial and fear memory, illustrating the significance of KIF5C-mediated long-distance 

transport in multiple forms of LTM.

KIF5C OE in CA1 improved mouse performance in the spatial memory task but did not 

enhance contextual fear memory, although we employed fear conditioning using reduced 

shock and executed multiple fear-related behavior assays. Training at reduced intensity did 

not show enhancements in contextual fear but did show enhancements in fear extinction. 

Extinction recall memory was not affected. These results suggest cargos transported by 
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KIF5C may have memory-specific functions. It is possible that in CA1 neurons of KIF5C 
OE mice, levels in KIF5C-mediated long-distance transport required to improve contextual 

fear memory were not achieved, whereas those required to enhance spatial memory were; or, 

because spatial and contextual memory recruit different neural circuits involving CA1, 

enhancements in KIF5C function in CA1 alone may be insufficient to enhance contextual 

fear memory.

Its been shown previously that gain of function of specific genes improves memory. Tang et 

al., (1999) reported enhancement of memory after OE of NR2B using transgenic mouse 

model, whereas OE of adeno-associated virus (AAV) vector expressing alphaCaMKII 

improved spatial memory (Poulsen et al., 2007). Transgenic mice overexpressing KIF17 
improved spatial memory (Wong et al., 2002). Here, we find that restricted manipulation of 

KIF5C in CA1 neurons specifically constrains multiple memory processes. Consistent with 

prior findings that gain of function of kinesin results in activation of CREB, we find that 

KIF5C OE results in activation of CREB and enhances translation. KIF5C OE enhances 

delivery of synaptic cargos, leading to activation of synaptic signaling pathways. This 

synaptic activation produces several changes, including those in regulators of translation and 

transcription (Figures 5D–5F), ultimately producing structural changes.

Our study demonstrating that KIF5C-mediated long-distance transport of RNAs links local 

translation and structural plasticity is a previously unrecognized mechanism of LTM. These 

findings lay a foundation in the search for mechanistic relationships between temporal 

changes in transport and local translation, as determinants of activity-dependent changes in 

structural plasticity impacting LTM.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact Sathya Puthanveettil 

(sputhanv@scripps.edu).

Materials availability—All unique/stable reagents generated in this study are available 

from the Lead Contact without restriction.

Data and code availability—RNA-Seq data can be accessed from NCBI GEO 

GSE148634.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For the primary cell culture preparation, pregnant CD1 mice (Charles River Laboratories) 

were used. For the stereotaxic injections followed by a behavioral study, 8- to 9-week-old 

male C57BL6/J mice (Jackson Laboratories, Bar Harbor, ME) were used. All animals were 

housed individually on a 12-hour light/dark cycle with ad libitum access to food and water. 

All experiments were performed during the light part of the diurnal cycle. Housing, animal 

care, and experimental procedures were consistent with the Guide for the Care and Use of 
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Laboratory Animals and approved by the Institutional Animal Care and Use Committee of 

Scripps Research, Florida.

HEK293 cell culture—HEK293 cells were grown in DMEM (GIBCO 11-960-044) with 

10% fetal bovine serum (FBS), 1% penicillin-streptomycin, and 5 mM glutamine. In brief, 

cells were seeded in T75 flask and sub-cultured for the preparation of lentivirus vectors.

METHODS DETAILS

Neuronal cell cultures—Primary HP neuron cultures were prepared from the brains of 

embryonic day 17–18 mice as described previously (Banker and Goslin, 1988). Briefly, 

hippocampi were removed from embryonic day 18 mouse brains and dissociated with papain 

(29.5 U/mg protein, Worthington). Cells were plated at a density of 5×105 on poly-D-lysine-

coated (100 μg/ml, Sigma in RNase-free water) dishes and 1 × 105 glass coverslips. Cultures 

were plated in Neurobasal medium supplemented with 10% fetal bovine serum and 

penicillin/streptomycin mix and grown in Neurobasal medium supplemented with 2% B27, 

0.5 mM glutamine, and penicillin/streptomycin mix at 37°C in 5% CO2.

Constructs and transfection—pEGFP-C-shLenti against KIF5C (catalog# TL511686), 

pEGFP-C-shLenti against KIF3A (catalog# TL516184) and a scrambled shRNA control 

(catalog# TR30013) were obtained from ORIGENE. pEGFP-KIF5C-N1 was prepared at 

Puthanveettil Lab and pGL-FLKIF3A was a gift from Linda Wordeman (Addgene plasmid # 

13742). DNA constructs for transfection were purified using an Endo-Free Plasmid Maxi 

kit. siRNAs/shRNAs were introduced to primary HP neurons (DIV 14) using Lipofectamine 

RNAiMAX or Lipofectamine 2000 according to the manufacturer’s guidelines. One day 

before transfection, the fresh culture medium was prepared and mixed evenly with the old 

medium. One-half of the mixed medium was left with the cells for transfection, and the 

other half was saved for medium replacement after transfection. Briefly, for the shRNA 

transfection to KD KIF5C and KIF3A of cells growing in the single well of a 24-well format 

dish, 0.2 μg DNA was mixed with 1.25 μL of Lipofectamine 2000 in 100 μL of DMEM and 

incubated for 25 min. The complexes of DNA and Lipofectamine 2000 were added to the 

cells for 2 hours incubation at 37°C in 5% CO2. Cells were then returned to the saved 

culture medium. A similar strategy was followed for the OE of both KIF5C and KIF3A in 

primary HP neuron cultures.

Measurements of mEPSCs—Coverslips with cultured HP neurons (DIV 16–18) were 

transferred to the perfusion chamber of an upright microscope and perfused with 

extracellular bath solution (EBS) containing (in mM): 135 NaCl, 10 glucose, 3 CaCl2, 2 

KCl, 2 MgCl2, and 5 HEPES, pH adjusted to 7.3–7.4 with NaOH, and 300–315 mOsm with 

sucrose. Recordings were performed to measure mEPSCs under voltage clamp. Wholecell 

patch-clamp recordings were performed using an Axon Multiclamp 700 b amplifier, 1440A 

Digidata digitizer and pClamp software (Axon Instruments, Foster City, CA). Recordings 

were made at 50 kHz and subsequently filtered at 5 kHz. The recordings were conducted 

blindly during these experiments; HP neurons were cultured for at least 16 days to allow an 

extensive synaptic network to develop before recordings were made. The mEPSCs were 

recorded in the presence of TTX at 1 μM. The membrane potential was held at −60 mV 
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during the recording of sEPSCs as well as during the recording of mEPSCs. The current-

clamp recording was taken only to identify the health of the neurons. Only neurons with a 

resting membrane potential of less than −40 mV were used for our analysis. Action 

potentials were recorded in current-clamp mode, I = 0. The membrane potential was 

maintained at −40 mV in current-clamp mode. All experiments were performed at room 

temperature (22–24°C). The frequency and amplitude of EPSCs were analyzed using the 

template match search (pClamp), and basic statistical analysis was performed to extract the 

average amplitude and frequency. The amplitude and frequency of EPSCs expressed as a 

percentage of baseline level, calculated from an average of 5 min of the baseline-recording 

period. The amplitude and frequency of EPSCs for each experiment were measured as an 

average of 5 min during the recording period. Each of the n-values shown refers to the 

number of neurons recorded. The term significant denotes a relationship with p < 0.05 

determined using an unpaired, two-tailed Student’s t test and one-way ANOVA followed by 

a post hoc test. For the analysis of the cumulative probability of the amplitude and the 

cumulative probability of inter-event intervals, a two-sample Kolmogorov-Smirnov (KS test) 

was taken into the analysis, and the difference was considered significant when p < 0.05.

Live imaging—Seventy-two hours after transfection, live eGFP-tagged neurons were 

observed and images were captured at the light microscopy facility, the Max Planck Florida 

Institute, using a confocal microscope (LSM 780; Carl Zeiss; Plan Neofluor 63X/1.3 N.A. 

Korr differential interference contrast M27 objective in water) at room temperature. Z stack 

images were acquired using ZEN 2015 (64 bit) software (Carl Zeiss), and dendritic arbors 

were manually traced and later quantified by Sholl analysis FIJI (ImageJ, NIH). A series of 

concentric circles were drawn from the center of the soma at intervals of 20 μm, with the 

radius of the outermost circle set at 100 μm. The maximum value of sampled intersections 

reflecting the highest number of processes/branches in the arbor was calculated, and the 

number of intersections plotted against distance from the soma center in μm. To analyze 

spines, images captured at 63X objective and secondary branches from basal and apical 

dendrites were selected as the region of interest from the original image stack using 

MATLAB software developed in the light microscopy facility at the Max Planck Florida 

Institute (GitHub - ryoheiyasuda/countSpines). By using a geometric approach, this software 

automatically detects and quantifies the structure of dendritic spines from the selected 

secondary branch (100 μm length) in the Z stack confocal image. The software assigns the 

detected spines to one of the three morphological categories (thin, stubby or mushroom) 

based on the difference in structural components of the spines i.e., head, neck and shaft. 

Unpaired, two-tailed Student’s t test or one-way ANOVA followed by a post hoc test was 

carried out to evaluate significant differences among the groups.

Characterization of KIF5C and KIF3A overexpression (OE) plasmids—KIF5C 

could function as homo-dimers or heterodimers with KIF5A or KIF5B whereas KIF3A 

function requires association with KIF3B and KAP3 (Yamazaki et al., 1996; Hirokawa et al., 

2009). We assumed that overexpression of KIF5C could result in enhanced levels of KIF5C 

homodimers and also recruit KIF5A and KIF5B from the cytoplasm. Similarly, 

overexpression of KIF3A could make functional complexes by recruiting KIF3B and KAP3. 

Therefore, we first assessed whether the full-length (FL) KIF-eGFP fusion proteins are 
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functional in neurons by performing fluorescence recovery after photobleaching (FRAP) 

measurements. Unlike the appearance as discrete puncta along dendrites that we observed in 

super resolution imaging of native KIF5C and KIF3A (Liu et al., 2014), the overexpression 

of KIF5C and KIF3A as fusion proteins resulted in diffused green signals throughout the 

neuron. Functional Kif fusion proteins are expected to show a faster recovery time after 

bleaching than eGFP as the result of active directional transport.

Therefore, we performed FRAP measurements (N = 11, 16 and 9 for eGFP, KIF5C FL and 

KIF3A FL, respectively). HP neurons were transfected using Lipofectamine 2000 at DIV 14 

and used for a FRAP assay 24 hours after transfection. Neurons expressing eGFP, KIF3A FL 

or KIF5C FL were analyzed at the light microscopy facility, the Max Planck Florida 

Institute, using a confocal microscope (LSM 780; Carl Zeiss; Plan Neofluor 63X/1.3 N.A. 

Korr differential interference contrast M27 objective in water) at room temperature. Regions 

of interest (ROIs) of the same size were photobleached by scanning with a 405 nm and 488 

nm laser combined at the maximum power. Images were first acquired for 156 s at a time 

interval of 0.781 s at low intensity to establish baseline intensity values, bleached over an 

approximately 10-micron region of the axon at high power for 78 s and recovery was 

monitored using low power for 156 s. Movies were uploaded to ImageJ, and stage drift was 

corrected in some movies using the ShearX plugin in both the x and y directions. A 1 μm 

wide region (i.e., 20 pixels with magnification at 0.0527 μm/pixel) was selected along the 

middle of the process using the freehand line tool and straightened using the straightened 

function in ImageJ. The straightened images were cropped to select only the bleached 

region. The sum of the pixel intensity as a function of time over the cropped region was then 

measured for each group. In order to calculate the half-life of recovery, the average pixel 

intensity over the prebleach time was first measured; next, the intensity during the recovery 

phase was transformed into linear coordinates using the equation Itransformed(t) = ln(1-

Iobserved(t)/Iprebleach). Linear regression was used to measure the recovery constant krecovery 

over the first 15.6 s for each neuron, which was converted into recovery half-life with the 

equation t1/2 = −0.693/krecovery. Data are presented as the mean ± SEM analyzed by one-way 

ANOVA followed by a post hoc Fisher’s LSD test.

Based on the average intensities over the first and last 8 s in the prebleach condition, the 

bleaching at the low intensity was less than 5%. The data were exported to Minitab and 

analyzed using one-way ANOVA and a post hoc Fisher’s least significant difference (LSD) 

test (p = 0.031; Figures S1G–S1I; Table S1). The half-life of eGFP (105.2 ± 26.8) was 

double that of KIF5C OE (50.8 ± 5.9) or KIF3A OE (57.2 ± 6.3), indicating that both KIF5C 

and KIF3A fusion proteins are functional. Taken together FRAP assay suggest that 

overexpression of KIF5C and KIF3A produce functional transport machineries in 

hippocampal neurons.

As an independent measure of the function of KIF fusion proteins, we examined the 

distribution of KIF5C and KIF3A protein cargos in OE neurons. We reasoned that functional 

OE would result in enhanced dendritic localization of specific cargos. In our previous work 

(Liu et al., 2014), we identified specific cargo molecules for KIF5C (Jip3 and GluR2) and 

KIF3A (SAP97 and SLK). We first assessed the expression levels of KIF5C and KIF3A in 

OE neurons. We found a significant increase in the mean fluorescence intensity in KIF5C-
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overexpressing (161.6 ± 13.0) neurons compared to control neurons (100 ± 5.8; N = 3, p = 

0.012) and in KIF3A-overexpressing (191.2 ± 18.09) neurons compared to control neurons 

(100 ± 21.1; N = 4, p = 0.017; unpaired, two-tailed Student’s t test; Figures S1J–S1M; Table 

S1). Next, we examined the distribution of their protein cargos in dendrites of OE neurons 

by immunostaining using specific antibodies. Our results indicate that there was a two-fold 

increase in the mean fluorescence intensity of Jip3 in dendrites of KIF5C-overexpressing 

(14.2 ± 1.75) neurons compared to the control (8 ± 0.9; N = 6, p = 0.012). Additionally, 

there was a four-fold increase in the mean fluorescence intensity of GluR2 in KIF5C-

overexpressing (4 ± 0.9) neuronal dendrites compared to the control (1 ± 0.2; N = 6, p = 

0.008). We found that the mean fluorescence intensity of SAP97 was nearly doubled in 

dendrites of KIF3A-overexpressing (12.14 ± 1.9) neurons compared to control neurons (5.3 

± 0.7; N = 7, p = 0.0057), and the same was true of the mean fluorescence intensity of SLK 

staining (KIF3A OE: 50.2 ± 6.2; eGFP control: 20.4 ± 3.5; N = 6, p = 0.0019; unpaired, 

two-tailed Student’s t test; Figures S1A–S1F; Table S1).

To further characterize KIF5C OE, we imaged pre- and postsynaptic protein markers in 

KIF5C OE neurons. We carried out PSD-95 and synaptophysin immunocytochemistry (ICC) 

in eGFP-expressing primary neurons. PSD-95 is a postsynaptic marker (Rao et al., 1998), 

whereas synaptophysin is a presynaptic vesicle membrane protein (Fykse et al., 1993; 

Marquèze-Pouey et al., 1991). Using fluorescence intensity measurements, we found a two-

fold increase in PSD-95 expression in neurites of cells overexpressing KIF5C (19.9 ± 3.3) 

compared to control eGFP (10.2 ± 1.8; N = 5, p = 0.04; unpaired, two-tailed Student’s t test; 

Figures S1N and S1O; Table S1). However, synaptophysin expression was comparable 

between neurites of KIF5C-overexpressing and control cells. These data further support that 

the changes in mEPSCs in OE neurons are mediated through a postsynaptic mechanism 

(Figures S1N and S1P; Table S1).

Overexpression of KIF5C and knockdown of KIF3A in the same neurons—Our 

results showing that KIF5C and KIF3A KDs produced deficits in synaptic transmission and 

neuronal architecture, whereas only KIF5C OE produced an enhancement in them, led us to 

ask whether KIF5C OE might recruit KIF3A for enhancing synapse density and dendritic 

arborization. To address this, we performed KIF3A KD in KIF5C OE HP neurons and 

quantified changes in spine morphology and dendritic arborization. If KIF5C OE recruit 

KIF3A for its morphology enhancing effects, we expect to observe a blockade of KIF5C OE 

effects with KIF3A KD on neuronal morphology.

We used the eGFP-tagged KIF5C OE plasmid described above and prepared an RFP-tagged 

KIF3A KD plasmid for neuronal transfections. eGFP alone and RFP alone expressing 

neurons were used for comparisons in the confocal live-cell imaging. We found that KIF5C 
OE resulted in increased spine density despite KIF3A KD in the same neurons (N = 25; 

unpaired, two-tailed Student’s t test, p < 0.0001; Figure 2O; Table S1). We observed a 

significant increase in the number of mushroom spines in KIF5C OE + KIF3A KD neurons 

compared to control (p = 0.046; unpaired, two-tailed Student’s t test) and a significant 

decrease in thin spines in KIF5C OE + KIF3A KD compared to control (p = 0.0065; 

unpaired, two-tailed Student’s t test) neurons. No significant change was observed in stubby 
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spine morphology in KIF5C OE + KIF3A KD neurons compared to the control (p = 0.14 

unpaired, two-tailed Student’s t test; Figure 2P; Table S1).

Next, we assessed dendritic arborization in KIF5C OE + KIF3A KD neurons by Sholl 

analysis. Consistent with the spine density and morphology data, we found significant 

increases in dendritic branching in KIF5C OE + KIF3A KD neurons compared to controls at 

multiple distances from the soma: 30–60 μm whereas, there were no significant differences 

at 20 or > 70 μm from soma (p < 0.01; unpaired, two-tailed Student’s t test; Figures 2Q and 

2R; Table S1). Collectively, these results indicate that the effects of KIF5C OE on spine 

morphology and dendritic arborization are independent of KIF3A expression in the same HP 

neurons.

Immunocytochemistry (ICC) and fluorescence in situ hybridization (FISH) 
analysis—Primary cultured HP neurons on glass coverslips were processed for ICC 24 or 

72 hours after transfection. Neuronal culture medium was carefully removed, and after two 

rinses in PBS, the cells were fixed in a freshly prepared solution of 4% paraformaldehyde 

for 15 min. After two more rinses in PBS, the cells were permeabilized in 0.5% Triton 

X-100 in PBS for 15 min. The cells were then incubated in 8% normal goat serum (Sigma) 

in PBS for 45 min and incubated with primary antibody (Refer key resources table for 

Antibody details) at 4°C overnight. The immunoreactivity was probed using 405-, 488- or 

568-conjugated secondary antibodies (1:500; Molecular Probes) for 1 hour at room 

temperature. For mounting, fluoro gel II (17985-10, Electron Microscopy Sciences) without 

DAPI was used. The images were taken with a Zeiss LSM780 confocal microscope. For 

assessing the dendritic localization of KIF5C associated RNAs SYN1 and EIF3G, briefly a 

200 bp fragment from SYN1 or EIF3G cDNAs were cloned into a dual TOPO II vector for 

making Digoxigenin (DIG) labeled riboprobes. FISH experiments using DIG labeled 

riboprobes were carried out as described in Liu et al., 2014 and Raveendra et al., 2018. 

Localization of SYN1 and EIF3G were visualized by SIM imaging described below.

KIF5C coimmunoprecipitation (CoIP), RNA-Seq and bioinformatics analysis—
Following previously published methodology for KIF5C complex CoIP from the 

hippocampus (Liu et al., 2014), we isolated RNAs from the precipitates. Briefly, lysates 

were prepared using lysis buffer: 0.50% Nonidet P-40, 50 mM Tris-HCl pH 7.5, 125 mM 

NaCl, 1 mM EDTA pH 8.0, 1 mM DTT, 1 protease inhibitor cocktail tablet (Roche), 100 μL 

of phosphatase inhibitor cocktail 1 and 2 each (Sigma), and 100 μL BSA. Following lysis for 

30 min at 4°C, lysates were centrifuged to remove any debris and subjected to CoIP using a 

previously characterized kinesin antibody (MAB6414, Millipore; Liu et al., 2014). Mouse 

IgG antibody (IgG control Ab 08-6599 Thermo Fisher) was used as a control. For each Co-

IP, we used hippocampi from two adult C57BL/6 mice (7–9 weeks old). For the RNA-Seq 

analysis, we pooled 6 different Co-IP samples into two samples (12 animals for KIF5C Co-

IP and 12 animals for Control Co-IP; N = 2 for each condition for RNA-Seq). Following IP, 

RNAs were isolated using the TRIzol method and submitted to Scripps Genomics Core for 

Processing. RNA libraries were prepared for sequencing using standard Illumina protocols 

(Raveendra et al., 2018). All samples were processed and sequenced on a NextSeq 500. The 

quality of the reads overall was quite high, with no decrease in quality over the course of 
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sequencing. After quality control, the reads were mapped to the mouse transcriptome using 

Salmon using paired-end settings (Salmon reference was made using Ensembl: ftp://

ftp.ensembl.org/pub/release-99/fasta/mus_musculus/cdna/

Mus_musculus.GRCm38.cdna.abinitio.fa.gz). Ensembl transcript IDs, raw counts, and TPM 

values were imported into R (Yu et al., 2012). Differential expression analysis between the 

KIF5C IP and IgG IP transcripts was performed using DEseq2 (n = 2 per group), and 

padjusted < 0.05 was used as a cutoff for assessing dendritically targeted transcripts, yielding 

2906 transcript isoforms from 2399 genes. RNA-Seq data can be accessed from NCBI GEO 

GSE148634 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148634). Gene 

Ontology analysis was performed in R using the Cluster Profiler Bioconductor package with 

an adjusted p value cutoff such that FDR < 0.05. Reactome pathway analysis was performed 

using the Reactome PA package with a p value cutoff of 0.05.

Next we compared KIF5C-associated RNAs with mouse hippocampal transcriptome 

(Cembrowski et al., 2016) and mouse neuropil transcriptome (Farris et al., 2019) and rat 

neuropil transcriptome (Cajigas et al., 2012). The overlapping genes were analyzed as 

follows: RNaseq data for; Farris et al., 2019., were independently analyzed from GEO-

obtained fastq files using the methods described above. Briefly we downloaded GSE74985 

(single end reads: Cembrowski et al., 2016) and GSE116342 (paired end reads: Farris et al., 

2019) and then mapped to mouse transcriptome using Salmon. GSE74985 data consists of 3 

biological replicates each of dorsal and ventral CA1, CA2, CA3 and DG. We summed up all 

the reads for the dorsal and ventral hippocampal regions to get total hippocampal reads for 

the 3 biological replicates. We calculated the average TPM of the 3 replicates and used an 

average TPM cutoff of > 2, resulting in 21499 genes used for the venn diagram. GSE116342 

data consists of 3 biological replicates each of cell body and dendritic layers of CA1, CA2, 

CA3 and DG (24 samples total). For each biological replicate, the reads were summed up for 

the sub regions in dendrites and separately for cell body to get total hippocampal dendritic 

and cell body reads (6 groups total: N = 3 dendrite and N = 3 cell body). We next ran 

DEseq2 on Dendrite versus Cell Body (N = 3 per group) and took padj < 0.05, 

log2FoldChange > 0 (dendrite enriched RNAs), and average TPM > 2 (Consistent with 

Cembrowski paper cutoff) resulting in 5007 genes used for the venn diagram. Data from 

Cajigas et al., was obtained from Table S3 (filtered neuropil list). Venn diagram was plotted 

using BioVenn (Hulsen et al., 2008). Also see Tables S2, S3, and S4.

Structured illumination super-resolution microscopy (SIM)—Following FISH or 

ICC, neurons were imaged using a Zeiss ELYRA PS.1 instrument (Carl Zeiss, Jena, 

Germany) at a resolution of 1028 by 1028 pixels, using a Zeiss 63x/1.4 NA Plan 

Apochromatic objective. Each fluorescent channel, 405, 488 and 561, was acquired using 

three pattern rotations with 3 translational shifts. The final SIM projection images were 

reconstructed using Zen 2013 (Carl Zeiss, Jena, Germany) and analyzed using ImageJ.

Characterization of synaptoneurosomes—Based on previous studies, a decrease in 

the ratio of eIf2α phosphorylation (peif2a) to total eIf2α is indicative of an increase in 

protein synthesis (Costa-Mattioli et al., 2005). We found a significant decrease in the peif2a/

eif2a ratio in forskolin-exposed neurons (60 ± 12.0) compared to the control (100 ± 9.8) (N 
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= 5; unpaired, two-tailed Student’s t test, p = 0.0361, Figures S3A–S3C; Table S1), 

suggesting an increase in protein synthesis. Thus, we considered the peif2a/eif2a ratio in 

synaptoneurosomes to be a reliable measure of translational activation at the synapse. We 

first verified the quality of synaptoneurosome preparation from HP neurons by western blot 

(WB) analyses of fractions such as homogenate, cytosol, and synaptoneurosomes for 

enrichment of key synaptic proteins. We found more than 7-fold enrichment of PSD-95 and 

synaptophysin protein levels in the synaptoneurosome fraction compared to the homogenate 

and cytosol fraction in HP neurons (Figures S3D–S3F; Table S1).

Optimization of puromycin labeling of newly synthesized proteins—To establish 

puromycin labeling of newly synthesized proteins, we asked whether newly synthesized 

proteins due to forskolin exposure could be detected by puromycin labeling. WB analysis of 

synaptoneurosomes (Figure S3H) showed that forskolin produces an increase in puromycin-

labeled proteins, suggesting an enhancement in local translation in forskolin-treated neurons 

(166.6 ± 18.05) compared to the control (100 ± 11.4, N = 3, *p < 0.01; unpaired, two-tailed 

Student’s t test; Figures S3G–S3I; Table S1). In addition, we carried out immunostaining in 

primary neurons and found that consistent with our WB data, forskolin produced increased 

staining of puromycin-labeled proteins in soma when compared to the control (N = 6, *p = 

0.0447; unpaired, two-tailed Student’s t test; Figures S3J and S3K; Table S1).

Puro-proximity ligation assay (PLA)—PLA was performed as previously described 

(tom Dieck et al., 2015). Primary hippocampal neurons were treated with Puromycin (3 uM) 

for 10 minutes, washed with warm PBS and fixed in 4% PFA/ 4% Sucrose for 15 minutes. 

After 2 more rounds of PBS washing, and blocking in 5% horse serum in 0.1% Triton X-100 

PBS, neurons were then incubated with mouse anti-puromyin antibody (1:2000, Sigma, 

MABE342) and one of rabbit antibody for C terminus eIF3g (1:1000, Novus Biologicals, 

NB100–93298), GluR1 (1:1000, CST, 13185), or CamKIIβ-1 (1:1000, Sigma, 13–9800) 

overnight. PLA was then performed using Duolink Reagents (Sigma, 92008) as per 

instructions. Cells were mounted using Duolink in situ mounting medium and imaged using 

Structured Illumination Microscopy.

Synaptic protein extraction and western blotting—Primary cultured HP neurons on 

6-well plates were processed for synaptoneurosome preparation followed by 30 min of 

forskolin (50 μm) treatment. Neuronal culture medium was carefully removed, and after two 

rinses in ice-cold PBS, cells were lysed manually in Syn-Per buffer (Syn-PERTM Synaptic 

Protein Extraction Reagent) supplemented with 1 protease inhibitor cocktail tablet and 100 

μL of phosphatase inhibitor cocktail 1 and 2 each. Samples were centrifuged at 1200 × g for 

10 min at 4°C, the pellet was discarded, and the supernatant was transferred to a new tube. 

Twenty-five microliters from the sample of the supernatant was saved as homogenate for 

analysis. The supernatant was centrifuged at 15,000 × g for 20 min at 4°C. The supernatant 

was removed from the synaptosome pellet and saved as the cytosolic fraction for analysis. 

The synaptosome pellet was suspended in 30 μL Syn-PER. For the WB analysis, the protein 

concentration was determined using a BCA kit. Protein (10–25 μg) was used for WB 

analysis. The antibodies used are listed in the key resources table. The target proteins were 

detected using anti-rabbit or anti-mouse secondary antibodies at a 1:5000 dilution and then 
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visualized by chemiluminescence (Amersham Biosciences, Piscataway, NJ). The 

autoradiograms were analyzed by ImageJ.

Synaptic protein extraction and immunoprecipitation—Primary cultured HP 

neurons on 6-well plates were infected with Lenti eGFP-L10 virus (8 × 107 TU/ml) at DIV 

4, and DIV 14 expression of KIF5C was KD. Cells were processed at DIV 17 for 

synaptoneurosome preparation followed by 30 min of forskolin (50 μm) treatment. Neuronal 

culture medium was carefully removed, and after two rinses in ice-cold PBS, cells were 

lysed manually in Syn-Per buffer and processed as mentioned above. Synaptosome pellets 

were suspended in 50 μL IP buffer Nonidet P-40 lysis buffer (0.25% Nonidet P-40, 50 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA pH 8.0, 1 mM DTT, 1 protease inhibitor 

cocktail tablet, 100 μL of phosphatase inhibitor cocktail 1 and 2 each, 100 μL BSA, 200 μL 

Yeast t-RNA, 40 U SUPERase· In RNase Inhibitor) and kept on a rotator for 15 min at 4°C 

using a refrigerated centrifuge. For immunoprecipitation of L10, KIF5C KD 

synaptoneurosomes were incubated with 2 μL of eGFP antibody, and all the incubations 

were kept on a rotator overnight at 4°C. Then, we added 40 μL of a 50% (w/v) slurry of 

protein A/G beads and incubated for 1 hour at 4°C. IPs were then briefly centrifuged (100 3 

× g for 2 min), and the slurry was washed three times with wash buffer (0.25% Nonidet 

P-40, 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA pH 8.0, 1 mM DTT, 1 protease 

inhibitor cocktail tablet, 100 μL of phosphatase inhibitor cocktail 1 and 2 each). The 

resulting precipitated protein complexes were used for RNA isolation.

RNA isolation, reverse transcription and qRT-PCR—After lentivirus EGFP and 

L10A-EGFP transduction or knockdown of KIF5C for 72 hours using siRNA, DIV 17 

cultured primary neurons were briefly washed with RNase-free PBS, and cells were lysed to 

isolate RNA according to the manufacturer’s protocol using the Ambion® RNAqueous®-

Micro Kit (AM1931, Life Technologies Corp.) or Arcturus Pico Pure Isolation Kit 

(12204-01, Applied Bio-systems, Life Tech.). The purified RNA was quantified using Qubit 

Fluorometer 2.0 (Q32866, Invitrogen), and quality was assessed using an Agilent RNA 6000 

Pico Kit (5067-1513, Agilent Technologies, Santa Clara, CA). Total RNA (1 μg of each 

sample) was reverse transcribed to cDNA using qScriptTM cDNA SuperMix (95048-100, 

Quanta Biosciences™). The concentration and purity of the resultant cDNA were determined 

using a Nanodrop spectrophotometer (NanoDrop, Wilmington, DE).

The expression of genes was quantified by quantitative real time PCR (qRT-PCR or qPCR) 

using SYBR Green PCR master mix (Applied Biosystems Carlsbad, CA) as described 

previously (Liu et al., 2014; Kadakkuzha et al., 2015). All of the qPCR amplifications were 

performed in a total volume of 10 μL containing 2 μL of H2O, 2 μL of cDNA, 5 μL of the 

2X Master mix, and 1 μL of 10 μm (each) forward and reverse primers (key resources table). 

All the genes were tested for the expression of mouse 18S rRNA, and the 1/2Ct *value was 

calculated. Quantification of each transcript was normalized to the mouse 18S reference 

gene following the 2−ΔΔCt method (Livak and Schmittgen, 2001). Unpaired, two-tailed 

Student’s t test was used to select genes with statistically significant expression levels where 

*p value < 0.05. (For the sequences of the primers used in this study, refer to key resources 

table).
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Chemical long-term potentiation (cLTP)—8–9 weeks old C57BL6 male mice were 

sacrificed by cervical dislocation, brain isolated and kept in normal artificial CSF (NaCl 

125mM, KCl 2.5mM, MgCl2 + 6H2O 1mM, CaCl2 + 2H2O 2mM, NaH2PO4 + H2O 1.25 m, 

NaHCO3 26mM, D-Glucose 11mM; pH = 7.3) and oxygenated at (95% O2/ 5%CO2) (Ch’ng 

et al., 2012). Acute hippocampal coronal slices were obtained using a vibratome (Leica) at 

300μm. Post sectioning, slices were incubated in a chamber at 32°C with regular artificial 

CSF and 95% O2/5% CO2 for stabilization before the stimulation. For cLTP, slices were 

transferred to a new ACSF solution without MgCl2 that includes Forskolin (50μM), 

Rolipram (100nM) and Bicuculline (40μM) and incubated for 15min or 1hour. Immediately 

after stimulation of the cLTP, CA1 hippocampal area was dissected and lysed in 200ul of 

Syn-Per reagent with protease and phosphatase inhibitors. Then, samples were centrifuged at 

4000×g for 10min at 4°C to collect the supernatant. Immunoblotting was carried out as 

mentioned in previous section to detect KIF5C and GluR2 expression.

Preparation of lentiviral vectors—pEGFP-C-shLenti against KIF5C (catalog# 

TL511686C) and scrambled shRNA control (catalog# TR30013) were obtained from 

ORIGENE. pEGFP-KIF5C-FL was cloned into the lenti backbone by the Molecular Biology 

Core at Max Planck Florida Institute, and control eGFP lentivirus (CV10002) was purchased 

from Vigene Biosciences. Each plasmid was cotransfected with HIV-1 packaging vector 

p8.91 and the Vesicular stomatitis virus (VSV) G-protein into human embryonic kidney 

(HEK) 293 cells to produce viral particles using Mirus reagent. The supernatant was 

collected 48–72 hours later. Viral particles were concentrated and pelleted through the 

sucrose cushion. The viral pellet was then resuspended in sterile PBS and stored at −80°C. 

Viral titer was determined by measuring GFP fluorescence after infection of HEK293 cells 

with serial dilutions of the virus using flow cytometry (BD Biosciences C6 Accuri and 

IntelliCyt HyperCyt sampler powered by FlowCyt software). For KIF5C KD lenti virus 

preparation we used mouse, unique 29-mer shRNA constructs in lentiviral GFP vector 

backbone and for respective control we used non-effective 29-mer scrambled shRNA 

cassette in pEGFP-C-shLenti Vector. For KIF5C OE the eGFP fusion proteins (C terminus) 

under the control of the CMV promoter backbone and for respective control virus eGFP with 

the vector backbone pEGFP-C-shLenti were used. The viral titer of KIF5C KD and 

scrambled shRNA control lentivirus was 1 × 109 TU/ml and for KIF5C OE and control 

EGFP was 1 × 1010 TU/ml used for stereotaxic injections and downstream experiments.

Characterization of lentiviral vectors—We prepared lentiviral vectors for KIF5C KD 

based on the shRNA data we described in Figure 1 and delivered by stereotaxic injections 

into the dorsal CA1. We first examined the expression levels of KIF5C in CA1 following its 

KD by lentivirus-mediated expression of shRNA construct in CA1. Western analysis of 

brain punches from hippocampal CA1 regions showed a significant decrease in the protein 

expression in KIF5C KD lentivirus injected mice (82.23 ± 3.23) as compared to control 

virus injected mice (100 ± 5.08; N = 8, p = 0.0105; unpaired, two-tailed Student’s t test; 

Figures S6B and S6C; Table S1).

Similarly, we assessed the expression levels of KIF5C OE in lentivirus-injected mice by 

immunoblotting. We found a significant increase in the protein expression in brain punches 
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obtained from CA1 region of KIF5C OE lentivirus injected mice (148.26 ± 19.56, N = 18) 

when compared to control virus injected mice (100 ± 6.51; N = 15, p = 0.0173; unpaired, 

two-tailed Student’s t test; Figures S6D and S6E; Table S1)

Stereotaxic injections—For the surgeries, we used only male mice on a pure C57BL/6 

genetic background to avoid variability derived from the estrus cycle during the behavioral 

experiments (Cover et al., 2014; Lebrón-Milad et al., 2013). Stereotaxic surgical procedures 

were performed under anesthesia (1.0%–1.5% isoflurane), and animals were mounted on 

stereotaxic frame instruments (Kopf Instruments, Tujunga, CA, USA). An incision was 

made along the midline of the scalp, and the skull was exposed. Small burr holes were 

drilled into the skull at the following coordinates (2.18 mm posterior to bregma, ± 1.6 mm 

lateral to the midline, 2.5 mm deep with respect to the skull surface (Franklin and Paxinos, 

1996; Tsutajima et al., 2013)). Lentiviral particles were injected bilaterally using a 10 μL 

Hamilton syringe (model 33BV needle) at a volume of 1 μL per site (flow rate of 50 nl/min). 

Metacam was administered preoperatively at a dose of 5 mg/kg as injectable solution 

subcutaneously in the scruff, and Baytril was administered postoperatively at a dose of 10 

mg/kg as injectable solution intramuscularly using a 1 cc syringe and a 25 or 27 Ga needle. 

After surgery, animals were housed individually and given at least 5 days of recovery during 

which they were monitored daily to check their health condition. Proper postoperative care 

was performed to ensure that animals experienced little or no discomfort, and animals 

showing signs of pain and/or obvious discomfort outside this time were removed from the 

study and euthanized.

Behavioral tests—All behavioral tests were performed in an individual, dedicated 

experimental room. Lentivirus-injected animals undergo handling three days before the 

behavior task for acclimation to transport from their home cages to the holding room. On the 

testing day, animals were put in the test room at least 30 min before testing to acclimatize. 

The experimenter was always blind to the treatment type when performing the tests.

Morris water maze (MWM)—The MWM task was performed as previously described 

(Vorhees and Williams, 2006; Wenk, 2004). Briefly, MWM testing was conducted in a round 

white pool 120 cm in diameter, located in a room with visible external cues. The pool was 

filled to a depth of 30 cm with water made opaque with white nontoxic water-based white 

paint. The pool temperature was maintained at 22 ± 0.5°C by the addition of warm water. 

The escape platform was a 10 cm plexiglass circle placed in the center of one quadrant of 

the pool, 20 cm from the pool’s edge and submerged 1.5 cm beneath the water surface. The 

platform and visual cue remained in the same position throughout the learning trial tests and 

were removed from the pool during the probe test. During the acquisition trials (days 1 to 6), 

mice were trained to escape from water by swimming from variable starting points around 

the tank to a hidden platform (10 cm diameter) and allowed to remain there for 10 s. Each 

training day consisted of 4 different trials separated by 15–20 min. The maximum swim time 

was set to 60 s. If the mouse located the platform before 60 s had passed, it was immediately 

removed from the pool.

If the platform was not located after 60 s of swimming, the mouse was guided to the 

platform and/or placed on it for 10 s. After each trial, mice were dried and returned to their 
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home cages. After removal from the pool, mice were manually dried with a sterilized paper 

towel and placed in the home cage placed in the warming chamber (consisting of a heating 

pad set to low underneath cage) for at least 5 min before returning to the holding room. Mice 

were visually inspected to ensure thorough dryness. Twenty-four hours after finishing the 

training, the platform was removed from the tank, and the mice were allowed to swim for 60 

s in a single trial. Spatial learning was measured by latency to the platform, distance, and 

velocity. The LTM test consists of time spent in Q1, the number of platform crossings and 

the number of visits to Q1, as well as its comparison with Q4. All testing was conducted at 

roughly the same time each day to minimize variability in performance due to the time of 

day. All sessions were recorded by a digital tracking system connected to a video camera 

(Panasonic, WV-BP334, Osaka, Japan) located above the tank and different parameters 

measured by EthoVision XT software. The resultant behavioral data were statistically 

analyzed.

Contextual fear conditioning (CFC)—CFC was performed as previously described 

(Rizzo et al., 2017). Briefly, experiments were performed using a set of four modified 

Noldus PhenoTyper (Model 3000) chambers (Leesburg, VA) with shock floors (Burgos-

Robles et al., 2009). The PhenoTyper Model 3000 chamber has a 30 Å~30 cm floor and is 

40 cm in height. The PhenoTyper chamber is equipped with a top unit, including a matrix of 

infrared LED lights and an infrared CCD camera, with a high-pass filter blocking visible 

light. The floor of the cages included a stainless-steel grid (bar spacing: 0.9 cm) connected 

to an electric shock generator (Shock Scrambler ENV-414S; Med Associates, St. Alvans, 

VT). Automated tracking and shock delivery control were performed using EthoVision 8.5 

software (EthoVision 8.5; Noldus Information Technology, Leesburg, VA; https://

www.noldus.com/ethovision). Each chamber was cleaned with 70% ethanol before each 

trial. White light was used inside the chamber for training and testing, and 72 db white noise 

was played in the room to mask any unintended noise that might add to the context. During 

the fear conditioning session, mice received three 2 s, 0.75 mA scrambled foot shocks 2.5, 

3.5, and 4.5 min after placement into the chamber. Mice were promptly removed from the 

chamber after 5.5 min. Twenty-four hours later, mice were tested for CFC by placing them 

back into the chambers for 5 min. The percentage of time spent freezing (immobility except 

for breathing) was recorded in both training and testing sessions using EthoVision XT 11 

(Noldus Information Technology, Inc).

Low shock CFC and extinction experiment was performed in KIF5C OE and control mice as 

previously described (Ortiz et al., 2010) using our similar experimental set-up as discussed 

above with slight modification. During the fear conditioning session, mice received three 2 s, 

0.4 mA scrambled foot shocks 2.5, 3.5, and 4.5 min after placement into the chamber. Mice 

were promptly removed from the chamber after 5.5 min. Twenty-four hours later, mice were 

tested for CFC by placing them back into the chambers for 30 min. The first 5 min recording 

for twenty-four-hour test and % freezing extinction recorder every 5 min for 30 min After 24 

hr extinction to assess the long-term memory recall test is performed for 5 min for every min 

bin. The percentage of time spent freezing (immobility except for breathing) was recorded in 

both training and testing sessions using EthoVision XT 11 (Noldus Information Technology, 

Inc).
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Histological analysis—Brains were collected after completion of behavioral testing and 

post fixed in 4% paraformaldehyde (PFA, Sigma, St Louis, MO) in PBS (pH 7.4) for 24 

hours before transfer into 30% sucrose in PBS for 48 hours at 4°C. The coronal brain 

sections were collected using a cryostat (Leica) on positively charged slides (Fisher 

Superfrost Plus), 30 μm thick sections specifically focusing on the CA1 subregion of the 

hippocampus. Following the immunostaining of frozen sections with eGFP antibody, DAPI 

containing Fluoro-Gel mountant was used for preserving the brain sections for imaging. The 

images were scanned after 1 hour using a VS120 (Olympus) scanner to assess the injection 

and expression of the virus in the CA1 subregion in the brain sections. All images were 

captured at 20X magnification. Only animals with verified expression of the virus in the 

CA1 subregion of the hippocampus were included in the statistical analyses of behavioral 

data.

Statistics—The statistical analysis was performed using unpaired, two-tailed Student’s t 

test to compare the two groups and one-way ANOVA followed by a post hoc Tukey test, 

Dunnett’s test, Holm-Sidak test or Fisher’s LSD test as stated. All analyses were performed 

using GraphPad Prism version 8 (details provided in the Supplemental tables). The results 

are presented as the mean ± SEM throughout the text unless otherwise noted.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of all data described in this study are available in Table S1. P values were 

calculated in GraphPad Prism and derived using unpaired two-tailed Students’ t test or one-

Way ANOVA. Tukey tests were used for post hoc analyses. Significance was defined as p < 

0.05. The numbers of replications ‘n” and statistical tests used are described in each Figure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• KIF5C expression constrains excitatory synaptic transmission and structural 

plasticity

• KIF5C mediates the long-distance transport of substrates of local translation

• EIF3G modulates the effects of KIF5C on dendritic arborization and spine 

morphology

• Overexpression of KIF5C in CA1 neurons enhances spatial memory
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Figure 1. KIF5C and KIF3A are necessary for excitatory synaptic communication, maintenance 
of spine morphology, and dendritic arborization
(A) Experimental strategy to record mEPSCs in mouse primary HP neuronal cultures 

following KD of KIF5C and KIF3A using shRNAs.

(B) eGFP-labeled neurons in fluorescence and bright-field (BF) images with patch-clamp 

recording electrodes attached.

(C) Two traces of mEPSCs for negative control, or NC (scrambled shRNA), and shRNAs 

against KIF5C and KIF3A.

(D and E) Changes in amplitudes and frequencies of mEPSCs 72 h after KD of KIF5C and 

KIF3A. Number of neurons patched per group is labeled. Data (mean) from all KD groups 

compared to negative control.
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(F and G) Changes in amplitude and frequency, respectively, of mEPSCs between NC and 

KIF5C or KIF3A shRNA (Kolmogorov-Smirnov test, p < 0.05).

(H) Experimental plan for KIF5C KD and confocal live imaging.

(I and J) Confocal projection images showing changes in spine, digitally enlarged image in 

inset.

(K–N) Quantitative analyses of image data shown in (I) and (J) executed by selecting 

dendrites with length of 100 μm. Bar graphs show change in spine density or morphology.

(O and P) Confocal projection images show soma in center to depict dendritic arbor.

(Q and R) Quantification of dendritic morphology changes in terms of number of 

intersections per 20-μm step size by Sholl analysis. Changes compared between KIF5C KD 

or KIF3A KD and NC. One-way ANOVA followed by Tukey’s post hoc test. Error bars 

represent SEM. *p < 0.05, *p < 0.005, and ***p < 0.0005. Scale bar: 2 or 20 μm.
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Figure 2. Overexpression (OE) of KIF5C enhances excitatory synaptic transmission, density of 
mushroom spines, and dendritic arborization
(A) Experimental strategy to record mEPSCs in mouse primary HP neuronal cultures 

following OE of KIF5C and KIF3A using full-length cDNA expressing plasmids.

(B) Two traces of mEPSCs for control, KIF5C OE and KIF3A OE.

(C and D) Changes in amplitudes and frequencies of mEPSCs 24 h after KIF5C OE.

(E and F) Changes in amplitude and frequency of mEPSCs between control and KIF5C OE 

groups (Kolmogorov-Smirnov test, p < 0.05).

(G) Experimental plan for overexpressing KIF5C for confocal live imaging.

(H) Confocal projection images of KIF5C OE showing spine changes, digitally enlarged 

image in inset.
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(I and J) Quantitative analyses of image data shown in (H) executed by selecting dendrites 

with length of 100 μm. Bar graphs show change in spine density or morphology.

(K) Confocal projection images of KIF5C OE show soma in center to depict dendritic arbor.

(L) Quantification of dendritic morphology changes in terms of number of intersections per 

10-μm step size by Sholl analysis.

(M) Experimental plan for KIF3A KD and KIF5C OE in same neuron for confocal live 

imaging.

(N) Confocal projection images showing changes in spine, digitally enlarged image in inset.

(O and P) Quantitative analyses of image data shown in (N) achieved by selecting dendrites 

with length of 100 μm. Bar graphs show change in spine density or morphology.

(Q) Confocal projection images show soma in center to depict dendritic arbor.

(R) Quantification of dendritic morphology changes in terms of number of intersections per 

10-μm step size by Sholl analysis. Changes compared between KIF5C OE and control, or 

changes compared between neurons with KIF5C OE and KIF3A KD to control eGFP- and 

RFP-expressing neurons. Unpaired, two-tailed Student’s t test. Error bars represent SEM. *p 

< 0.05, *p < 0.005, and ***p < 0.0005. Scale bar: 2 or 20 μm.
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Figure 3. cAMP-PKA signaling regulates KIF5C expression and function
(A and B) Analysis of relative gene expression of KIF5C by quantitative real-time PCR 

(qPCR). RNA isolated from HP neurons after treatment with 50 μm forskolin for 30 min and 

60 min ± PKA inhibitor for 30 min (B). Data normalized to 18S rRNA levels. Graphs show 

relative expression of KIF5C.

(C) Experimental strategy to record mEPSCs in KIF5C KD mouse primary HP neuron 

cultures following exposure to forskolin or vehicle control.

(D) Two traces of mEPSCs in ±forskolin for NC and KIF5C KD.

(E and F) Changes in amplitudes and frequencies of mEPSCs following 72 h after KIF5C 
KD in ±forskolin-treated neurons. Number of neurons patched per group is labeled. Data 

(mean) from all KD groups compared to negative control.
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(G) Experimental strategy to record mEPSCs in mouse primary HP neuronal cultures 

following KIF5C OE following exposure to forskolin or vehicle control.

(H) Two traces of mEPSCs corresponding to ±forskolin from KIF5C OE and eGFP neurons.

(I and J) Changes in amplitudes and frequencies of mEPSCs in KIF5C OE neurons 

following exposure to ±forskolin. Number of neurons patched per group is labeled. Data 

(mean) from OE compared to control.

(K) Experimental plan for KIF5C KD and forskolin treatment for confocal live imaging.

(L) Confocal images showing changes in spine, digitally enlarged image in inset.

(M and N) Quantitative analyses of image data shown in (L) executed by selecting dendrites 

with length of 100 μm. Graphs show change in spine density or morphology. Changes 

compared between KIF5C KD and NC following ±forskolin exposure. Unpaired, two-tailed 

Student’s t test, one-way ANOVA followed by Holm-Sidak or Tukey post hoc test. Error 

bars represent SEM. *p < 0.05, *p < 0.005, and ***p < 0.0005. Scale bar: 20 μm.

Swarnkar et al. Page 37

Cell Rep. Author manuscript; available in PMC 2021 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. KIF5C regulates local translation and transports RNAs critical for synapse function
(A) Experimental strategy.

(B) Representative WBs of peIF2α and eIF2α in control, KIF5C KD, and forskolin-treated 

KIF5C KD synaptoneurosomes.

(C) Normalized peIF2α to eIF2α in three groups (B).

(D) Experimental strategy for puromycin labeling experiment.

(E) WB analysis of puromycin-labeled actin in KIF5C OE synaptoneurosomes from primary 

HP neurons treated with vehicle, puromycin (Puro), or puromycin+cycloheximide (CHX). 

Ponceau staining used to confirm equal loading. n = 3 independent experiments.

Swarnkar et al. Page 38

Cell Rep. Author manuscript; available in PMC 2021 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(F) Normalized puromycin-labeled actin in synaptoneurosomes prepared from KIF5C OE 

compared with eGFP control neurons. Changes in protein synthesis compared in puromycin-

treated cells. Equal loading confirmed with Ponceau staining.

(G) SIM projection image analysis of KIF5C OE primary HP neurons treated with vehicle, 

Puro, or Puro+CHX. Puromycin staining shown in red. eGFP-labeled dendritic process 

shown in green.

(H) Quantitative representation of average puromycin fluorescence intensity (corrected total 

cellular fluorescence [CTCF]) in KIF5C OE neurons in comparison to control, as observed 

in (G).

(I) Experimental strategy for RNA-seq from mouse hippocampus following KIF5C IP.

(J–L) GO analysis of KIF5C-associated RNAs showing network of genes enriched in 

biological processes and cellular components.

(M) Experimental strategy for synaptoneurosome preparation.

(N) Analysis of relative gene expression of cargos and KIF5C identified through RNA-seq in 

control and KIF5C KD synaptoneurosomes by qPCR.

(O) Experimental strategy for L10A immunoprecipitation (IP) in forskolin-treated 

synaptoneurosomes.

(P) Analysis of ribosome-associated relative gene expression of KIF5C-associated RNAs in 

control and KIF5C KD synaptoneurosomes by qPCR. For all statistical analyses, data 

expressed as means ± SEM (*p < 0.05, **p < 0.005, ***p < 0.0005; unpaired, two-tailed 

Student’s t test, one-way ANOVA followed by Tukey’s post hoc test).
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Figure 5. EIF3G constrains structural changes induced by KIF5C OE
(A) Experimental strategy for puromycin labeling experiment.

(B) WB images of Shank2, Syngap, GluR1, CamKIIβ-1, eIF3g, and actin in 

synaptoneurosomes prepared from KIF5C OE- or eGFP-expressing primary HP neurons 

treated with puromycin.

(C) Shank2, Syngap, GluR1, CamKIIβ-1, and eIF3g expression levels normalized to actin in 

synaptoneurosomes prepared from KIF5C OE or eGFP neurons treated with puromycin.

(D) Experimental strategy for detecting newly synthesized proteins in KIF5C OE neurons by 

proximity labeling assay (PLA).
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(E) Confocal images showing proximity labeling respectively for eIF3G, GluR1, and 

CamKIIβ-1 in KIF5C OE-GFP- or eGFP-expressing primary HP neurons treated with 

puromycin. Newly synthesized proteins are shown in red.

(F–H) Quantification of normalized positive puncta counts in labeled dendrites.

(I–K) Quantification of normalized positive puncta counts in labeled soma.

(L) Experimental strategy.

(M) WB images of pS6K (T-389), S6K, pS6 (S235/236), S6, pCREB (S133), CREB, eIF3g, 

Kinesin, and actin. Primary neurons transduced with eGFP control and KIF5C OE-

expressing lentiviruses. Cells lysed at DIV 16 and subjected to immunoblotting.

(N) Normalized pS6K to S6K, pS6 to S6, pCREB to CREB, eIF3g to actin, and KIF5C to 

actin in total lysate of KIF5C OE- or eGFP-expressing neurons.

(O) Experimental plan for EIF3G KD and KIF5C OE in same neuron for confocal live 

imaging.

(P) Confocal projection images showing changes in spine, digitally enlarged image in inset.

(Q and R) Quantitative analyses of image data shown in (P) completed by selecting 

dendrites with length of 100 μm. Bar graphs show change in spine density or morphology. 

Changes compared between neurons in control and KIF5C OE groups. Unpaired, two-tailed 

Student’s t test or one-way ANOVA followed by Tukey’s or Dunnett’s post hoc test. Error 

bars represent SEM. *p < 0.05, *p < 0.005, and ***p < 0.0005. Scale bar: 1, 2, or 20 μm.
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Figure 6. KIF5C expression in CA1 essential for contextual fear and spatial memories
(A) Experimental strategy followed for cLTP.

(B) WB images of Kif5C, GluR2, and Actin in CA1 after cLTP stimulation and control 

condition.

(C and D) Kif5C and GluR2 expression levels normalized to actin as compared to control as 

percentage of change.

(E) Experimental strategy for in vivo manipulation and mouse behavior using lentivirus to 

KD KIF5C expression.

(F) MWM test strategy.

(G) Heatmap showing mouse tracking during MWM.
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(H–M) Performance in MWM. (H) Time spent in Q1 during probe test. (I) Total number of 

visits to Q1 during probe test. (J) Time spent every 30 s in Q1 during probe test. (K) Time 

spent in Q4 during probe test. (L) Total distance traveled during probe test. (M) Swimming 

velocity.

(N) Contextual fear memory test strategy.

(O) Contextual freezing responses during test at 24 h after conditioning.

(P) Total distance traveled during test at 24 h after conditioning.

(Q) Mean percentage freezing time-averaged every minute during 5-min test at 24 h after 

conditioning. For all statistical analyses, data expressed as means ± SEM (*p < 0.05, **p < 

0.05; unpaired, two-tailed Student’s t test).
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Figure 7. KIF5C OE in dorsal CA1 improves spatial memory and extinction of contextual fear 
memory but not consolidation or recall
(A) Experimental strategy for in vivo manipulation and mouse behavior using lentivirus to 

overexpress KIF5C.

(B) MWM test strategy.

(C) Heatmap showing mouse tracking during MWM.

(D–I) MWM performance. (D) Time spent in Q1 during probe test. (E) Total visits to Q1 

during probe test. (F) Time spent every 30 s in Q1 during probe test. (G) Time spent in Q4 

during probe test. (H) Total distance traveled during probe test. (I) Swimming velocity 

during test.

(J) Contextual fear memory test strategy.

(K) Contextual freezing responses during test at 24 h after conditioning.

Swarnkar et al. Page 44

Cell Rep. Author manuscript; available in PMC 2021 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(L) Total distance traveled during test at 24 h after conditioning.

(M) Mean percentage freezing time-averaged every minute during 5 min test at 24 h after 

conditioning.

(N) Experimental strategy for assessing consolidation, extinction, and recall of contextual 

fear in CA1 KIF5C OE mice using reduced-intensity foot shocks during training.

(O) Extinction training shows significant reduction in percent freezing at 30 min. Control, n 

= 11; KIF5C-O/E, n = 9. For all statistical analyses, data expressed as means ± SEM (*p < 

0.05, **p < 0.05; unpaired, two-tailed Student’s t test).

(P) KIF5C functions as critical regulator of structural plasticity associated with LTM, linking 

transcription, transport, and local translation. KIF5C mediates long-distance transport of 

RNA substrates for local translation for learning-related synaptic remodeling. EIF3G, 

regulator of eukaryotic translational initiation, and several key components determining 

plasticity and function of excitatory synapses such as GLUR1, SYNGAP, SHANK2, and 

CaMKII-β, are transported as RNA cargo of KIF5C.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Synaptophysin Abcam ab32594

PSD-95 Thermo Fisher Scientific MA1-045

eGFP Abcam ab13970

KIF5C Abcam Ab5630

KIF3A Abcam Ab11259

Jip3 Santacruz SC10428

GluR2 Millipore MAB397

GluR2 Millipore MABN71

SAP97 Epitomics Incorp. 5396-1

SLK Bethyl Laboratories Inc. A300-500A

β-Actin Abcam Ab8227

α-Tubulin Thermo Fisher Scientific PA1-20988

peIf2α CST 3597

eIf2α CST 5324

MAP 2 Synaptic systems 188 004

Anti-eGFP Fisher NB1001614

Anti-eGFP- ChIP Grade (ab290) Abcam ab290

Anti-Kinesin, heavy chain Millipore MAB1614

Anti-Puromycin, clone 4G11 Millipore Sigma MABE342

eIF3g Novus Biologicals NB100-93298

CaMKIIβ-1 Thermo Fisher scientific 13-9800

SHANK2 Cell Signaling Technology 12218S

Syngap Gift G. Rumbaugh at Scripps 
Research

GluR1 Cell Signaling Technology 13185

pS6K (T389) Cell Signaling Technology 9234

S6K Cell Signaling Technology 9202

pS6 (S235/236) Cell Signaling Technology 4858

S6 Cell Signaling Technology 2217

pCREB (S1233) Cell Signaling Technology 9198

CREB Cell Signaling Technology 9197

Bacterial and virus strains

One Shot MAX Efficiency DH5α-T1R Competent Cells Thermo Fisher scientific 12297016

Chemicals, peptides, and recombinant proteins

Poly-D-lysine hydrobromide mol wt. 70,000–150,000 Sigma Aldrich P0899-100MG

Papain (PAP) Worthington LS003126

GIBCO DMEM, high glucose, no glutamine Cell Culture 
Media

Thermo Fisher 11-960-044

Neurobasal Media Thermo Fisher 21103049
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REAGENT or RESOURCE SOURCE IDENTIFIER

Penicillin-Streptomycin (10,000 U/mL) Life Tech 15140-122

B-27® Supplement (50X), serum free Thermo Fisher Scientific/Life 
Technologies

17504044

Dulbecco’s Phosphate Buffered Saline with MgCl2 and CaCl2, 
liquid, sterile-filtered, suitable for cell culture

Sigma D8662-6

HyClone Dulbecco’s Phosphate Buffered Saline (DPBS), 1X, 
without calcium, magnesium

VWR 16750-076

Fetal Bovine Serum, certified, US origin Thermo Fisher 16000044

DMEM, high glucose, no glutamine Thermo Fisher 11960044

HBSS (10X), calcium, magnesium, no phenol red Life Technologies 14065056

HEPES (1 M) Life Technologies 15630080

Magnesium Chloride Hexahydrate Fisher Scientific BP214500

Sodium Pyruvate (100 mM) Life Technologies 11360070

GlutaMAX Supplement Thermo Fisher Scientific/Life 
Technologies

35050061

L-Glutamine Sigma-Aldrich G7513-100ML

UltraPure DNase/RNase-Free Distilled Water from Life 
Technologies

Thermo Fisher 10977023

Live Cell Imaging Solution Life Technologies A14291DJ

Lipofectamine 2000 Thermo Fisher 11668019

Lipofectamine® RNAiMAX Transfection Reagent Life Technologies 13778075

Syn-PER Synaptic Protein Extraction Reagent Fisher Sci PI87793

4x Laemmli Sample Buffer Bio-Rad 161-0747

SeeBlue® Plus2 Pre-Stained Standard Thermo Fisher Scientific LC5925

Phosphatase Inhibitor Cocktail 2 Sigma Aldrich P5726-5ML

Phosphatase Inhibitor Cocktail 3 Sigma Aldrich P0044

cOmplete(TM), Mini, EDTA-free Protease Inhibitor Cocktail, 
Protease Inhibitor Cocktail Tablets

Sigma 11836170001

Superase-In. RNase inhibitor (20U/ul). 10.000 units Thermo Fisher Scientific/Life 
Technologies

AM2696

Yeast RNA (10 mg/ml) Thermo Fisher scientific AM7118

UltraPure BSA, 250mg, 100mg/ml MCLAB UBSA-500

NaCl (5M)- RNase free Thermo Fisher scientific AM9760G

Triethanolamine, ≥ 99.0% (GC) Sigma 90279

Acetic anhydride Sigma 320102

Horse Serum, New Zealand origin from Life Technologies Life Technologies 16050130

Goat Serum Sigma-Aldrich G9023-10ML

Formamide Sigma Aldrich F7503-250ML

hydrogen peroxide (30%) Sigma 216763-100ML

Triton (TM) X-114, laboratory grade Sigma X114-100ML

2-Mercaptoethanol Bio-Rad 1610710

PKI 14–22 amide, myristoylated Tocris, Bio-Techne 2546

Forskolin from Coleus forskohlii Millipore Sigma F6886

Dimethyl sulfoxide Millipore Sigma 276855

Rolipram Tocris 0905
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bicuculline Sigma Aldrich 14343

Puromycin dihydrochloride from Streptomyces alboniger Sigma Aldrich P8833-10MG

Cycloheximide solution Sigma Aldrich C4859-1ML

Trizol Reagent Thermo Fisher 15596018

Biotin RNA Labeling Mix Sigma Aldrich 11685597910

PowerUP SYBR Green Master Mix Thermo Fisher A25777

Biotin RNA Labeling Mix Sigma Aldrich 11685597910

Ampicillin Sigma-Aldrich 10835269001

XhoI restriction enzyme Biolabs R0146S

BamHI restriction enzyme Biolabs R0136S

EcoRI restriction enzyme Biolabs R0101S

10x Cutsmart Buffer Biolabs B7204S

qScript cDNA Supermix Quanta Biosciences - VWR 101414-106

SYBR Green PCR Master Mix Thermo Fisher 4309155

Ethyl alcohol, Pure,200 proof, for molecular biology Sigma Aldrich E7023

Chloroform Sigma Aldrich 288306

Isopropanol, Molecular, Biology Grade (500mL) Fisher Bioreagents BP2618-500

Methanol (Laboratory), Fisher Chemical A411-4

Sterile saline solution (Rx) (0.9%) 250mL (Aspen) Patterson veterinary 07-892-4348

Baytril (enrofloxacin, injectable sol. 22.7 mg/mL) Patterson veterinary 07-804-1040

Isoflurane (liquid-inhalation) Patterson Vet. 07-890-8115

Puralube VET Ointment Hanna’s Pharmaceutical Supply (FISHER) NC0628485

Vetbond Tissue adhesive Hanna’s Pharmaceutical Supply (FISHER) NC0304169

Tissue-Tek OCT compound VWR Intl 25608-930

Bone Wax WPI Fisher Scientific 50822813

Critical commercial assays

QIAquick Gel Extraction Kit QIAGEN 28706

QIAprep Spin Miniprep Kit QIAGEN 27106

QIAquick Gel Extraction Kit QIAGEN 28706

QIAprep Spin Miniprep Kit QIAGEN 27106

PicoPure RNA Isolation Kit Thermo Fisher KIT0214

DIG RNA Labeling Kit (SP6/T7) Sigma Aldrich 11175025910

RNAqueous-4PCR Total RNA Isolation Kit Thermo Fisher Scientific/Life 
Technologies

AM1914

TOPO TA Cloning Kit for Sequencing Thermo Fisher K457540

EndoFree Plasmid Maxi Kit QIAGEN 12362

TSA Plus Cyanine 3 Evaluation Kit Perkin Elmer NEL744001KT

RNA 6000 Pico Kit (Chips & Reagents) Agilent 5067-1513

Deposited data

Kif5C RNaseq This paper GSE148634

Hippocampal transcriptome Cembrowski et al., 2016 GSE74985

Neuropil transcriptome Farris et al., 2019 GSE116342
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

HEK293T ATCC Cat# CRL-3216, 
RRID:CVCL_0063

Experimental models: Organisms/strains

CD-1 E18 Pregnant female mice Charles River Laboratories NA

C57BL6/J mice Jackson Laboratories, Bar Harbor, ME NA

Oligonucleotides

Kif3A-F IDT AAG CGA AAA TTG ACG 
AGG AG

Kif3A-R IDT CAT GTA AGG TTT GGT 
TTC CAG

Kif5C-F IDT CCT GAA CCT GCT TCT 
CAA GG

Kif5C-R IDT GAC CTC CGA CTT CAT 
CTT GC

Ubap2l-F IDT AGGGCTAAATCTACAGTT
T
GGGG

Ubap2l-R IDT TGAATCGGGCCACTCTG
ATAA

Nova2-F IDT CGGCTCAATCATCGGC
AAAG

Nova2-R IDT GCATACCCGTTCTGTAGTT
CCTG

Eif3g-F IDT ACTACCACAGTCAGTGAT
GACG

Eif3g-R IDT GCAGGACACAATCTTC
TGGC

Syn1-F IDT AGCTCAACAAATCCCAGT
CTCT

Syn1-R IDT CGGATGGTCTCAGCTT
TCAC

Recombinant DNA

peGFP-C-shLenti Kif5C Origene catalog# TL511686

peGFP-C-shLenti Kif3A Origene catalog# TL516184

scrambled shRNA Origene catalog# TR30013

peGFP-Kif5C-N1 Puthanveettil Lab Puthanveettil Lab

pGL-FLKif3A-C1 Addgene (Linda Wordeman) Addgene plasmid # 13742

pRFP-C-shLenti EIF3G Origene catalog# TR30032

peGFP-C-shLenti Kif5C Origene catalog# TL511686

Software and algorithms

Prism 6 (version 6.0f) GraphPad Software https://www.graphpad.com/
scientific-software/prism/

ImageJ NIH https://imagej.nih.gov/ij/

Minitab 18 Minitab Inc. https://www.minitab.com/en-
us/

Zen2.1 SP1 (Black) Carl Zeiss SCR_013672

MATLAB Max Planck, Fl GitHub - ryoheiyasuda/
countSpines
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

ON-TARGETplus Mouse Kif5c (16574) siRNA - SMARTpool Dharmacon L-062091-01-0005 5 nmol

ON-TARGETplus Mouse Kif3A (16568) siRNA - SMARTpool Dharmacon L-042111-01-0005 5 nmol

ON-TARGETplus Non-targeting control pool siRNA Dharmacon D-001810-10-05 5 nmol

ON-TARGETplus Mouse Kif5c (16574) siRNA - SMARTpool Dharmacon L-062091-01-0005 5 nmol
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