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Abstract: Aquacultured fish are the richest natural source of protein. However, their overproduced
biomass is often discarded due to production imbalance, causing considerable losses to the fishery
industry. Therefore, it is necessary to utilize surplus fish and add value to overproduced fish. We
performed complex enzyme-assisted hydrolysis to determine the correlation between its physical char-
acteristics and anti-hypertensive activity in vitro and in vivo using an SHR model. Protamex-Pepsin
assisted hydrolysate from Paralichthys olivaceus (POppH) produced by complex enzyme-assisted
hydrolysis contained low-molecular-weight peptides and amino acids with anti-hypertensive activity.
POppH regulated blood pressure and serum angiotensin II and angiotensin-I-converting enzyme
levels, and histological and ultrasound image analysis revealed substantially reduced thickness and
diameter of the carotid aorta in the POppH-administered SHR group. Therefore, we propose to reduce
food loss due to overproduction by utilizing the anti-hypertensive activity and physical properties of
POppH; the results demonstrate its application as a therapeutic agent.

Keywords: Paralichthys olivaceus; enzyme-assisted hydrolysis; spontaneously hypertensive rat

1. Introduction

Worldwide, approximately one-third of food produced for human consumption is
lost or wasted from farm to table, amounting to around 1.3 billion tons per year [1]. In the
United States, more than 35 million tons of food went into landfills in 2018 [2]. Wasted
food generates severe changes in the marine and terrestrial environments. COVID-19 has
exposed the vulnerabilities of food systems and heightened the need to mitigate food loss
and waste, both locally and globally [3]. The Food and Agriculture Organization of the
United Nations (FAO) stresses the importance of changing perceptions and providing
solutions to food loss and wastage [4].

Paralichthys olivaceus (P. olivaceus) or olive flounder, belonging to the genus Paralichthys,
is frequently found in sandy bottoms at 10–200 m. Based on the global statistics of olive
flounder production, Korea is the major producer of olive flounder. In 2007, 77.6% (44,245 t)
of the global olive flounder supply came from Korea. Olive flounder is often referred to as
the Korean flatfish and has been the topmost aquacultured finfish in Korea over the past
few decades [5]. However, the expansion of aquaculture production has created several
problems, including rice reduction, high mortality due to various diseases, and a sudden
increase in olive flounder production resulted in a considerable decrease in their price in
the domestic aquaculture fish market. In 2019, 10,634 t of over-produced olive flounder
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was discarded in Jeju, Korea [6]. Earlier studies have shown that overproduction and
oversupply lead to a price drop due to an imbalance of demand and supply of fish [6].
Therefore, the utilization and processing of over-produced olive flounders can increase
their prices and provide a practical solution to overcome the problems associated with
overproduction.

Marine fish-derived protein hydrolysates and peptides have remarkable anti-hypertensive
properties [7]. Numerous studies have evaluated the effect of angiotensin-I-converting
enzyme (ACE) inhibition in vitro and the anti-hypertensive mechanism underlying the
lowering of blood pressure or expansion of blood vessels [8]. Our previous studies reported
that a protein hydrolysate of Paralichthys olivaceus inhibited ACE activity and lowered
systolic and diastolic blood pressure in spontaneously hypertensive rat [9]. This study
focused on the biological properties of hydrolysates obtained from single enzyme-assisted
hydrolysis of Paralichthys olivaceus. However, further studies are needed to determine
the correlation between their biological activities and physical characteristics, especially
the molecular weight of products obtained from single and complex enzyme-assisted
hydrolysis of Paralichthys olivaceus.

Garcia et al. reported that products of two-stage protamex-pepsin hydrolysis had
higher antioxidant, anti-hypertensive, and anti-inflammatory activities than those ob-
tained by one-step protease hydrolysis [10]. In addition, low-molecular-weight peptides
with molecular weights less than 1 kDa have greater mobility and diffusivity than high-
molecular-weight molecules [11,12]. The physical and compositional characteristics of
these hydrolysates are related to their functionality. In this study, we evaluated the potent
anti-hypertensive activities of hydrolysates obtained from single and complex enzyme-
assisted hydrolysis of Paralichthys olivaceus and determined the correlation between their
physical characteristics and anti-hypertensive activities. In addition, by discovering the
functionality of hydrolysates, we identified the utility of over-produced fish as a therapeutic
agent, thus preventing food loss.

2. Results
2.1. Preparation of POpH and POppH and Their ACE Inhibitory Activities

Protamex-assisted hydrolysate from Paralichthys olivaceus (POpH) and protamex-
pepsin assisted hydrolysate from Paralichthys olivaceus (POppH) were prepared to establish
the enzyme-assisted hydrolysis method and optimize the antihypertensive activity of POpH
(Figure 1). As shown in Table 1, the angiotensin-I-converting enzyme (ACE) inhibitory activ-
ity of POppH was higher than that of POpH. The IC50 values of ACE for POpH and POppH
were 127.88 ± 1.32 µg/mL and 103.85 ± 0.97 µg/mL, respectively. These results suggest
that ACE inhibition can be increased on the group of complex enzyme-assisted hydrolysis.

2.2. Physical Characterization of POpH and POppH

The physical properties of POpH and POppH were determined using LC-MS, SEM,
and viscosity analysis. The molecular distributions of POpH and POppH, summarized in
Figure 2A, were found to be widely distributed between 300 and 2399 m/z; smaller molecu-
lar distributions were observed in POppH than POpH. The molecular distributions of POpH
had a maximum of 300–2399 m/z, and the molecular distributions in POppH ranged from
299–1199 m/z. POpH mainly had distributions in the range 600–899 m/z (36%), whereas
POppH mainly had distributions in the range, 300–599 m/z (47%). The molecular mass
results of POpH and POppH are presented in Figure S1. The average molecular weights of
POpH and POppH determined using MALS revealed that they had molecular masses of
2.101 × 103 g/mol and 8.864 × 102 g/mol, respectively. The surface morphologies of POpH
and POppH were observed using field-emission SEM (FE-SEM). The SEM images are shown
in Figure 2B. The SEM images of POpH revealed an inconsistent surface and mainly had
flattened particles with rough surfaces. A rounded and smooth surface morphology was ob-
served for POppH under 1.00 kx magnification. The temperature- and shear-rate-dependent
viscosities were analyzed for POpH and POppH. As shown in Figure 2C, large differences in
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viscosity η values were found for POpH. However, relatively small differences in viscosity
η values were found for POppH. In addition, the shear-rate-dependent viscosity results
revealed that the viscosity η of POpH was not detected in the range, 100−101 s−1, and its
values gradually increased from 102 s−1. The shear-rate-dependent viscosity of POppH
revealed constant viscosity η values in POpH. These results suggest that the temperature-
and shear-rate-dependent viscosity characteristics were better maintained in POppH than
in POpH.
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Figure 1. Preparation of POpH and POppH.

Table 1. ACE inhibitory activity of POpH and POppH.

POpH POppH

ACE inhibitory activity, IC50
value (mg/mL) 0.56 ± 0.02 0.43 ± 0.03

2.3. Amino Acid Profiles of POpH and POppH

The amino acid compositions of POpH and POppH were analyzed, and the results are
summarized in Table 2. According to amino acid profiling, POpH and POppH are composed
of 18 amino acids: 12 essential amino acids (histidine; His, arginine; Arg, threonine; Thr,
proline; Pro, tyrosine; Try, valine; Val, methionine; Met, isoleucine; Ile, leucine; Leu,
phenylalanine; Phe, tryptophan; Trp, lysine; Lys), and 6 non-essential amino acids (cysteine,
Cys; aspartic acid, Asp; glutamine, Glu; serine, Ser; glycine, Gly; alanine, and Ala). POpH
and POppH had high levels of Ala, Asp, Glu, Arg, Leu, Lys and all these amino acids were
slightly increased with complex enzyme assisted hydrolyzation.
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2.4. POppH Reduces SBP and DBP in the SHR Model

The changes in SBP and DBP were evaluated as a measure of the antihypertensive
activity of POppH during the eight-week experimental period. The initial (week 0) average
values of SBP (187.38 ± 12.14 mmHg, n = 8) and DPB (126.92 ± 13.07 mmHg, n = 8) revealed
the rats had hypertension at the beginning of the in vivo study. The blood pressure results
presented in Figure 3 reveal that SBP and DBP were considerably downregulated from
week 7 to 8 in the groups treated with low and high concentrations of POppH compared
with those of the SHR groups. L-POppH decreased SBP (160.75 ± 13.82 mmHg) and DBP
(93.79 ± 23.10 mmHg), and H-POppH lowered SBP (156.82 ± 28.34 mmHg) and DBP
(81.69 ± 12.25 mmHg) at week 8.

2.5. Effect of POppH on Rat Blood Serum Biochemical Indices

To evaluate the antihypertensive effect of POppH, blood serum angiotensin II (ANG
II) and angiotensin-I-converting enzyme (ACE) levels were analyzed to confirm inhibitory
effect of POppH on blood ANG II and ACE (Table 3). The ANG II level was remarkably
lowered in the L-POppH (1729.47 ± 429.05 pg/mL) and H-POppH (1445.30 ± 253.30 pg/mL)
groups. In addition, ACE levels significantly declined in the H-POppH group compared
with that in the SHR group. ACE levels considerably decreased to 8.40 ± 0.78 ng/mL in
the H-POppH group.
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Table 2. Amino acid compositions of POpH and POppH.

Amino Acid MW of Amino Acids
Concentration (µg/100 µL)

POpH POppH

Cys 121.160 12.49 14.95

Asp 133.100 97.36 121.21

Glu 147.130 203.10 236.56

Ser 105.090 48.64 59.63

Gly 75.070 47.24 61.93

Ala 89.100 81.76 90.16

His 155.160 5.59 6.79

Arg 174.200 83.67 105.54

Thr 119.120 40.52 48.17

Pro 115.130 31.68 36.96

Tyr 181.190 41.09 47.90

Val 117.150 60.24 69.74

Met 149.210 23.78 25.13

Ile 131.170 56.00 63.44

Leu 131.180 93.77 108.71

Phe 165.190 37.79 44.13

Trp 204.230 18.19 14.79

Lys 146.188 85.64 103.60

Total 1068.55 1259.34
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Table 3. Effect of POppH on serum biochemistry in SHRs.

Groups ANG II (pg/mL) ACE (ng/mL)

WYK control 1823.31 ± 294.33 # 8.78 ± 0.87 ###

SHR control 1926.94 ± 266.36 9.98 ± 0.56

L-POppH 1729.47 ± 429.05 *** 8.70 ± 0.66 **

H-POppH 1445.30 ± 253.30 **** 8.40 ± 0.78 ****

SP 1685.36 ± 374.94 *** 9.01 ± 1.79 ***
Significant differences were identified at ** p < 0.01, *** p < 0.001 and **** p < 0.0001, as compared to the SHR
control, and # p < 0.05 and ### p < 0.001, as compared to WYK control.
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2.6. Measurement of the Thickness and Ultrasound Imaging of the Carotid Aorta

The effect of POppH on the cross-sectional area of the aorta was observed using H&E
staining. As shown in Figure 4A, the H&E results revealed a thicker aorta in the SHR group
than in the WKY group. However, the thickness of the aorta was significantly reduced
in SHRs in the POppH groups. In particular, the H-POppH group had markedly reduced
aorta thickness by 1.38 ± 0.15-fold relative to the SHR group (1.82 ± 0.12-fold, ** p < 0.001).
To determine the diameters of the carotid aorta, ultrasound observation was performed
by modifying a method by Jin et al. [13]. As shown in Figure 4B, the carotid aorta images
revealed a significantly increase in carotid aorta diameter of H-POppH treated group by
1.11 ± 0.03-fold relative to the SHR group (1.06 ± 0.03-fold, **** p < 0.0001).
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3. Discussion

Hypertension is one of the main mediators of cardiovascular diseases [14]. Elevated
central blood flow is highly burdensome and induces damage in tissues and organs, includ-
ing the heart, kidney, brain, and blood vessels, ultimately resulting in organ dysfunction
and failure [15]. Katz et al. reported that most patients with end-organ injuries showed a
high rate of chronic and acute hypertension [16]. Therefore, the management and initial
control of blood pressure (BP) could help minimize the risk of outbreak of hypertension.
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Recent research with animals revealed that marine fish hydrolysate and its bioactive pep-
tide have strong angiotensin-I-converting enzyme (ACE) inhibitory activity in vitro and
exponentially ameliorate blood pressure [9,17–20]. However, most studies on marine fish
hydrolysate have focused on their biological properties and adopted single-enzyme-assisted
hydrolysis to collect fish hydrolysates. Furthermore, the relative biological activities of
single and complex enzyme-assisted hydrolysates and the subsequent changes in physical
characteristics have not been fully investigated. Here, protamex hydrolysis was adopted as
a one-step hydrolysis, and two-step protamex-pepsin hydrolysis was performed on fish
fillets from Paralichthys olivaceus to assess their potent antihypertensive activities depending
on changes in their physical characteristics.

The molecular distribution results revealed the presence of relatively low molecu-
lar weight peptide in POppH compared to that in POpH, implying that the low molec-
ular weight peptide was concentrated in POppH during the two-step hydrolysis. Fur-
ther, the average molecular weights of POpH and POppH were 2.101 × 103 g/mol and
8.864 × 102 g/mol, respectively. Lin et al. reported the increased potency of ACE inhibitory
activity and the potential of antihypertensive properties of low molecular weight protein
hydrolysates [21]. Morphologic images of POpH and POppH revealed that the surface
morphologies changed during complex enzyme-assisted hydrolysis. The surface of POpH
showed comparatively irregular patterns and rough surface particles. However, a smooth
and rounded surface was observed for POppH. The temperature- and shear-rate-dependent
viscosity results indicated that the physical characteristics, especially temperature- and
shear-rate-dependent viscosity, were highly maintained in POppH compared to those in
POpH. The amino acid compositions of POpH and POppH showed an increase in the Ala,
Asp, Glu, Arg, Leu, Lys in POppH relative to that in POpH. These results correspond with
those of previously published reports on the ACE inhibitory activity of marine fish-derived
peptides [9,22,23]. Moreover, the POppH contained ACE inhibitory peptides, including
Ala and Leu, indicating that POppH might have potential antihypertensive properties [24].
Lee et al. reported that the ACE inhibitory activity is closely associated with the degree
of enzyme hydrolysis and peptide sequences and their amino acid composition [25]. The
physical analysis results indicated that the physical and chemical characteristics changed
with two-step hydrolysis. In particular, the low-molecular-weight peptides and antihyper-
tensive amino acids were found to be concentrated by two-step hydrolysis. In addition,
POppH maintained a constant viscosity under temperature- and shear-rate-dependent
conditions. These results suggest that compared with single enzyme-assisted hydrolysis,
the complex enzyme-assisted hydrolysis markedly increased the antihypertensive potential
by increasing the low molecular peptide and antihypertensive amino acid content.

The in vitro ACE inhibitory activities revealed that ACE inhibition was significantly
increased in POppH (IC50, 0.43 ± 0.03 mg/mL). Earlier reports by Ko et al. (2016) indicate
that the pepsin-assisted hydrolysate from flounder fish showed 50% of ACE inhibition at
1.26 ± 0.14 mg/mL. These results demonstrated the ACE inhibitory activity was increased
through the two-step protamex-pepsin enzyme-assisted hydrolysis, thereby influencing
the selection of POppH for further in vivo animal antihypertensive studies. In vivo, hy-
pertension was successfully induced in the SHR model (SBP: 187.38 ± 12.14 mmHg, DBP:
126.92 ± 13.07 mmHg). WKY rats maintained an SBP of 123.99 ± 14.13 mmHg and a DBP
of 79.14 ± 7.20 mmHg during the initial steps of the experiment. During the eight weeks
of SBP and DBP monitoring, high SBP and DBP was maintained in the SHR and POppH
groups from weeks 0 to 6. However, SBP and DBP significantly decreased from week 7
in the H-POppH group compared to those in the SHR control group. However, the dose
dependent SBP and DBP lowering effect of POppH on the SHR model could not be found.
Nonetheless, our findings indicate that the critical concentrations of POppH on SBP and
DBP were 100–200 mg/kg. Based on blood serum analysis, serum angiotensin II (ANG
II) and ACE levels were significantly decreased in the POppH groups. These results cor-
respond with those of previous reports on ANG II and ACE activation [26,27]. Chappell
reported the functions of ANG II and ACE on vasorelaxation in humans [28]. POppH was



Mar. Drugs 2022, 20, 346 8 of 12

found to significantly lower SBP and DBP by regulating serum ANG II and ACE levels.
Histological analysis indicated that the thickness of the aorta was markedly reduced follow-
ing H-POppH administration. These results correspond with those of Ashkan et al., who
demonstrated the relationship between aortic wall thickness and aortic distensibility [29].
Overall, our findings suggest that H-POppH could ameliorate hypertension-induced aorta
or blood vessel hypertrophy in SHRs. Moreover, ultrasound image analysis demonstrated
that supplementation with POppH remarkably increased the carotid aorta diameter. Collec-
tively, these results imply that the oral administration of POppH significantly reduced SBP
and DBP by regulating ANG II and ACE levels. Furthermore, the oral administration of
POppH can reduce the risk of aortic and cardiac hypertrophy.

4. Materials and Methods
4.1. Materials and Chemicals

Commercial protamex was purchased from Novo Co. (Novo Nordisk, Bagsvaerd,
Denmark). Pepsin was purchased from Chongqing Jiangxia Biochemistry Pharmaceutical
Co., Ltd. (Chongqing, China). The in vitro ACE kit-WST was purchased from Dojindo Inc.
(Kumamoto, Japan). Serum angiotensin II (ANG II) and angiotensin-I-converting enzyme
(ACE) analysis kits were purchased from LS Bio (Washington, DC, USA). All chemicals and
reagents were of analytical grade.

4.2. Preparation of Enzymatic Hydrolysate from Paralichthys olivaceus

Paralichthys olivaceus were obtained from a local fish farm on Jeju Island, Korea. The
fish were filleted, washed with tap water, and stored at −80 ◦C. The frozen fish fillet was
defrosted, and 50 kg of fish fillet was hydrolyzed with protamex (50 g) for 2 h under optimal
conditions (pH 6.00–7.00, 50 ◦C). After protamex-assisted hydrolysis, the pH of hydrolysate
of Paralichthys olivaceus (POpH) was adjusted to 3.50 with citric acid and additional 50 g
of pepsin was added. The pepsin-assisted hydrolysis was continued for 2 h under 40 ◦C,
after which, the protamex-pepsin were inactivated at 95 ◦C for 30 min. The mixtures were
subsequently filtered (pore size: 1 µm), and the filtrate was concentrated in a vacuum
concentrator (60 ◦C, 500–600 mmHg) up to 20 brix. The concentrated solutions were then
mixed with maltodextrin and spray-dried under optimal conditions (inlet: 165–180, outlet:
70–90, rpm: 10,000). Thereafter, the spray-dried samples were stored in a freezer at −20 ◦C
before use. Finally, the resulting protamex-pepsin assisted hydrolysate of Paralichthys
olivaceus was named as POppH (Lot No. SW1K11SA).

4.3. ACE Inhibitory Activity

The ACE inhibitory effect of POpH and POppH was determined using a commercial
ACE assay kit (Dojindo Molecular Technologies, Inc., Kumamoto, Japan), according to the
manufacturer’s instructions.

4.4. Molecular Distribution Based on Liquid Chromatography-Mass Spectrometry (LC-MS)

LC-MS analysis was performed to derive the molecular weight distributions of POpH
and POppH. The mass spectra were acquired using an UltiMate 3000 system (Dionex, Sun-
nyvale, CA, USA) coupled with a microQ-TOF III mass spectrometer (Bruker Corporation,
255748, Bremen, Germany). ZORBAX 300SB-C18 (1.0 × 150 mm, 3.5 µm, Agilent) was used
as the separation column. The tested samples were directly infused into positive-mode
ESI sources at a speed of 100 µL/min. The MS scan range was 200–2000 m/z, and the MS
parameters were as follows: capillary voltage, 4500 V; dry temperature: 180 ◦C; funnel
1RF, 400; funnel 2RF, 400; ISCID energy, 0 eV; Hexapole RF, 250; Ion Energy, 5.0 eV; Low
Mass, 300 m/z; Collision Energy, 7 eV; Collision RF, 600; Transfer Time, 80 µs; and Pre Puls
Storage, 10 µs). To measure the molecular weight distributions, distilled water with 0.2%
formic acid was used as the mobile phase (A), while acetonitrile containing 0.2% formic
acid was used as the stationary phase (B). The tested samples were eluted using a gradient
of mobile phase. The tested samples were eluted using a gradient of mobile phase (A) and
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stationary phase (B) at a flow rate of 100 µL/min, and the wavelength of detection was
280 nm. The following gradient elution program was employed: 0–4 min, 95:95–5:5 v/v;
4–5 min, 95:90–5:10 v/v; 5–25 min, 90:70–10:30 v/v; 25–30 min, 70:5–30:95 v/v; 30–40 min,
5:5–95:95 v/v; and 40–46 min, 5:95–95:5 v/v.

4.5. Determining Average Molecular Weight by Multi-Angle Light Scattering (MALS)

To determine the average molecular weight, MALS analysis was performed using
DAWN Heleos II multi-angle light scattering coupled with a Shimadzu HPLC system
connected to a PL aquagel-OH MIXED-H (7.5 × 300 mm, Agilent Technologies, Santa Clara,
CA, USA). The analytical sample was dissolved in 500 mM NaCl and filtered through a
membrane filter (pore size: 0.22 µm). The filtered samples were subsequently loaded and
eluted with 0.5 mol/L NaCl at a flow rate of 0.5 mL/min. The MALS data were analyzed
using the ASTRA 6 software (Wyatt Technologies, Santa Barbara, CA, USA).

4.6. Rheometry

A rotational rheometer (ARES-G2, TA Instruments Ltd., Newcastle, DE, USA) was
used to assess the temperature–shear rate dependent viscosity of POpH and POppH. The
temperature-dependent viscosities of POpH and POppH were evaluated at 20, 40, 60, 80,
and 100 ◦C, and the shear-rate-dependent viscosity was measured in the range of 10−1 to
103 s−1. The following parameters were applied: minimum transducer torque in oscillation:
0.05 N·m; minimum transducer torque in steady shear, 0.1 N·m; maximum transducer
torque, 200 mN·m; transducer torque resolution, 1 nN·m; strain resolution at drive motor,
0.04; measuring geometry, 25 mm plate; and measuring Gap, 1 mm.

4.7. Scanning Electron Microscopy (SEM)

Surface morphologies were determined using field emission scanning electron mi-
croscopy (FE-SEM; MIRA 3 TESCAN, Brno, Czech Republic) coupled with energy dis-
persive X-ray spectrometry (EDS). The sample was mounted on circular aluminum stubs,
coating the carbon tape. After the sample was pretreated, the stub was introduced into the
FE-SEM device, and the surface morphology and structure were analyzed using FE-SEM
(SEM HV: 15.0 kV, magnification: 1.00 kx).

4.8. Amino Acid Composition

General amino acid profiles were analyzed using an amino acid auto analyzer coupled
with an HPLC system (Waters, Milford, MA, USA) equipped with a Pico-Tag reverse-phase
column (3.9 × 300 mm, pore size: 4 µm). For amino acid analysis, solvent A (140 mM
sodium acetate, 6%(v/v) ACN, pH 5.9) and solvent B (60%(v/v) ACN) were used as
mobile phases, and gradient separation was performed at a flow rate of 1 mL/min. The
amino acids were detected in a Waters 2487 UV detector at 254 nm. Data were analyzed
using Waters Empower 2 software. The following gradient elution of solvent A and
B was employed: 0–9 min, 100:0–86:14 v/v; 9–9.2 min, 86:14–80:20 v/v; 9.2–17.5 min,
80:20–54:46 v/v; 17.5–17.7 min, 54:46–0:100 v/v; and 17.7–21 min, 0:100–100:0 v/v.

4.9. Animal Studies

Thirty-two male SHRs and eight male Wistar rats (WKY) (age of rats, 5 weeks old)
were purchased from a commercial vendor, Jung Ang Lab Animal Inc. (Seoul, Korea). All
animals had free access to tap water and chow diet containing proteins (15.2%), lipids
(2.9%), cellulose (4.1%), nitrogen-free extract (60.7%), moisture (12.1%), and mineral ash
(5.0%). Rats were housed in a controlled room under optimal temperature (20–22 ◦C),
humidity (40–60%), and a 12:12 light/dark cycle. Animals were allowed to acclimate to
the environment for two weeks. Thereafter, the animals were randomly divided into five
groups (n = 8 in each group): normal control (WYK), negative control (SHR), positive
control (sardine peptide (SP)), low (L-POppH), and high (H-POppH) dosage groups. The
L-POppH and H-POppH mice were orally administered 50 and 100 mg/kg of POppH once
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daily, respectively. The positive control groups were orally administered 100 mg/kg SP
once daily, and the normal and negative control groups were administered 0.9% saline.
Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) were monitored weekly
using a CODATM tail-cuff blood pressure system (Kent Scientific Corp., Torrington, CT,
USA). All experimental rats were sacrificed to retrieve their kidney, heart, and aorta tissues
for further histological experiments. The animal study was approved by the International
Animal Care and Use Committee (IACUC) of Jeju National University (approval number:
2020-0025, 13 July 2020).

4.10. Blood Serum Profiles

Blood was collected from rat heart via a cardiac puncture using an EDTA-rinsed
syringe. Subsequently, the blood was transferred into a heparin-coated blood collection
tube. Blood serum was allowed to coagulate for 1 h before centrifugation (3000 rpm, 15 min,
4 ◦C). Thereafter, the supernatant was carefully collected and stored at −80 ◦C.

4.11. Histology

Histological analysis was performed by dissecting the rat aorta. The isolated aorta
tissues were fixed in 10% formalin solution and dehydrated before embedding in paraffin.
Subsequently, the blocks of paraffin-embedded aorta tissue were cut into 3-µm sections
using a tissue processor machine, placed on an albumin-coated slide, and dried at 37 ◦C
for 24 h. Thereafter, the slides were deparaffinized in xylene, stained with hematoxylin
and eosin (H&E) staining, and rinsed three times with deionized water. The slides were
mounted with DPX mounting solution (Sigma Chemical Co., St. Louis, MO, USA). Histo-
logic images were obtained using Lionheart FX Automated Microscope (BioTek Instruments,
Inc., Winooski, VT, USA). The thickness of rat aorta tissues was measured using ImageJ
software (version 1.4).

4.12. Ultrasound Image Analysis

SHRs (8 weeks old) were anesthetized with diethyl ether and O2 gas through a vevo
compact anesthesia system. Carotid artery images were observed using the modified
methods of Phaeng et al. with a Vevo 770 small animal ultrasound imaging scanner
and single-element crystal mechanical imaging transducer (RMV 704; VisualSonics Inc.,
Toronto, ON, Canada) [30]. The diameter of the carotid aorta was quantified using MATLAB
software (Math Works Inc., Natick, MA, USA).

4.13. Statistical Analysis

All measurements were performed in triplicate and are presented as mean ± standard
deviation (SD) using the statistical package, GraphPad Prism (Version 6; GraphPad Software
Inc., San Diego, CA, USA). One-way ANOVA with Duncan’s test was used to assess
differences between the groups. p-values in the following limits were considered significant:
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 compared with the negative SHR
control group; and # p < 0.05, ## p < 0.01, ### p < 0.001, and #### p < 0.0001 compared with
the normal WYK control group.

5. Conclusions

In conclusion, our findings revealed that complex enzyme-assisted hydrolysis, simi-
lar to two-step protamex-pepsin enzyme-assisted hydrolysis, successfully increased the
low molecular weight peptide. Moreover, physical characteristics, such as viscosity, were
highly maintained in POppH. The oral administration of POppH potentially caused SBP
and DBP lowering by downregulating angiotensin II and down-regulating of angiotensin-I-
converting enzyme levels. Taken together, these results indicate that POppH can be utilized
as an anti-hypertensive agent. Further, this study provides a rationale for clinical studies on
low-molecular-weight peptides from Paralichthys olivaceus used as anti-hypertensive func-
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tional food or agents. The anti-hypertensive activity of Paralichthys olivaceus by-products
could minimize the loss of aquaculture fisheries and food waste.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20060346/s1, Figure S1: Molecular distributions of POpH
and POppH.
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