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Abstract: Ailanthoidol (ATD) has been isolated from the barks of Zanthoxylum ailanthoides and
displays anti-inflammatory, antioxidant, antiadipogenic, and antitumor promotion activities. Recently,
we found that ATD suppressed TGF-β1-induced migration and invasion of HepG2 cells. In this report,
we found that ATD exhibited more potent cytotoxicity in Huh7 hepatoma cells (mutant p53: Y220C)
than in HepG2 cells (wild-type p53). A trypan blue dye exclusion assay and colony assay showed ATD
inhibited the growth of Huh7 cells. ATD also induced G1 arrest and reduced the expression of cyclin
D1 and CDK2. Flow cytometry analysis with Annexin-V/PI staining demonstrated that ATD induced
significant apoptosis in Huh7 cells. Moreover, ATD increased the expression of cleaved PARP and
Bax and decreased the expression of procaspase 3/8 and Bcl-xL/Bcl-2. In addition, ATD decreased
the expression of mutant p53 protein (mutp53), which is associated with cell proliferation with the
exploration of p53 siRNA transfection. Furthermore, ATD suppressed the phosphorylation of the
signal transducer and activator of transcription 3 (STAT3) and the expression of mevalonate kinase
(MVK). Consistent with ATD, the administration of S3I201 (STAT 3 inhibitor) reduced the expression
of Bcl-2/Bcl-xL, cyclin D1, mutp53, and MVK. These results demonstrated ATD’s selectivity against
mutp53 hepatoma cells involving the downregulation of mutp53 and inactivation of STAT3.

Keywords: ailanthoidol; hepatoma; mutant p53; STAT3; apoptosis; cell cycle

1. Introduction

Hepatocellular carcinoma (HCC), the most common primary malignant tumor in liver
cancer cases, is a complex disease caused by a variety of risk factors. Conventional types
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of liver cancer treatment, including surgical resection, radiotherapy, and chemotherapy,
have been either limited in application or ineffective [1]. Transplantation of the liver is
believed to be the only viable treatment; however, it is not easy to find the proper donor.
Although scientists have generated intense research efforts to explore cellular, molecular,
and physiological mechanisms of the disease for developing prevention and therapy
strategies [2], the mortality rate of HCC remains high.

The transcription factor p53 is activated in response to various stresses including
nutrient deprivation, DNA damage, oncogene activation, and hypoxia. p53 is a well-
established tumor suppressor and guardian of the genome that induces apoptosis and
cell cycle arrest by activating downstream target genes [3]. However, p53 is mutated
in around half of all human cancers. It is generally believed that p53 loses its tumor
suppressor function because of a mutation in p53. Certain types of p53 mutations are
gain-of-function mutations, which have been shown to have oncogenic functions [4]. HCC
is a lethal malignancy associated with poor prognosis and a high recurrence. Effective
HCC therapeutics still await a molecular understanding of the mechanisms promoting the
development of selective and precise agents. HCC has a high rate of mutation in tumor
suppressor protein p53, leading to the loss of its tumor suppressor activity and, in certain
cases, gain-of-function activities that promote cell proliferation, tumor progression, and
drug resistance [5]. Thus, mutant p53 has become an important target for the development
of anticancer agents in HCC.

The signal transducer and activator of transcription 3 (STAT3) is a pivotal transcrip-
tional factor of multiple promoting genes in cancer development and immune evasion [6].
Phosphorylated STAT3s dimerize each other and translocate into the nucleus before ac-
tivating the downstream genes. Under a normal physiological state, STAT3 activation is
usually transient in the continuous stimulation of cytokines and contributes to protecting
normal hepatocytes from inflammatory insults. It has been reported that constitutive
phosphorylation of STAT3 in tumor tissue is correlated with poor prognosis in HCC pa-
tients [7]. Thereafter, the inactivation of the STAT3 signal pathway is a promising strategy
in anti-HCC treatment.

Ailanthoidol (ATD), a neolignan, has been isolated from the bark of Zanthoxylum ailan-
thoides (Rutaceae), of which the dried fruit is used as a spice in Taiwan. Our previous study
demonstrated that ATD displays antitumor promotion effects using the multistep skin
cancer model induced by 12-o-tetradecanoylphobol-13-acetate [8]. Recently, we found that
ATD suppresses TGF-β1-promoted migration and invasion in HepG2 cells [9]. Kim and Jun
reported that ATD has in vitro and in vivo anti-inflammatory effects [10]. Park et al. found
that ATD possesses antiadipogenic activities [11]. In addition, ATD is a benzofuran deriva-
tive and indicates diverse pharmacological activities, including anticancer activities [12].
As the anticancer properties of ATD have not been well clarified, this study investigated
the antiproliferation effects and molecular mechanism of ATD in hepatoma cells.

2. Results
2.1. Effects of ATD on the Growth of Huh7 and HepG2 Cells

To understand cell viability under ATD treatment on the hepatocellular carcinoma
cells (HCCs), a range of concentrations (0–80 µM) was evaluated in the Huh7 and HepG2
cells with an MTT assay. As shown in Figure 1, ATD suppressed cell viability in Huh7 cells,
with IC50 values of 45 µM and 22 µM at 24 h and 48 h, respectively, while the IC50 value in
HepG2 cells was above 80 µM. In addition, to examine the effects of ATD on the growth
of Huh7 cells, a trypan blue dye exclusion assay and colony assay were performed. The
results demonstrated that ATD decreased the growth of Huh7 cells in a time-dependent
manner (Figure 2A). Furthermore, a colony formation assay confirmed that ATD decreased
the growth of Huh7 cells significantly (Figure 2B). Thereafter, we proceeded to study the
antitumor potential and mode of action of ATD in Huh7 cells.
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0.01 and *** p < 0.001, compared with the control group (24 h) (0.2% DMSO) of the Huh 7 cells or 
HepG2 cells, respectively. # p < 0.05 and ### p < 0.001, compared with the control group (48 h) of the 
Huh 7 cells or HepG2 cells, respectively. 
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p < 0.05, * p < 0.0 5, ## p < 0.01, compared with the control group (0.2% DMSO) at 24 h, 48 h, and 72 h, 
respectively; (B) a total of 500 cells were seeded in a six-well dish. After attachment, the cells were 
treated with or without ATD (2.5, 5, and 10 μM) for 48 h and then cultured for seven days. The cells 
were fixed with methanol and stained with Giemsa. The number of colonies was counted. Data are 
represented as the means ± SD (n = 3). *p < 0.05, ** p < 0.01, *** p < 0.001, compared with the control 
group (0.2% DMSO). 

2.2. Effect of ATD on the Cell Cycle Distribution of Huh7 Cells 

To determine the cellular mechanism preventing cancer cell proliferation, we examined cell 
cycle profiles in Huh7 cells with or without ATD administration at various times, using flow cy-
tometry. When the cells were administrated with ATD (10 μM), the proportion of the subG1 and 
G0/G1 phases tended to significantly increase, compared with the control (0 h), while the G2/M 
phase was decreased (Figure 3A,B). In addition, ATD downregulated the expression levels of the 
checkpoint proteins involved in the regulation of G1 phase transition, such as cyclin D1 and CDK2 
(Figure 3C). 

Figure 1. The effect of ailanthoidol (ATD) on the cell viability of Huh7 and HepG2 cells was de-
termined with an MTT assay. Huh7 and HepG2 cells were treated with or without ATD under
the indicated concentration for 24 h and 48 h. Cell viability was measured with an MTT assay, as
described in the text. Data are represented as the means ± SD of three independent experiments.
** p < 0.01 and *** p < 0.001, compared with the control group (24 h) (0.2% DMSO) of the Huh 7 cells
or HepG2 cells, respectively. # p < 0.05 and ### p < 0.001, compared with the control group (48 h) of
the Huh 7 cells or HepG2 cells, respectively.
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Figure 2. The effect of ailanthoidol (ATD) on the growth of Huh7 cells with a trypan dye exclusion
assay and colony formation assay: (A) viable cells were counted using the trypan blue dye exclusion
assay after treatment with ATD (10 µM) at 24 h, 48 h, and 72 h. Values are the means ± SD (n = 3).
@ p < 0.05, * p < 0.0 5, ## p < 0.01, compared with the control group (0.2% DMSO) at 24 h, 48 h, and
72 h, respectively; (B) a total of 500 cells were seeded in a six-well dish. After attachment, the cells
were treated with or without ATD (2.5, 5, and 10 µM) for 48 h and then cultured for seven days. The
cells were fixed with methanol and stained with Giemsa. The number of colonies was counted. Data
are represented as the means ± SD (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001, compared with the
control group (0.2% DMSO).

2.2. Effect of ATD on the Cell Cycle Distribution of Huh7 Cells

To determine the cellular mechanism preventing cancer cell proliferation, we examined
cell cycle profiles in Huh7 cells with or without ATD administration at various times, using
flow cytometry. When the cells were administrated with ATD (10 µM), the proportion of
the subG1 and G0/G1 phases tended to significantly increase, compared with the control
(0 h), while the G2/M phase was decreased (Figure 3A,B). In addition, ATD downregulated
the expression levels of the checkpoint proteins involved in the regulation of G1 phase
transition, such as cyclin D1 and CDK2 (Figure 3C).

2.3. Induction Apoptosis by ATD in Huh7 Cells

To examine the mechanism of ATD-induced cytotoxicity, apoptotic induction of ATD
(10, 20, and 40 µM) was evaluated by flow cytometry analysis with Annexin V/PI double
staining. While the percentage of early apoptotic cells in the control group was 3%, in the
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ATD-treated groups, it increased from 4.13% to 13.43% (Figure 4A). ATD significantly in-
creased the percentage of total apoptotic cells (early plus late) in a dose-dependent manner,
from 8.35% to 22.49%, while in the control group, it was 5.95% for Huh7 cells (Figure 4A,B).
To further characterize the cell death process, we investigated the downstream expression
of apoptotic associated proteins using a Western blot assay. ATD decreased the expression
levels of procaspase 3, procaspase 8, Bcl-xL, and Bcl-2 but increased the levels of Bax and
cleavage poly(ADP-ribose) polymerase (PARP) (Figure 4C).
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Figure 3. Ailanthoidol induced cell cycle arrest in Huh7 cells: (A) Huh7 cells were treated with or
without ATD (10 µM) for 0, 24, 48, and 72 h. The harvested cells were stained with PI, and the DNA
content was analyzed using a flow cytometer. The histograms are from one out of three experiments;
(B) values are presented as means ± SD (n = 3). ** p < 0.01, *** p < 0.001 vs. o h; (C) Huh7 cells were
treated with or without ATD for 24 h. The cells were harvested and equal protein amounts of the
whole-cell extracts were analyzed by Western blotting against the indicated antibodies. α- tubulin
was used as the loading control.

2.4. Induction Apoptosis by ATD in Huh7 Cells

As ATD exhibited a marked reduction in the IC50 value in Huh7 cells (mutant p53
Y220C), compared with HepG2 cells (wild-type p53), the effect of ATD on the p53 ex-
pression in Huh7 cells could be determined. The immunoblotting assay against the p53
antibody (DO-1), which is recommended for detection of wide-type and mutant p53, re-
vealed that ATD reduced the expression of p53 in Huh7 cells in a dose-dependent manner
(Figure 5A). In addition, according to the immunofluorescence analysis against the p53 an-
tibody (PAb240), which is recommended for mutant p53 under non-denaturing conditions,
ATD reduced the fluorescence of p53 in Huh7 and PLC/PRF/5 cells (mutant p53 R249S),
compared with the positive control group, respectively, while the negative control of
HepG2 (wild-type p53) did not exhibit green fluorescence (Figure 5B). In order to determine
whether mutant p53 was involved in the ATD-induced antiproliferation, we conducted
a p53 knockdown experiment using the transfection of p53 siRNA. Although the cellular
levels of p53 in Huh7 cells transfected with p53 siRNA were not completely knocked down,
a distinct downregulation of the cellular p53 levels was observed (Figure 6A). The CCK-8
assay indicated that p53 knockdown indeed decreased cell viability (Figure 6B). In addition,
ATD treatment significantly enhanced the antiproliferation property in the p53 knockdown
cells (Figure 6B), indicating that mutant p53 was involved in ATD-induced apoptosis and
cell cycle arrest in Huh7 cells.
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Figure 4. Ailanthoidol induced apoptosis in Huh7 cells. Huh7 cells were treated with or without
ATD for 48 h: (A) the ATD-induced apoptosis in the Hun7 cells was determined by using a flow
cytometer with Annexin V-FITC/PI staining, as described in the text. The cells in the lower-right
quadrant (Annexin V+/PI-) represent the early apoptotic cells, and those in the upper-right quadrant
(Annexin V+/PI+) represent the late apoptotic cells. A typical photograph from three independent
experiments with similar results is shown; (B) data are presented as means ± SD (n = 3). *** p < 0.001
vs. the control; (C) Huh7 cells were treated with or without ATD for 24 h. The cells were harvested
and equal protein amounts of the whole-cell extracts were analyzed with Western blotting against
the indicated antibodies. β-actin or GADPH was used as the loading control.
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Figure 5. Mutant p53 involvement in ATD-induced antiproliferation in Huh 7 cells: (A) after treatment
with various concentrations of ATD for 24 h, the level of p53 in Huh7 cells was determined with
immunoblotting analysis against anti-p53 (DO1). GADPH was used as loading control; (B) after
treatment with DMSO (solvent control) or ATD (20 µM) for 24 h in Huh7 cells or PLC/PRF/5
cells, and HepG2 cells as negative control, the p53 against anti-p53 (PAb240) was detected with
immunofluorescence analysis, as described in the text. The nuclear was stained by DAPI (blue).
Green fluorescence indicated mutp53.
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STAT3 has recently emerged as a potential therapeutic target for HCC [7]. In addition,
it has been demonstrated that STAT3 may sustain mutp53 levels due to its interplay with the
mevalonate pathway, which increases its stability [13]. Thereafter, we determined the effect
of ATD on the phosphorylation of STAT3 and the expression of mevalonate kinases (MVK),
a downstream target gene product of the STAT3 pathway. As shown in Figure 7A, ATD
decreased the level of phosphorylated STAT3 and MVK. Consistent with ATD, S3I201, an
inhibitor of STAT3, decreased the expression of Bcl-xL/Bcl2, p53, and MVK (Figure 7B,C).
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Figure 7. ATD-induced apoptosis and cell cycle arrest by blocking the STAT3 pathway in Huh7 cells:
(A) after treatment with various concentrations of ATD for 24 h in Huh7 cells, the protein levels of
p-STAT3, STAT3, and MVK were determined with immunoblotting. In addition, after treatment with
various concentrations of S3I201 for 24 h in Huh7 cells, the protein levels of Bcl-XL, Bcl-2, and cyclin
D1 (B), as well as p53 and MVK (C), were determined with immunoblotting analysis. β-actin or
GADPH were used as the loading control. After treatment with various concentrations of ATD in the
PLC/PRF/5 cells (mutp53 R249S), the protein levels of p53 (DO-1), p-STAT3, STAT3, MVK (D), Bcl-2,
Bcl-XL, and cyclin D1 (E) were determined with immunoblotting.

3. Discussion

HCC, which accounts for nearly 80% of all liver cancer cases, is a heterogeneous
type of cancer caused by a variety of risk factors, including exposure to the hepatitis
virus, food contaminated with Aflatoxin B1, heavy alcohol intake, and obesity [14,15]. The
incidence of HCC is rising rapidly worldwide. In addition, since HCC is diagnosed at a late
stage in most cases, surgical resection and liver transplantation are not practical therapy
options. Metastasis and recurrence are quite common. Therefore, the development of a
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promising compound with target therapy potential is an urgent task. Plants are major
food and pharmaceutical sources for humans. Some phytochemicals, such as alkaloids,
diterpenoids, and sesquiterpenes, display therapeutic potential for cancer treatment [16].
However, these therapeutic phytochemicals are also associated with adverse side effects,
such as cardiovascular diseases, vomiting, renal dysfunction, and myelotoxicity. Thereafter,
scientists have dedicated themselves to developing phytochemicals with minimal side
effects and good bioavailability. Lignans and neolignans may possess great potential for
anticancer treatment and display good safety profiles [12,17,18]. In the present study, ATD, a
neolignan isolated from the bark of Zanthoxylum ailanthoides [19], exhibited antiproliferation
potential in Huh7 hepatoma cells, which was related to the induction of cell cycle arrest and
the activation of apoptosis. Cell cycle arrest was mediated by the ATD-induced cyclin D1
and CDK2 expression, while apoptosis was activated by ATD-downregulated Bcl-xL/Bcl2
and augmented Bax, resulting in the activation of caspase 3. For a real application, animal
studies of ATD are required in the future.

The tumor suppressor p53 regulates the transcription of numerous downstream target
genes involved in cell cycle arrest, apoptosis, and metabolism. Loss of p53 activity by
gene deletion or mutations in normal cells causes uncontrolled cell proliferation, leading
to immortalization and, ultimately, cancer. Additionally, mutant p53 shows oncogenic
gain-of-function activities, such as enhanced tumor progression, metastasis potential,
and drug resistance [20]. As a result, obtaining efficient inhibitors against mutant p53
cancer cells remains an urgent task for medicine development. Reactivation of the wild-
type p53 function and expression or abrogation of mutant p53 protein may halt cancer
progression [21]. Accumulation of mutant p53 is critical for the gain of function related to
p53 mutation, including enhanced cell growth and tumor progression; however, the manner
in which mutp53 is regulated and promotes cancer progression is not well understood [4].
Enzymes controlling p53 proteasomal degradation or stability and some microRNA have
been considered to regulate mutant p53 levels [13,22]. In the present study, we found
that ATD had more potent cytotoxicity in Huh7 cells (mutant p53) than in HepG2 cells
(WT p53), which was associated with reducing the level of mutp53. According to our
results, ATD blocked the STAT3 pathway and mediated the abrogation of mutp53. Whether
ATD affects the miRNA or enzymes associated with proteasomal degradation requires
further clarification. Our data implicated that ATD displayed potent anticancer potential in
mutp53-based HCC by impairing the gain of function of mutant p53.

Among the diverse signaling molecules, STAT3 is considered an oncogenic factor in
HCC [7]. Under a normal physiological state, STAT3 activation is usually transient, even in
the continuous stimulation of cytokines, and contributes to protecting normal hepatocytes
from inflammatory and toxic insults. In HCC, the persistent activation of STAT3 changes
the gene transcriptions associated with cell survival, proliferation, invasion, and angiogen-
esis. The pro-proliferative role of STAT3 is related to its antiapoptotic functions toward
HCC via upregulating antiapoptotic proteins such as Bcl-xL. Furthermore, constitutive
phosphorylation of STAT3 in tumor tissue is closely correlated with a poor prognosis in
HCC patients [6]. Recently, it has been reported that STAT3 sustains mutp53 expression
due to its interplay with the mevalonate pathway, which increases the stability of mutp53
and prevents its degradation from proteasome [13]. In the present study, ATD inhibited
the p-STAT3, MVK, and mutp53 levels in Huh7 cells. According to Figure 7, we supposed
that ATD blocked the STAT3 pathway mediating a reduction in mutp53 protein in Huh7
cells. Although we found that ATD reduced the level of MVK (the downstream target gene
product of STAT3, which might affect the stability of mutp53), the real interplay between
STAT3 and mutp53 needs further elucidation. In addition to reducing the gain-of-function
activity of mutp53, ATD also triggered apoptosis by decreasing the expression of Bcl-xL
and Bcl-2, which is associated with the inactivation of the STAT3 pathway. Additional
studies are still needed to elucidate the action mechanisms of the ailanthoidol (ATD) as a
chemopreventive and therapeutic agent in in vivo xenograft mouse models.
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4. Materials and Methods
4.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), phosphate-buffered saline (PBS), fetal
bovine serum (FBS), penicillin–streptomycin–neomycin (PSN), and trypsin–EDTA were
purchased from Gibco Ltd. (Grand Island, NY, USA). Primary antibodies against p53(DO-1),
p53(Pab-240), CDK2, Bax, Bcl-2, Bcl-xL pro-caspase 3/8, STAT3, MVK, GADPH, and actin
were obtained from Santa Cruz Biotechnology (St. Louis, MO, USA). Anti-cyclin D1,
anti-c-PARP, and anti-p-STAT3 (Tyr750) were obtained from Cell Signaling Technology
(Beverly, MA, USA). Alexa 488-labeled goat anti-mouse IgG antibody was from Thermo
Fisher Scientific, Waltham, MA, USA. ATD was provided by Dr. Lee and synthesized from
5-bromo-2-hydroxy-3-methoxybenzaldehyde, as previously reported [23]. Tris base and all
other materials were purchased from Sigma Chemical Co. (St. Louis, MO, USA).

4.2. Cells and Cell Culture

The human liver cancer cell line Huh7 (p53 Y220C) was obtained from the Food
Industry Research and Development Institute (Hsinchu, Taiwan) and cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco BRL, Grand Island, NY, USA), supplemented
with 10% FBS, 1% PSN, 1% essential amino acid, and 1mM glutamine. HepG2 (p53 WT)
cells were cultured in DMEM supplemented with 10% FBS, 1% PSN, 1% essential amino
acid, 1% sodium pyruvate, and 1mM glutamine. PLC/PRF/5 (R249S) cells were cultured
in MEM supplemented with 10% FBS and 1% PSN. The cell cultures were maintained at
37 ◦C in a humidified atmosphere of 5% CO2.

4.3. Cell Viability Assay

Huh7 and HepG2 cells were placed in a 24-well plate at a density of 2 × 104 cells/well,
respectively, and treated with various concentrations of ATD (10–80 µM) or solvent control
(0.2% DMSO) for 24 h and 48 h. Cell viability was determined in the presence of 3-
[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) dye solution for 4 h.
The medium was removed, and formazan was solubilized in isopropanol and measured
spectrophotometrically at 560 nm using a microplate reader.

4.4. Trypan Blue Dye Exclusion Assay

Huh7 cells were placed in a 10 cm dish at a density of 4 × 104 cells/dish and treated
with ATD (10 µM) or solvent control (0.2% DMSO) for 24, 48, and 72 h. After treatment,
trypan blue was added to the cell suspension, and viable cells that excluded the dye were
counted on a hemacytometer.

4.5. Colony Formation Assay

Cells were plated in 6-well plates, at a density of 500 cells/well. On the next day, cells
were treated with 0.2% DMSO (control) or ATD at the indicated concentration for 48 h,
then cultured for 7 days. The colony was fixed with methanol for 15 min and stained with
Giemsa. Cell colonies were photographed and counted.

4.6. Cell Cycle Analysis

Cell cycle distribution was determined using a flow cytometer with propidium iodide
(PI) staining. Briefly, 6 × 105 cells/dish were treated with 0.2% dimethyl sulfoxide (DMSO;
control) or 10 µM ATD for indicated time. Then, cells were harvested, fixed with cold
75% alcohol, and stained with 50 µg/mL PI solution in darkness for 30 min on ice. The
distribution of cells in different cell cycle phases was determined using flow cytometry
(FACSCalibur, BD Biosciences, San Jose, CA, USA). In total, 10,000 cells per sample were
counted, and DNA histograms were analyzed using Cell Quest software (BD Biosciences,
San Jose, CA, USA) to calculate the percentage of cells in each peak.
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4.7. Annexin V/PI Double Staining Assay

For this assay, 6 × 105 cells were plated in a 10 cm culture dish. After attachment, cells
were treated with DMSO or ATD at the indicated concentration for 48 h and then harvested
and resuspended in PBS. Apoptotic cells were measured with a FITC-Annexin V Apoptosis
Detection Kit (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s protocol.
Briefly, cells were stained with FITC annexin V and propidium iodide (PI) solution for
15 min at room temperature in darkness. In total, 10,000 cells were analyzed for each
histogram. Flow cytometry demonstrated that the early apoptotic cells were in the lower-
right quadrant, and the advanced apoptotic cells were in the upper-right quadrant. The
apoptotic rate was the sum of the early and advanced apoptotic rates.

4.8. Western Immunoblotting

Equal amounts of protein from total cell lysates were separated in 8–12% polyacry-
lamide gel and transferred onto the PVDF membrane. The blot was subsequently incubated
in blocking buffer (5% nonfat milk in PBS) for 1 h and then probed with a corresponding
antibody against a specific protein overnight at 4 ◦C and washed with tris-buffered saline;
the membrane was then incubated with an appropriate peroxidase-conjugated secondary
antibody for 1 h. Finally, antigen–antibody complex was developed by ECL detection
system. The relative image density was quantitated with densitometry.

4.9. Immunofluorescence

After ATD or DMSO treatment, Huh7, PLC/PRF/5, and HepG2 cells were washed
with PBS and fixed with 4% paraformaldehyde for 10 min. The cells were permeated
with 0.1% Triton X-100, then incubated at 4 ◦C overnight with a monoclonal anti-p53
(Pab-240) antibody, followed by a 1 h incubation with an Alexa 488-labeled goat anti-mouse
IgG antibody (Thermo Fisher Scientific, Waltham, MA, USA). After washing with PBS
containing 0.1% tween 20, the DAPI was added for 10 min. The cells were observed under
a fluorescence microscope at 400×magnification.

4.10. Transfection with Small Interfering RNA (siRNA)

p53 siRNAs (sense: 5′-AGA-CCU-AUG-GAA-ACU-ACU-Utt-3′) were purchased from
GeneDireX, (QUANTUM BIOTECHNOLOGY, INC., Durham, NC, USA) [24]. For trans-
fection, 3 × 103 Huh7 cells were seeded on 96-well dishes or 4 × 105 on 10 cm dishes.
After overnight incubation, p53 siRNA or control siRNA (40 nM) (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) were transfected using a T-Pro NTR II transfection reagent,
according to the manufacturer’s instructions. Following incubation for 48 h, the cells were
treated with or without ATD for 24 h. After ATD treatment, viable-cell counting was
performed using Cell Counting Kit-8 (CCK-8 kit), or the total cell lysate was prepared for
immunoblotting analysis.

4.11. Cell Proliferation Assay

Following the transfection, cell proliferation was assayed using a CCK-8, according
to the manufacturer’s protocols. Briefly, after transfection and ATD treatment, the CCK-8
solution was added and incubated for 3 h. The optical density was measured at 450 nm
using a microplate reader.

4.12. Statistical Analysis

Data are expressed as means± SD from three independent experiments. The statistical
significance of differences throughout the study was analyzed by a one-way ANOVA test.
A p value < 0.05 was considered to be statistically significant.
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5. Conclusions

This study demonstrated a novel mechanism in which ATD exhibited a more potent
antiproliferation potential on mutp53 HCC than on wtp53 HCC cells due to the downregu-
lation of mutp53 and blockage of the STAT3 pathway (Figure 8).
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