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Abstract
As cortical bone has a hierarchical structure, the macroscopic bone strength may be affect-

ed by the alterations of mineral crystal and collagen, which are main components of cortical

bone. Limited studies focused on the time related alterations of these two components in os-

teoporosis, and their contributions to bone mechanics at tissue level and whole-bone level.

Therefore, the purpose of this study was to elucidate the time related changes of mineral

and collagen in cortical bone of ovariectomized (OVX) rabbits, and to relate these changes

to cortical bone nanomechanics and macromechanics. 40 Rabbits (7-month-old) were ran-

domly allocated into two groups (OVX and sham). OVX group received bilateral ovariecto-

my operation. Sham group received sham-OVX operation. Cortical bone quality of five

rabbits in each group were assessed by DXA, μCT, nanoindentation, Fourier transform in-

frared (FTIR) spectroscopy and biomechanical tests (3-point bending of femoral midshaft)

at pre-OVX, 4, 6, and 8 weeks after OVX. As time increased from pre-OVX to 8 weeks, the

mineral to matrix ratio decreased with time, while both collagen crosslink ratio and crystallin-

ity increased with time in OVX group. Elastic modulus and hardness measured by nanoin-

dentation, whole-bone strength measured by biomechanical tests all decreased in OVX

group with time. Bone material properties measured by FTIR correlated well with nano or

whole-bone level mechanics. However, bone mineral density (BMD), structure, tissue-level

and whole-bone mechanical properties did not change with age in sham group. Our study

demonstrated that OVX could affect the tissue-level mechanics and bone strength of corti-

cal bone. And this influence was attributed to the time related alterations of mineral and col-

lagen properties, which may help us to design earlier interventions and more effective

treatment strategies on osteoporosis.
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Introduction
Osteoporosis is defined by progressive loss of bone mass and impairment of bone quality lead
to a reduction in bone strength[1]. Vertebrae and femoral neck are the main sites where osteo-
porotic fractures happen[2]. As trabecular bone is a main contributor to bone strength in verte-
brae and femoral neck, many studies have focused on trabecular bone quality. However,
cortical bone is also a significant contributor to whole bone strength, especially for the elderly
[3].

Cortical bone has a hierarchical structure, spanning from the macrostructure at several mil-
limeters or whole-bone level, the microstructure at several hundred micrometers level, to the
nanostructure at hydroxyapatite crystals and collagen fibrils level[4]. The main components of
cortical bone are mineral and collagen. Mineral accounts for nearly 2/3 of the dry weight of
bone matrix, and collagen accounts for 1/3 of the dry weight of bone[5]. The macroscopic me-
chanical properties are closely related with the hierarchical tissue properties of cortical bone,
and the whole bone strength may be affected by the alterations at mineral and collagen levels[4,
6].

FTIR uses spectrometers to measure properties of the bone mineral and collagen[7], and it
has been used to characterize the bone compositional properties in several studies. The mea-
sured parameters that may be related to bone quality are mineral content, mineral crystallinity
and collagen cross-link ratio[8]. This technique could be used to characterize the changes of
mineral and collagen in osteoporosis and to reveal whether crystal size and collagen maturity
are predictive of bone strength. In a recent report analyzing iliac crest biopsies from patients,
the author highlighted a 14% higher collagen cross-link ratio in the nonosteoporotic t-scores
subjects with low-energy fractures than the ratio in the non-fracture controls[9]. Such fractures
in the non-low-BMD subjects could not be attributed to abnormal bone structure or micro-
architecture. Higher collagen cross-link ratio was also detected in bone from patients with oste-
oporosis or high risk for fracture than healthy or non-fracture controls in other former studies
[10–12]. The significant differences of mineral properties between osteoporotic bone and con-
trol were also demonstrated in former studies[13].

Unfortunately, using human bone biopsies, the time related changes of these properties can-
not be easily observed as the duration of estrogen withdrawal increased. Other limitations of
these studies were the small amount of tissue available in the biopsies, and the analyzed sites
were limited to iliac crest. So, the time-related changes of mineral and collagen in cortical bone
tissue as the duration of estrogen withdrawal increased, and how mineral and collagen affected
the nanomechanics and whole-bone strength needed to be elucidated carefully.

Rabbits are the species known to have quite fast Haversian bone remodeling processes. In
our unpublished study on vertebral cancellous bone, significant decline of BMD in vertebral
bodies were detected at 8 weeks after OVX. And μCT analysis showed that the microarchitec-
ture of vertebral bodies were also deteriorative. The lumbar BMD and microarchitecture in
OVX group changed significantly relative to sham group at 8 weeks in another study[14]. It
demonstrated that osteoporotic model in rabbits was built up successfully at 8 weeks after
OVX surgery.

To address these questions, this study aimed to characterize the time related changes of
mineral and collagen properties in OVX rabbit cortical bone, and to relate them with nanome-
chanics and whole bone strength. BMD and structure were also measured. We hypothesized
that the changes of mineral and collagen properties became more pronounced as the duration
of estrogen withdrawal increased, and those properties made contributions to the decreasing
bong strength in nano and whole-bone level.
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Materials and Methods

1. Animals
40 female, 7-month-old (3.16±0.27 kg), skeletally mature, New Zealand white rabbits were in-
cluded in the present study (Fourth Military Medical University, Xi’an, Shaanxi, China). These
experiments were approved by the local ethics committee(Fourth Military Medical University
Ethics Committee) and the guidelines for care and use of animals were followed. The rabbits
were kept individually in cages and maintained on a 12-hr light/12-hr dark cycle at room tem-
perature with ad libitum access to water and standard commercial rabbit chow. The rabbits re-
ceived general anesthesia in OVX surgery by intramuscular combined administration of
pentobarbital and Sumianxin II(Changchun Veterinary Institute of Military Medical Academy
of Sciences, China).

2. OVX rabbits
After the rabbits were acclimatized to the new situation for 2 weeks, they were randomly allo-
cated into a sham operation group (sham group, n = 20) and an OVX group (OVX group,
n = 20). 5 rabbits in each group were euthanized to acquire baseline data(BMD, μCT, nanoin-
dentation, FTIR, and biomechanical test) with no treatment before OVX surgery. Rabbits in
group OVX received bilateral ovariectomy in general anesthesia. For the sham-OVX operation
on the sham group, the ovaries were held up and then returned to their original positions. Anti-
biotics (ampicillin, 0.1 g/kg/day, China) were administered before surgery and for 5 days post-
surgery to prevent infection. The rabbits were euthanized by intravenous administration of an
overdose of Sumianxin II at each time point (4 weeks, 6 weeks, and 8 weeks after operation) in
each group. After death, the femora of both sides were dissected, soaked in 0.9% saline solution
gauze, and frozen at -80°C in plastic bags for the further examinations.

3. DXA
DXA analysis was performed with a Hologic Discovery Wi using linear fan beam technology
(analysis software version 12.7; Hologic Inc., Bedford, MA, USA), switching between two X-
ray potentials (100 and 140 kVp) from an X-ray source mounted beneath the subject. The
small animal-scanning mode was applied for all scanning. After the rabbits were euthanized,
the left femora were underwent BMD scans in vitro. The cortical bone-rich scanning regions of
interest(ROI) was at the midshaft of left femora(8 mm × 12 mm, bottom margin of ROI was 4
cm from the femoral distal end, as shown in yellow rectangle R1, Fig 1B) to represent the BMD
of cortical bone[15].

4. μCT analysis
Bones harvested were frozen at -80°C until the time of scanning by μCT (Healthcare Explore
Locus, GE Medical Systems, Milwaukee, USA). The specimens were thawed at room tempera-
ture before μCT scan and kept moist by saline during all scanning procedures. A 1-cm-long
cortical bone was cut from the right femoral midshaft, which was 4 cm from femoral distal
end. This 1-cm-long cortical bone specimen was between two red dotted lines as shown in Fig
1B. The images were obtained using the following parameters: (a) 80 kV as the X-ray tube volt-
age; (b) 80 μA as the anode current; (c) 3000 ms as the shutter speed; (d) 2 as the binning fac-
tor; and (e) 0.5° as angle of increment. The μCT system was used at a spatial nominal
resolution of 14 μm, and CT images were reconstructed in 1024×1024-pixel matrices. Micro-
view v2.1.2 software was used. The whole cortical bone specimen was selected as the ROI. The
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cortical thickness, total cross-sectional area inside the periosteal envelope, cortical area, and
cortical area fraction were determined[16].

5. Nanoindentation
The 1-cm-long cortical bone specimens that had been scanned by μCT were used for nanoin-
dentation test. The bone tissues were kept frozen at -80°C until the beginning of the specimen
preparation and between the procedure steps. The bone marrow were removed by a water jet
(Teledyne Water Pit, Fort Collins, CO, USA) and an ultrasonic bath. All the specimens were
dehydrated in a series of alcohols to avoid problems that can be caused by surface liquid films
in identifying the point of first contact during indenter approach to the specimen surface. After
dehydration, the specimens were embedded in epoxy resin. After the embedding process, the
specimens were cut transversally through the middle to create completely exposed surfaces.
Then the specimens were metallographically polished to produce the smooth surfaces needed
for nanoindentation testing, first with silicon carbide abrasive papers (Starcke GmbH & Co.
KG, Melle, Germany) of decreasing grit size (600, 800 and 1200 grit), and finally with diamond
suspensions (0.3 and 0.05μm particle size) embedded in soft polishing cloths (Buehler, Lake
Bluff, IL). The specimens were washed in deionized water between each polishing step to re-
move debris, taking care that the surface of the bone was not demineralized. The nanoindenta-
tion was performed using a TriboIndenter (Hysitron TI90, Minneapolis, MN) with a standard
Berkovich tip. The procedure was defined as follows: after the identification of the surface, the
tip was loaded into the sample at a rate of 50 μN/s, held at a maximum load of 1000 μN for 10
s, and unloaded at 50 μN/s. After removing 85% of the maximal load, constant load was held

Fig 1. Nanoindentation, DXA and 3-point bending test measurements of femora. (a)Nanoindentation
tests were performed in the circumferential direction of the cortical bone in pre-determined grid of 3×3 points
at four locations(medial, lateral, anterior and posterior), and the distance between each measurement point in
the grid was 10 μm. (b)DXAmeasurement of femora(8 mm ×12 mmROI, 4 cm from the femoral distal end, as
shown in yellow rectangle R1); 1-cm-long cortical bone specimen R2 used in further analysis was shown
between two red dotted lines. (c)3-point bending test measurement of femora.

doi:10.1371/journal.pone.0127973.g001
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for 100 s to measure drifting of the displacement transducer due to both the thermal effect on
the transducers capacitor and the viscous effect of the bone tissue behavior. Indentations were
performed in a predetermined grid of 3×3 points (10 μm spacing) at four locations (medial, lat-
eral, anterior and posterior) per sample(Fig 1A)[17]. The indentation sites on the cortical bone
were placed on the interstitial lamellar bone. Hence, 36 indentations were made in each feature.
Bone tissue elastic modulus and hardness were calculated from the unloading segment of the
load-displacement curve according to the method of Oliver and Pharr[18]. Mean values for the
elastic modulus and the hardness of bone tissue were calculated for each specimen.

6. Fourier transform infrared microspectroscopy
The epoxy resin-embedded specimens that were used in nanoindentation test were further ana-
lyzed with FTIR microspectroscopy. The embedded tissues were cut transversely at 4 μm thick-
ness using a Polycut E microtome(Jung, Heidelberg, Germany) and mounted on barium
fluoride infrared windows for FTIR microspectroscopic analysis (Shimadzu AIM-8800, Shi-
madzu Corporation, Tokyo, Japan). Each spectrum was acquired with a spatial resolution of
6.25 μm, spectral resolution of 4 cm−1 and 16 repeated scans in the wavenumber region be-
tween 4000 and 800 cm−1. Area measurements, approximately 100 μm × 100 μm each, were
performed on the cortical bone at the same locations as the nanoindentation[17]. Contribu-
tions of water vapor and epoxy resin were subtracted from the original spectrum. The amide I
and II spectral regions were baseline corrected according to the standards published elsewhere
[19]. Spectra were curve fitted using a commercially available software package (Grams/32; Ga-
lactic Software, Inc., Salem, NH, USA). The initial position and type(Gaussian) of underlying
bands that were input were determined through second derivative and difference spectroscopy.
Once the curve-fitting process converged, the output of the analysis was expressed as peak po-
sition and relative percent area. Parameters calculated were: 1) mineral to matrix ratio, calcu-
lated as the ratio of peak areas of phosphate(1200-900 cm−1) and amide I(1720-1585 cm−1)
[20]; 2) crystallinity, related to the size and perfection of hydroxyapatite crystal, calculated as
the ratio of relative peak height subbands at 1030 and 1020 cm−1[21]; and 3) maturity of the
collagen cross-link, calculated as the intensity ratio of amide I subbands at 1660 and 1690 cm−-

1[22]. All the FTIR parameters above were averaged among collected spectra from per rabbit.

7. Biomechanical tests
The left femora were tested in 3-point bending tests with the materials-testing machine (MTS
858 System Inc., MN, USA) to assess whole-bone mechanical properties, and to estimate the
cortical bone mechanical properties[23]. The specimens were thawed before mechanical tests
and kept moist during all handling and test procedures. Femora were tested in 3-point bending
tests with the anterior surface on the lower supports (30 mm apart) and the load applied to the
posterior surface centered between the lower supports(Fig 1C)[24]. Load was applied perpen-
dicularly to the long axis on the bone at a constant rate of 1 mm/min until fracture. After
3-point bending test, the load-displacement curve was depicted. These parameters can be nor-
malized after adjusting for the sample size (cross-sectional area or moment of inertia), allowing
load conversion to stress and deformation to strain, and obtaining the stress-strain curve[24].
The calculating processes were made under the assumptions that the femoral cross sections
were elliptically shape(outer and inner contour of the elliptic cortical bone ring with hollow
structure was elliptically shape), the cross section was constant, the cortical bone was linear
elastic, homogenous, and isotropic. As bones were tested in anterior-posterior bending, we de-
termined that the major axis of the ellipse was the width of the cross section in the medial-later-
al direction, and the minor axis of the ellipse was the width of the cross section in the anterior-
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posterior direction[23, 24]. Young’s modulus, ultimate stress, yield stress, and toughness were
calculated using standard engineering formula from the stress-strain curve to assess the cortical
bone strength[23, 24].

8. Statistical analysis
All data were processed with the statistical system SigmaPlot 12.5 (Systat Software, Inc., San
Jose, California, USA) and expressed as mean ± SD. All data were normally distributed. Differ-
ences in BMD, structural parameters, nanomechanical, FTIR, and macromechanical parame-
ters between two groups at the same time point were compared with Independent-Samples t
Test. Differences of those parameters among different time points in the same group were per-
formed with the one-way ANOVA test. If the one-way ANOVA of one parameter was signifi-
cant, all pairwise multiple comparison procedures (Student-Newman-Keuls method) were
performed in the same group. Linear regressions were performed within sham group or OVX
group separately to examine relationships among BMD, microstructure, nanomechanical,
FTIR, and macromechanical parameters above. P<0.05 was considered statistically significant.

Results

1. DXA
BMD values of femoral midshaft were shown in Fig 2. There were no significant differences of
BMD values between OVX and sham group at pre-OVX, 4, 6, and 8 weeks. No temporal
changes of BMD in femoral midshaft were detected in sham group or OVX group. OVX opera-
tion did not have an influence on apparent bone mineral density of femoral midshaft.

2. μCT
The structural properties of femoral cortical bone were shown in Fig 3. The structural proper-
ties of femoral cortical bones, consisted of cortical thickness, total area, cortical area, and corti-
cal area fraction, in OVX group did not show any significant difference against sham group at
the same time point during the experiment. No temporal changes of structural properties of

Fig 2. BMD (mg/cm2) values(mean ± SD) in femoral midshaft. No significant differences were detected
between OVX and sham group.

doi:10.1371/journal.pone.0127973.g002
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cortical bones were detected in OVX group or sham group. OVX operation did not have influ-
ences on the structure of cortical bone.

3. Nanoindentation
Results of nanoindentation tests on femoral cortical bone specimens were shown in Fig 4. 4
weeks onwards the values of elastic modulus and hardness of cortical bone in OVX group de-
creased significantly relative to sham group. As the time increased from pre-OVX to 8 weeks,
the elastic modulus and hardness both decreased. Nanomechanical parameters of femoral cor-
tical bone specimens in OVX group changed relative to sham group at 4 weeks(modulus de-
creased by 14.6%, and hardness decreased by 30.7%), 6 weeks(modulus decreased by 31.5%,
and hardness decreased by 46.3%), and 8 weeks(modulus decreased by 37.2%, and hardness de-
creased by 49.1%). In OVX group, significant differences of modulus between 4 weeks and 6
weeks, 4 weeks and 8 weeks were detected. And there were also significant differences of hard-
ness between 4 weeks and 6 weeks, 4 weeks and 8 weeks in OVX group. No temporal changes
in cortical bone of elastic modulus and hardness were detected in sham group.

4. FTIR
Results of FTIR analysis on femoral cortical bone specimens were shown in Fig 5. In cortical
bone of OVX group, the mineral to matrix ratio decreased with time, while both collagen

Fig 3. Overview of the μCT analysis results of femoral cortical bone(mean ± SD). No significant
differences of cortical thickness(a), total area(b), cortical area(c), and cortical area fraction(d) were detected.

doi:10.1371/journal.pone.0127973.g003
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crosslink ratio and crystallinity increased with time. 4 weeks onwards the values of mineral to
matrix ratio, collagen crosslink ratio, and crystallinity of cortical bone in OVX group changed
significantly relative to sham group at 4 weeks(mineral to matrix ratio decreased by 9.3%, colla-
gen crosslink ratio increased by 12.3%, crystallinity increased by 17.5%), 6 weeks(mineral to
matrix ratio decreased by 24.6%, collagen crosslink ratio increased by 22.9%, crystallinity in-
creased by 34.0%), and 8 weeks(mineral to matrix ratio decreased by 32.5%, collagen crosslink
ratio increased by 34.4%, crystallinity increased by 47.2%). In OVX group, significant differ-
ences of mineral to matrix ratio between 4 weeks and 6 weeks, 6 weeks and 8 weeks, 4 weeks
and 8 weeks were detected. There were significant differences of collagen crosslink ratio be-
tween 4 weeks and 6 weeks, 6 weeks and 8 weeks, 4 weeks and 8 weeks. Also, There were signif-
icant differences of crystallinity between 4 weeks and 6 weeks, 6 weeks and 8 weeks, 4 weeks
and 8 weeks. No temporal changes in cortical bone of mineral to matrix ratio, collagen cross-
link ratio, and crystallinity were detected in sham group.

Fig 4. Nanoindentation results(mean ± SD) of femoral cortical bone specimens. Asterisks showed the
statistically significant difference between OVX group and sham group at the same time point. The values of
modulus(a) and hardness(b) in the OVX group decreased significantly from 4 weeks on. Transverse lines
with asterisks above showed the differences in OVX group among different time points. *p < 0.05.

doi:10.1371/journal.pone.0127973.g004

Fig 5. FTIR results(mean ± SD) of cortical bone specimens. Asterisks showed the statistically significant difference between OVX group and sham group
at the same time point. 4 week onwards the values of (a)mineral to matrix ratio, (b)collagen crosslink ratio, and (c)crystallinity in OVX group decreased
significantly. Transverse lines with asterisks above showed the differences in OVX group among different time points.*p < 0.05.

doi:10.1371/journal.pone.0127973.g005
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5. Mechanical tests
Elastic modulus, ultimate stress, and yield stress strength of specimens in OVX group, measured
using 3-point bending tests, decreased in terms of time(Fig 6). 6 weeks onwards, significant de-
cline of elastic modulus, ultimate stress, and yield stress in OVX group was detected relative to
sham group. 4 weeks onwards, significant decline of bone toughness in OVX group was detected
relative to sham group. At 6 and 8 weeks after surgery in OVX group, the elastic modulus de-
creased by 24.8% and 30.5%, the ultimate stress decreased by 30.2% and 37.2%, the yield stress
decreased by 35.4% and 39.9%, respectively, comparing to those in sham group. At 4, 6, and 8
weeks after surgery in OVX group, the bone toughness decreased by 10.2%, 14.7%, and 20.1%.
In OVX group, significant differences of ultimate stress were observed between 4 weeks and 6
weeks, 4 weeks and 8 weeks. Also significant differences of yield stress were observed between 4
weeks and 6 weeks, 4 weeks and 8 weeks in OVX group. Significant differences of bone tough-
ness were observed between 6 weeks and 8 weeks, 4 weeks and 8 weeks. Elastic modulus of corti-
cal bone in OVX group also presented a gradual decrease with age, but the the differences
among different time points were not statistically significant. No temporal changes of elastic
modulus, ultimate stress, yield stress, and toughness were detected in sham group.

Fig 6. Biomechanical results(mean ± SD) of femoral cortical bone specimens. Asterisks showed the
statistically significant difference between OVX group and sham group at the same time point. At 6 and 8
weeks after surgery in OVX group, the elastic modulus(a), ultimate stress(b), and yield stress(c) decreased
significantly. At 4, 6, and 8 weeks after surgery in OVX group, the toughness(d) decreased significantly.
Transverse lines with asterisks above showed the differences in OVX group among different time points.
*p < 0.05.

doi:10.1371/journal.pone.0127973.g006
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6. Relationships among BMD, structure, nanomechanical, FTIR, and
biomechanical parameters
We summarized the R2 values among BMD, structure, nanomechanical, FTIR, and bio-
mechanical parameters in sham group and OVX group separately(Tables 1 and 2). In sham
group, no significant correlation among BMD, structure, nanomechanical, FTIR and macro-
mechanical parameters were detected. Only the correlation between cortical thickness and ulti-
mate stress was statistically significant, but the R2(R2 = 0.233) value was quite low.

In OVX group, the correlations between BMD and macromechanical parameters were not
statistically significant. The correlations between structural parameters(cortical thickness and
cortical area fraction) and macromechanical parameters were not statistically significant. In
OVX group, for nanomechanical parameters, mineral to matrix ratio, and collagen crosslink
ratio had strong correlations with tissue modulus measured with nanoindentation(R2>0.75).
Crystallinity had moderate correlation with tissue modulus measured with nanoindentation
(R2>0.50). Mineral to matrix ratio, crystallinity, and collagen crosslink ratio had moderate cor-
relation with hardness measured with nanoindentation(R2>0.50). For biomechanical parame-
ters, crystallinity, and collagen crosslink ratio all had moderate correlations with ultimate stress
(R2>0.50) and yield stress(R2>0.50), except that mineral to matrix ratio had a little weak cor-
relation with ultimate stress(R2 = 0.479). Mineral to matrix ratio had a moderate correlation
with elastic modulus measured with 3-point bending test. With regard to bone toughness,
moderate correlation were detected between bone toughness and mineral to matrix ratio

Table 1. R2 values among BMD, structure, nanomechanical, FTIR, and biomechanical parameters studied in sham group.

R2(+/-) BMD Cortical
thickness

Cortical
area
fraction

Modulus Hardness Mineral to
matrix
ratio

Crystallinity Collagen
cross-link
ratio

Elastic
modulus

Ultimate
stress

Yield
stress

Toughness

BMD 1 0.081(+) 0.006(-) 0.553(-) 0.0002(+) 0.072(+) 0.00001(-) 0.00003(+) 0.0001(+) 0.0007(-) 0.0001
(-)

0.003(-)

Cortical
thickness

1 0.008 (-) 0.012(-) 0.115(+) 0.040(-) 0.006(+) 0.024(+) 0.166(+) 0.233a(+) 0.166
(+)

0.019(-)

Cortical area
fraction

1 0.001(-) 0.058(+) 0.139(-) 0.0003(+) 0.0004(+) 0.027(-) 0.019(+) 0.022
(+)

0.049(+)

Modulus 1 0.000004
(+)

0.022(+) 0.024(+) 0.001(-) 0.045(+) 0.098(+) 0.096
(+)

0.009(+)

Hardness 1 0.069(-) 0.006(-) 0.041(+) 0.011(-) 0.147(+) 0.111
(+)

0.024(-)

Mineral to
matrix ratio

1 0.005(+) 0.011(-) 0.002(-) 0.004(+) 0.013(-) 0.009(+)

Crystallinity 1 0.019(-) 0.194(+) 0.002(+) 0.031
(+)

0.023(+)

Collagen
cross-link
ratio

1 0.001(-) 0.009(+) 0.021
(+)

0.053(+)

Elastic
modulus

1 0.153(+) 0.020
(+)

0.0007(+)

Ultimate
stress

1 0.419
(+)

0.094(+)

Yield stress 1 0.022(+)

Toughness 1

Note: Modulus and hardness were the results of nanoindentation tests. Elastic modulus, ultimate stress, yield stress, and toughness were the results of

3-point bending tests. R2 values were presented in the table cells. (+) means positive correlation, and (-) means negative correlation. R2>0.75 was

considered as strong, and 0.75>R2>0.50 was considered as moderate. R2 values lower than 0.5 were classified as parameters having weak relationship.
aP<0.05 was considered statistically significant.

doi:10.1371/journal.pone.0127973.t001
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(R2>0.50), crystallinity(R2>0.50). In OVX group, evaluating the interrelationship between
FTIR parameters themselves, mineral to matrix ratio correlated well to crystallinity and colla-
gen crosslink ratio. Also, crystallinity correlated well to collagen crosslink ratio. Evaluating the
interrelationship between nanomechanical parameters themselves, E correlated well to H. Eval-
uating the interrelationship between biomechanical parameters themselves, ultimate stress cor-
related well to yield stress, toughness correlated well to yield stress.

Discussion
The estrogen withdrawal induced by OVX surgery, affected the mineral and collagen properties
of cortical bone. And the alterations of mineral and collagen properties measured with FTIR
correlated well with nanomechanical and whole-bone mechanical properties. However, estro-
gen withdrawal did not affect BMD and structure of cortical bone. This might indicate that, the
decline in femoral midshaft strength might be attributed to the alterations of mineral and colla-
gen properties measured with FTIR.

Characteristics of mineral crystal and collagen, nanomechanical and whole-bone macrome-
chanical properties changed significantly in OVX group relative to sham group. The experi-
mental results in OVX group showed time related changes in the mineral crystal and collagen,
which corresponded to decrease in elastic modulus and hardness measured by nanoindenta-
tion, and decrease in whole bone strength as the duration of estrogen withdrawal increased.
The moderate to strong correlation, between FTIR results and nanomechanics, also between
FTIR results and macromechanics, indicated that the alterations of mineral crystals and colla-
gen might affect the nanomechanical and macromechanical properties of cortical bone. BMD

Table 2. R2 values among BMD, microstructure, nanomechanical, FTIR, and biomechanical parameters studied in OVX group.

R2(+/-) BMD Cortical
thickness

Cortical
area
fraction

Modulus Hardness Mineral to
matrix
ratio

Crystallinity Collagen
cross-link
ratio

Elastic
modulus

Ultimate
stress

Yield
stress

Toughness

BMD 1 0.001(+) 0.009(-) 0.053(+) 0.117(+) 0.069(+) 0.004(-) 0.067(-) 0.028(-) 0.048(+) 0.0002(-) 0.083(+)

Cortical
thickness

1 0.003(+) 0.097(+) 0.016(+) 0.012(+) 0.016(-) 0.0004(-) 0.001(-) 0.013(+) 0.005(+) 0.032(+)

Cortical area
fraction

1 0.035(+) 0.006(+) 0.097(+) 0.045(-) 0.030(-) 0.184(+) 0.00001(-) 0.0167(+) 0.049(+)

Modulus 1 0.765a(+) 0.838a(+) 0.729a(-) 0.773a(-) 0.357a(+) 0.666a(+) 0.681a(+) 0.601a(+)

Hardness 1 0.645a(+) 0.588a(-) 0.727a(-) 0.300a(+) 0.520a(+) 0.428a(+) 0.390a(+)

Mineral to
matrix ratio

1 0.724a(-) 0.754a(-) 0.519a(+) 0.479a(+) 0.664a(+) 0.734a(+)

Crystallinity 1 0.803a(+) 0.382a(-) 0.580a(-) 0.675a(-) 0.526a(-)

Collagen
cross-link
ratio

1 0.345a(-) 0.594a(-) 0.563a(-) 0.466a(-)

Elastic
modulus

1 0.082a(+) 0.314a(+) 0.371a(+)

Ultimate
stress

1 0.715a(+) 0.418a(+)

Yield stress 1 0.535a(+)

Toughness 1

Note: Modulus and hardness were the results of nanoindentation tests. Elastic modulus, ultimate stress, yield stress, and toughness were the results of

3-point bending tests. R2 values were presented in the table cells. (+) means positive correlation, and (-) means negative correlation. R2>0.75 was

considered as strong, and 0.75>R2>0.50 was considered as moderate. R2 values lower than 0.5 were classified as parameters having weak relationship.
aP<0.05 was considered statistically significant.

doi:10.1371/journal.pone.0127973.t002
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measured by DXA, and structure measured by μCT stayed constant in OVX group until the
end of study. And this was consistent with the former study by Liu[25] in our department,
even the time length of our study was 8 weeks, longer than Liu’s. The decline of femoral mid-
shaft strength were not attributed to BMD and structure of cortical bone in our study.

Alterations of cortical bone mineral and collagen properties detected by FTIR and nanome-
chanics detected by nanoindentation in OVX group were significantly different from sham
group in our study from 4 weeks on. While the alterations of whole-bone biomechanics, de-
tected by 3-point bending test, were significant from 6 weeks on. The nanomechanical parame-
ters, including elastic modulus and hardness, had strong correlations with bone mineral and
matrix properties detected by FTIR. This indicated that the cortical bone tissue level mineral
and matrix properties, nanomechanics changed earlier than whole-bone level macromechanics.

With regard to the nanomechanics of cortical bone in OVX group, significant reductions of
tissue modulus and hardness were detected by nanoindentation in our study in 4 weeks. At the
end of the experiment, modulus decreased by 37.2%, and hardness decreased by 49.1%. In cor-
tical bone of OVX rats, significant reductions of modulus and hardness were also detected by
nanoindentation 4 weeks after surgery[26]. Chang et al.[27] reported that in control and sham
operated mice, the elastic modulus of tibia cortical bone was 26–30 Gpa, and the hardness was
0.9–1.1 Gpa. The elastic modulus of tibia cortical bone in OVX mice decreased to 15–20 Gpa,
and hardness decreased to 0.3–0.7 Gpa. There was about a 37.5% decline in modulus, and a
50% decline in hardness of cortical bone. The decline percent was similar to our study. In our
study, the tested sites of nanoindentation were only located on interstitial bone. The informa-
tion about what happened in nanomechanical properties of osteonal bone was not reported. In
the nanoindentation tests, dehydrated bone samples used in our study had the obvious limita-
tions that the conditions of the specimens were not the same as the in vivo tissue condition. Al-
though dehydration increases tissue modulus and hardness[28, 29], all samples were treated
similarly, and therefore the comparisons of relative mechanical properties were relevant.

In the regression analysis within sham or OVX group, there were no statistically significant
correlations between BMD and structural parameters. Also there were no statistically signifi-
cant correlations between BMD and macromechanical parameters. These results were consis-
tent with the former study on OVX rabbits[30]. This indicated that the deterioration of
femoral midshaft bone strength in our study might not be attributed to BMD and structural pa-
rameters. In the regression analysis within sham group, the correlation between FTIR results
and nanomechanical, macromechanical parameters were not statistically significant. However,
in the regression analysis within OVX group, this correlation was statistically significant. This
might indicate that estrogen withdrawal was primarily responsible for the changes of mineral
and collagen properties. And the changes of material measured with FTIR was responsible for
the changes of nanomechanical and macromechanical parameters.

Mineral to matrix ratio is representative of the amount of mineral normalized to the amount
of collagen present. It is a measure of BMD and correlates with ash weight measurements, but
its values are not comparable with BMD since it is a measure of mineral per amount of collagen
present[31]. Bone apatite is a rigid material that can not dissipate much energy, and it has been
widely suggested that the collagen matrix plays a key role in bone toughness[32]. The ratio of
mineral to matrix could reflect hyper—or hypo mineralization that can deteriorate bone, be-
cause it encompasses both major constituents of bone(mineral and collagen). As bone is con-
sidered to be a composite material, and its mechanical properties depend on the quantity and
quality of both mineral and collagen[31]. The decline of this ratio in our rabbit model was simi-
lar to human cortical bone[7]. Decreased mineral to matrix ratio in OVX group indicated the
imbalance between mineral and collagen composition, and might cause the degradation of the
bones’mechanical properties[33]. This was verified by the strong correlation between mineral
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to matrix ratio and elastic modulus detected by nanoindentation. And this ratio also correlated
with the whole bone-level strength, the decreased ratio of mineral to matrix ratio made contri-
bution to the the decreased ultimate stress and yield stress in whole-bone strength. Both tissue
level and whole-bone level mechanics correlated with the alteration of mineral to matrix ratio
in this study. The strong correlation between mineral to matrix ratio and tissue level or whole
bone-level mechanics was also observed in mouse[34] and rat[35].

Crystallinity is correlated with mineral crystal size and perfection as determined by X-ray
diffraction line broadening[36]. A three-scale finite element investigation has demonstrated
that mineral crystal size could be responsible for experimental nanoindentation results from
cortical bone[6]. The earlier transmission electron microscopy (TEM) studies investigated by
Baud[37] and Boskey[38] have reported that mineral crystal size increased with the onset of os-
teoporosis and the results here suggested that the crystal dimensions would contribute to
changes in the tissue level response in osteoporotic bone. However, in another study on OVX
ovine model, FTIR analysis found that crystallinity was significantly reduced following 12 and
31 months of estrogen deficiency. What called for special attention were that the animal model
was different, and preparation methods of the bone specimens for FTIR analysis were quite dif-
ferent[39]. The increased crystal size could affect the crystallinity detected by FTIR[40]. The al-
teration of crystallinity in osteoporotic cortical bone contributed to the alteration of
nanomechanics, and the increasing of crystallinity was concomitant with the duration of estro-
gen withdrawal in our study. The finding of an association between increased crystallinity and
decreased bone strength was also in agreement with several other studies. Increased particle
size was detected obtained from biopsies of patients that had femoral neck fracture compared
with controls[41]. And increased crystal size was also found in biopsies from patients with os-
teoporosis compared with controls in FTIR analysis[13, 42] and Raman study[43]. There are
several possible reasons that may explain the association between crystallinity and bone
strength. First, the larger and more perfect bone mineral crystals may represent those that re-
main when bone is remodeled, and hence may indicate the increased tissue turnover and the
loss of younger, newly formed bone tissue. The smaller crystals are generally more soluble and
can be dissolved early and easily. Smaller crystals also indicate newly formed bone; hence, de-
creasing of smaller crystals means less formation and/or more resorption. Second, from physi-
cochemical principles, larger particles generally tend to be more brittle and weaker. Because
when a force is applied, the atoms generally try to move in relation to the adjacent layer of
atoms. In metals, for example, making the particles smaller generally strengthens the materials.
Broadening the size distribution also strengths the material[44]. Finally, larger crystals may not
be able to align quite well with the collagen matrix, weakening the crystal-mineral interactions,
and making the bone tissue weaker.

One of the most important molecular properties of collagen is its cross-link, which provides
the fibrillar matrices with various mechanical properties such as tensile strength and viscoelas-
ticity[45]. Collagen maturity is estimated by the 1660/1690 cm−1 subbands ratio of the amide I
band. This ratio has been related with the degree of pyridinium(mature) relative to reducible
(immature) types of collagen cross-links[22]. As the duration of estrogen withdrawal increased,
the increasing of collagen cross-link ratio is concomitant with the deceasing of tissue-level and
whole bone-level strength. The significant correlation between collagen cross-link ratio and
elastic modulus or hardness indicated the nanomechanics was affected by the interaction
among collagens. Also this correlation was detected between collagen cross-link ratio and
whole bone strength, which indicated this influence could be amplified to whole-bone level.

The increase in collagen cross-link ratio in osteoporosis was detected in studies on human
[9–11]. The collagen cross-link ratio was significantly higher in both IOP(idiopathic osteopo-
rosis with idiopathic fractures) and ILBMD(idiopathic low BMD but no fractures) groups than
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healthy controls[46]. Increased collagen cross-link ratio was significantly associated with frac-
ture risk. In ovariectomized monkey model, a decreased collagen cross-link ratio in the cortical
bone region of tibia was detected[47]. But with regard to the trabecular bone in this study, an
increased collagen cross-link ratio was detected. The author explained that the change in the
organic component of bone due to ovariectomy is site-specific. The experimental period of this
study was 2 years. In another study on ovariectomized monkey model, no significant difference
of collagen cross-link ratio in cortical region of humerus was detected between OVX group and
sham group[48]. The length of experimental time was 18 months. This might indicate that,
OVX may have different effects on collagen cross-link among different sites. In an OVX ovine
model, collagen cross-link was significantly increased 12 months after post-OVX and then re-
duced to control levels after 31 months[39]. This might indicate that the changes of collagen
cross-link were time-related. The time length of observation in our study was 8 weeks. To as-
sess the collagen cross-link state more thoroughly, a longer time length might be needed.

In our study, we observed an increase in collagen cross-link ratio in cortical bone of femoral
midshaft, and this increase was associated with a decline in cortical bone strength. The increase
in collagen cross-link ratio indicated a significant increase in non-reducible collagen cross-
links. The proper collagen matrix is important for regulation of mineral deposition and is a
major contributor to the strength of the composite tissue[49]. Increased collagen cross-linking
may reflect the improper collagen matrix. The increased collagen cross-link ratio may be be-
cause of the possibility that the matrix produced in OVXmatures at a faster rate than in normal
bone matrix or the bone matrix of OVX undergoes post-translational modification for a longer
period of time than the bone matrix of normal bone, perhaps because of a delay or alteration in
mineralization. Meanwhile, the state of collagen cross-link ratio was only one of the many de-
terminants of cortical bone strength. The collagen content and structure were also important
for mechanical integrity. Detailed spectra processing shows that the amide I band is a compos-
ite of collagen molecular groups, water molecules, and non-collagenous proteins. Only the in-
creased collagen cross-link ratio detected by FTIR might not reflect the whole collagen cross-
link state.

With regard to DXA and structural properties, no significant changes were found between
OVX and sham groups during the experiment. It might be attributed to that the time length of
the experiment was not long enough to detect the BMD and microstructure in cortical bone on
this osteoporotic rabbit. Numerous studies have documented that low bone density is signifi-
cantly associated with the risk of osteoporotic fractures[50]. And structural properties such as
cortical thickness, cortical cross-section area measured with μCT also contribute to bone’s me-
chanical competence[51]. However, in our study, the constant BMD, cortical thickness, and
cortical area in OVX group might have only little effect on bone strength. The decreased corti-
cal bone strength might be mainly attributed to the alterations of bone material characteristics
as stated above. BMD, structure, bone mechanics on tissue-level and whole bone-level, and
bone material properties stayed constant in sham group. This indicated that the cortical bone
of intact rabbits in our experiment was mature and constant.

Rabbits are the species known to have quite fast Haversian bone remodeling processes. The
pathognomonic issue in rabbits is that OVX alone might not be enough to develop low BMD
despite estrogen deficiency[52]. Compared with former studies, our study demonstrated that
estrogen withdrawal in OVX rabbits could have detrimental effects on cortical bone, and these
detrimental effects were attributed to the alterations of mineral and collagen properties. The es-
trogen withdrawal did not affect cortical bone BMD and structure. On OVX rats, 7 weeks of es-
trogen withdrawal did not affect cortical bone BMD, and cortical thickness[53]. The cortical
bone strength in that study did not change. But they used a mid-diaphyseal section(cortical
bone only) in the compression study. The different macromechanical tests should be noticed.
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Another study with a duration of 10 weeks on OVX rats also found no changes of BMD in cor-
tical bone of femoral midshaft[54]. Cross-sectional geometry and density of the femoral mid-
diaphysis cortical bone measured with μCT did not detect significant differences between sham
and OVX rats[55]. OVX may have more of an effect on the trabecular bone region than on the
cortical bone region on BMD in the initial period following ovariectomy. There might be re-
gional differences in the response to OVX. The region that was abundant of cancellous bone
was more sensitive to estrogen withdrawal than cortical bone region.

Conclusions
In conclusion, our study demonstrated the time related alterations of mineral and collagen
properties, and mechanics on nano and whole-bone level in cortical bone of OVX rabbits. The
alterations of crystal size and collagen maturity affected the nano and whole-bone level me-
chanics. As bone has a hierarchical architecture, this indicated that the alterations at material
level could affect the microscale and whole bone-level mechanics.
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