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Abstract

Background: With the rapid development of high-throughput sequencing technologies, many datasets on the
same biological subject are generated. A meta-analysis is an approach that combines results from different studies on
the same topic. The random-effects model in a meta-analysis enables the modeling of differences between studies by
incorporating the between-study variance.

Results: This paper proposes a moments estimator of the between-study variance that represents the across-study
variation. A new random-effects method (DSLD2), which involves two-step estimation starting with the DSL estimate
and the D2

g in the second step, is presented. The DSLD2 method is compared with 6 other meta-analysis methods
based on effect sizes across 8 aspects under three hypothesis settings. The results show that DSLD2 is a suitable
method for identifying differentially expressed genes under the first hypothesis. The DSLD2 method is also applied to
Alzheimer’s microarray datasets. The differentially expressed genes detected by the DSLD2 method are significantly
enriched in neurological diseases.

Conclusions: The results from both simulationes and an application show that DSLD2 is a suitable method for
detecting differentially expressed genes under the first hypothesis.
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Background
With the advances of high-throughput experimental tech-
nology, a multitude of datasets have been produced and
have resulted in several public databases, such as the
European Bioinformatics Institute (EBI) andGene Expres-
sion Omnibus database (GEO) [1]. A major challenge is
how to re-exploit, re-extract and combine the informa-
tion from a large number of datasets [2]. A meta-analysis,
combining data or results from independent studies on
the same topic, is widely applied and the major con-
tribution is discovering disease pathogenesis [3, 4]. The
statistical power could be raised through meta-analysis by
combining information from individual studies that have
small sample sizes [5, 6]. Although many significantly dif-
ferential gene expression lists are presented, individual
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conclusions tend to be discordant because of various study
designs, individual treatment protocols, limited sample
sizes and different genders among the study participants
[7]. Meta-analysis is an important method for providing
reliable and consistent differentially expressed gene lists
by integrating information on the same disease [8]. As
meta-analysis methods use available datasets, they are rel-
atively inexpensive [9]. But not all datasets are usually
available due to publication bias and outcome reporting
bias [10].
Meta-analysismethods based on effect sizes, which con-

tribute to the early diagnosis and treatment of diseases,
can be broadly divided into two classes: the fixed-effects
model (FEM) and the random-effects model (REM) [11].
The fixed-effects model assumes that all studies in a
meta-analysis have the same true effect size [12]. The
random-effects model assumes that different studies in
a meta-analysis have the different true effect sizes [12].
Meta-analyses were first introduced to microarray data by
Rhode et al. (2002) [13] and Choi et al. (2003) [14]. Many
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meta-analysis methods, including DerSimonian and Laird
estimate (DSL) [15], restricted maximum likelihood esti-
mate (RML) and Sidik and Jonkman estimate (SJ) [16],
were later applied to microarray studies. Two-step esti-
mate starting with the DSL estimate (DL2) is an iterative
estimator. The two-step method DL2 and the iterative
Paule and Mandel method are close [17]. The random-
effects methods in meta-analysis make possible the mod-
eling of differences and the differences between studies
often caused by the study design, sample sizes, sex/gender
differences in participants and so on. The between-study
variance τ 2 is incorporated by random-effects methods
in meta-analyses to estimate the across-study variation
[18]. The fixed-effects model in meta-analyses excludes
the between-study variance τ 2 from the random-effects
model [19].
This paper develops an estimator of the between-study

variance D2
g which originates from the general moments

estimator described by DerSimonian and Kacker (2007).
Therefore, a new random-effects method (DSLD2) based
on D2

g is presented. In subsequent sections, three hypoth-
esis testing frameworks were thoroughly reviewed. We
observed the biases and root mean square errors (RMSE)
of between study variance D2

g . The random-effects
method based on D2

g and other meta-analysis models
were applied to simulation datasets of gene expression
levels. Then, we compared the DSLD2 method with
other meta-analysis methods, including the DSL method,
the DSLR2 method, the fixed-effects model, the PM
method, the RML method and the SJ method across
the following metrics: the false discovery rates (FDRs),
accuracy, precision, false positive rate (FPR), sensitivity,
precision-recall curve and the receiver operating charac-
teristic curve (ROC). DSLD2 performed well among the
meta-analysis methods based on effect sizes under the
first hypothesis. We also applied DSLD2 to Alzheimer’s
disease. The pathways of differentially expressed genes
detected by the DSLD2 method indicate that Alzheimer’s
disease is related to the nervous system, which is obvi-
ous. The results from both the simulation and the appli-
cation suggest that DSLD2 is appropriate for identify-
ing differentially expressed genes. In addition, we prove
the reasonableness of the between-study variance D2

g in
Additional file 1.

Methods
Underlying hypothesis settings
Statistical hypothesis tests are primarily used in meta-
analyses to identify differentially expressed genes, and
three common hypothesis testing frameworks are often
applied [20]. In the first hypothesis test, targeted biomark-
ers are differentially expressed genes with non-zero effect
sizes in all studies. The null and alternative hypotheses are
as follows:

H0 :
k∩

i=1
{θig = 0} vs HA :

k∩
i=1

{θig �= 0}(The first hypothesis)

where θig denotes the underlying true effect size for gene
g in study i (i = 1, 2, · · · , k), k is the number of stud-
ies in a meta-analysis. The second hypothesis test aims to
determine a differentially expressed gene with non-zero
effect sizes in one ormore studies. The null and alternative
hypotheses are as follows:

H0 :
k∩

i=1
{θig = 0} vs HA :

k∪
i=1

{θig �= 0}(The second hypothesis)

The third hypothesis test aims to determine a differen-
tial gene expression if it has non-zero effect sizes in the
majority of studies (half or more). The null and alternative
hypotheses are as follows:

H0 :
k∑

i=1
I{θig �= 0} < r vs HA :

k∑

i=1
I{θig �= 0} ≥ r(The third hypothesis)

where the indicator function is denoted by I(.), which
takes a value of 0 if θig = 0 and a value of 1 if θig �= 0.
r is the number of studies that we identify a differentially
expressed gene in at least r studies. r is usually set as
greater than 0.5k. For instance, we can define a differen-
tially expressed gene if it is significant in at least 4 (r = 4)
of 8 studies.

Meta-analysis methods based on effect sizes
Fixed-effects model
The fixed-effects model (FEM) assumes that all studies
included in the meta-analysis have the same true effect
size and that the difference in the observed effect between
combined studies is caused by random error [21]. The
observed effect sizes of each study are combined with a
simple linear model.

Random-effects model
Let μg be the overall mean for gene g, which is a typical
parameter of interest. yig denotes the observed effect size
for gene g in study i (i = 1, 2, · · · , k). The random-effects
model is given by

yig = μg + ξig + εig , ξig ∼ N
(
0, τ 2g

)
, εig ∼ N

(
0, σ 2

ig

)

where ξig is the random effect for gene g in study i and
obeys a normal distribution with mean 0 and variance τ 2g ,
σ 2
ig is the within-study variance representing the sampling

error for gene g in study i, and τ 2g denotes the between-
study variance which is the variability between studies.
If τ 2g = 0, then the random-effects model reduces to a
fixed-effects model. If σ̂ 2

ig(i = 1, 2, · · · , k) and τ̂ 2g are the
estimates of σ 2

ig(i = 1, 2, · · · , k) and τ 2g , the overall mean
μg can be estimated by
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M∗
g =

∑k
i=1 ω∗

igyig
∑k

i=1 ω∗
ig

,ω∗
ig =

(
τ̂ 2g + σ̂ 2

ig

)−1
. (1)

DerSimonian and Laird estimate
The between-study variance τ 2g can be estimated by the
DerSimonian–Laird (DSL) method

τ̂ 2g (DSL) = max
(
0,

Qg − (k − 1)
∑k

i=1 ωig − ∑k
i=1 ω2

ig/
∑k

i=1 ωig

)

(2)

where Qg = ∑k
i=1 ωig(yig − M)2, ωig = σ̂−2

ig , M =
∑k

i=1 ωigyi/
∑k

i=1 ωig [22]. The estimator is not unbiased,
but it is the simplest [23]. The DSL estimator is the most
widely used method [24].

Two-step estimation starting with the DSL estimate and the
R2g in the second step (DSLR2)
DSLR2 is a random-effects model based on the between-
study variability R2

g [17, 25], which yields

R2
g = 1 −

∑k
i=1 ω∗

ig(yig − M∗
g )

2

∑k
i=1 ωig(yig − M)2

where ω∗
ig =

(
σ̂ 2
ig + τ̂ 2g (DSL)

)−1
, M∗

g = ∑k
i=1 ω∗

igyi/∑k
i=1 ω∗

ig .

Paule andMandel estimate (PM)
τ̂ 2g (PM) is the unique solution of

∑k
i=1 ω∗

ig(
yig − M∗

g

(
τ̂ 2g (PM)

))
− (k − 1) = 0, where

ω∗
ig = (σ̂ 2

ig + τ̂ 2g (PM))−1 [26]. Negative τ̂ 2g (PM) estimates
truncate to 0. τ̂ 2g (PM) is estimated and we can substitute

it in ω∗
ig =

(
σ̂ 2
ig + τ̂ 2g (PM)

)−1
to obtain M∗

g

(
τ̂ 2g (PM)

)
=

∑k
i=1 ω∗

igyi/
∑k

i=1 ω∗
ig [26].

Restrictedmaximum likelihood estimate
The method of restricted maximum likelihood estimate
(RML) can be used to calculate the estimators of over-
all mean value μg and between-studies variance τ 2g of
a random-effects meta-analysis model [27]. The log-
likelihood function based on the linear mixed effects
model is

lg
(
μg , τ 2g

)
= −1

2

k∑

i=1
ln

(
σ 2
ig + τ 2g

)

− 1
2

k∑

i=1

(yig − μg)2

σ 2
ig + τ 2g

− 1
2
ln

⎛

⎝
k∑

i=1

(
σ 2
ig + τ 2g

)−1
⎞

⎠.

The log-likelihood can be maximized using the Fisher
scoring algorithm to obtain the estimates of μg and τ 2g .
Negative τ 2g estimates are truncated to 0 [27].

Sidik and Jonkman estimate
The following two-step estimator of between-study vari-
ance τ 2g was proposed by Sidik and Jonkman [28, 29]

τ̂ 2g (SJ) = 1
k − 1

k∑

i=1

1
1 + σ̂ 2

ig/τ̂
2
0g

(
yig − M∗

g (SJ)
)2

where M∗
g (SJ) = ∑k

i=1 ω∗
igyig/

∑k
i=1 ω∗

ig , ω∗
ig = 1

1+σ̂ 2
ig/τ̂

2
0g
,

τ̂ 20g = max
{
0.01, 1

k−1
∑k

i=1(yig − yAg)2 − 1
k

∑k
i=1 σ̂ 2

ig

}
,

yAg = 1
k

∑k
i=1 yig .

Two-step estimation starting with the DSL estimate and the
D2
g in the second step (DSLD2)

Themain component of the random-effects meta-analysis
model is the between-study variability. We develop a
between-study variability estimator D2

g , which estimates
the amount of conditional variance in yig , which yields

D2
g = Qg − SMM,g

∑k
i=1 ωig − ∑k

i=1 ω2
ig/

∑k
i=1 ωig

(3)

where Qg = ∑k
i=1

(yig−Mg )2

σ̂ 2
ig

, SMM,g = ∑k
i=1

(yig−M∗
g )

2

σ̂ 2
ig+τ̂ 2g

,

Mg =
∑k

i=1 ωig yig∑k
i=1 ωig

, ωig = σ̂−2
ig andM∗

g =
∑k

i=1 yig/
(
σ̂ 2
ig+τ̂ 2g

)

∑k
i=1 1/

(
σ̂ 2
ig+τ̂ 2g

) .

Such an estimator of the between-study variance is
always greater than 0 and indicates how strong the ran-
dom effects are. The algorithm of the DSLD2method is as
follows:

• Calculate Qg and τ̂ 2g in Eq. (2),
• CalculateM∗

g in Eq. (1),
• Calculate D2

g in Eq. (3) and
• Replace τ̂ 2g with D2

g in Eq. (1).

The weights, overall mean estimator, variance of the
overall mean estimator, bounds of the confidence interval
and z-statistics based on the between-study variance D2

g
can be obtained by

ωig
(
D2
g

)
= 1

σ̂ 2
ig + D2

ig
, i = 1, 2, · · · , k

Mg
(
D2
g

)
=

∑k
i=1 ωig

(
D2
g

)
yig

∑k
i=1 ωig

(
D2
g

)

Var
(
D2
g

)
= 1

∑k
i=1 ωig

(
D2
g

)

UL
(
D2
g

)
= Mg

(
D2
g

)
+ 1.96 ∗

√
Var

(
D2
g

)

LL
(
D2
g

)
= Mg

(
D2
g

)
− 1.96 ∗

√
Var

(
D2
g

)
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and

zg
(
D2
g

)
=

Mg
(
D2
g

)

√
Var

(
D2
g

) .

Simulation and application
Meta-analysis methods used in simulation datasets
Two class simulation datasets were generated to observe
the performance of DSLD2 method. The methods used
in simulation datasets of gene expression levels were
the fixed-effects model (FEM), the random-effects model
based on DerSimonian and Laird estimate for τ 2g (DSL),
the random-effects model based on the between-study
variance estimotor R2

g (DSLR2), the random-effects model
based on Paule and Mandel estimate for τ 2g (PM), the
random-effects model based on the restricted maximum
likelihood estimate for τ 2g (RML), the random-effects
model based on Sidik and Jonkman estimate for τ 2g (SJ)
and the random-effects model based on the between-
study variance estimote D2

g (DSLD2). We compared the
performances of DSLD2 method and other 6 meta-
analysis methods based on effect-sizes in histograms,
precision, accuracy, the false discovery rates (FDRs),
false positive rate (FPR), Matthews correlation coeffi-
cient (MCC), sensitivity, receiver operating characteristic
curves (ROC) and precision-recall curves under three
hypotheses using simulation datasets of gene expression
levels. We reported the bias and root mean square error
(RMSE) of the between-study variance estimators D2

g
through Monte Carlo simulation datasets.

Simulation setting of gene expression levels
A common method was used to produce simulation data
for comparing the ability of detecting DE genes among
16 meta-analysis methods under the three hypothesis set-
tings [30]. Five studies were simulated (k = 1, 2, · · · , 5).
Each study contained 2000 genes and 2N samples (2N =
10, 20, 60, 100, 140, 180, 220). In each study, the first N
samples were controls, and the last N samples were cases.
Each sample in each study contained 40 gene clusters
(Cg = 1, 2, · · · , 40), and each cluster included 20 genes
(
∑

I(Cg = c) = 20, c = 1, 2, · · · , 40). The remaining 1200
genes had 0 gene clusters (

∑
I(Cg = 0) = 1200). The

first 1000 genes in each study were divided into 5 groups
(kg = 1, 2, 3, 4, 5). The first 200 genes were put into the
first group (kg = 1). The 201th gene to the 400th gene
were put into the second group (kg = 2). The 401th gene
to the 600th gene were put into the third group (kg = 3).
The 601th gene to the 800th gene were put into the fourth
group (kg = 4). The 801th gene to the 1000th gene were
put into the fifth group (kg = 5). The 1001th gene to the

2000th gene were put into the zeroth group (kg = 0). The
simulation algorithm is summarized as follows:

• We sampled
∑′

ck ∼ W−1(ψ , 60) for genes in cluster
c (1 ≤ c ≤ 40) and study k (1 ≤ k ≤ 5), where
ψ = 0.5I20×20 + 0.5J20×20, I20×20 was the identity
matrix, J20×20 was the matrix in which all elements
equal 1, andW−1 denoted the inverse Wishart
distribution. We then standardized

∑′
ck into

∑
ck

with all diagonal elements equaling 1.
• We sampled the expression levels of genes in clusters

c and n as
(
X ′
gc1nk , · · · ,X

′
gc20nk

)T ∼ MVN
(
0,

∑
ck

)
,

where 1 ≤ n ≤ 2N , 1 ≤ c ≤ 40 and 1 ≤ k ≤ 5. The
gene expression levels are g ∼ N

(
0, σ 2

k
)
for the gene

in cluster 0, where σ 2
k ∼ U(0.8, 1.2), 1 ≤ n ≤ 2N and

1 ≤ k ≤ 5.
• We randomly sampled δgk ∈ {0, 1} such that∑5

k=1 δgk = kg (kg = 1, 2, · · · 5). When δgk = 1, the
gene g in study k was DE, and we sampled
μgk ∼ U(0.5, 3). The expression level of the control
samples remained unchanged, and the case samples
were Ygnk = X ′

g(n+N)k + μgk · δgk , where
1 ≤ g ≤ 2000, 1 ≤ n ≤ N , and 1 ≤ k ≤ 5.

Thus, the numbers for truly differentially expressed
genes were 200, 1000 and 600 under the first hypoth-
esis, the second hypothesis and the third hypothesis,
respectively.

Simulation setting using Monte Carlo method
Let Xctrl

ijg and Xcase
ijg be the observations of gth iteration

for jth samples in the ith study from a control and a case
group. Assume that Xctrl

ijg was sampled N
(
μctrl
i , σ 2

i

)
and

Xcase
ijg was sampled N

(
μcase
i , σ 2

i
)
. Let nctrli and ncasei be the

sample sizes in ith study. To simplify things, it was set that
ni = nctrli = ncasei , σ 2

i = 10 and μctrl
i = 0. μcase

i was sam-
pled from N

(
0, τ 2

)
The following factors were set in the

simulations: k = (5, 10, 20, 40, 80), τ 2 = (0.0, 1.0), ni = 40
and g = 1, 2, · · · , 1000. The values of ni were sampled
from N

(
40, (40/3)2

)
. The standardized mean difference

(SMD) and the mean difference (MD) were chosen as the
effect size measures.

Results
Simulation results
The numbers of differentially expressed genes with
p < 0.05 (DE1) or FDR < 0.05 (DE2) identified by various
meta-analysis models are presented in Table 1 [31]. More
differentially expressed genes were identified by the fixed-
effects model. The DSLD2 method detected fewer DE
genes than the FEM and SJmethods. All methods had nor-
mal FDR1 levels and FDR2 levels except the FEMmethod.
The FDR2 of FEM is 0.3808 and greater than other meta-
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Table 1 The number of DE genes and FDRs from each method
in the simulation data

Method
Simulation: K = 5,N = 100,G = 2000

DE1 (p < 0.05) DE2 (FDR < 0.05) FDR1 FDR2

DSLD2 642 422 0.0165 0.0236

DSLR2 609 425 0.0164 0.0352

DSL 625 426 0.0258 0.0328

PM 621 422 0.0260 0.0331

FEM 1033 969 0.0361 0.3808

RML 620 423 0.0260 0.0330

SJ 696 483 0.0434 0.0641

Note: K represents the number of studies on the same or related topic; N denotes
the number of the samples in every study; G represents the number of genes in
every sample; DE1 represents the number of DE genes with p < 0.05; DE2 represents
the number of DE genes for which FDR<0.05. FDR1 and FDR2 are obtained from
Additional file 2; DSLD2 represents the random-effects methods based on D2

g

proposed in this paper; DSLR2 represents the random-effects method based on R2;
DSL denotes the standard random-effects model; FEM is the fixed-effects model

analysis methods. The FDR1 value of DSLD2 method was
0.0165, which was greater than that of the DSLR2 meth-
ods. However, the FDR1 value of the DSLD2 method was
smaller than that of the other 5 meta-analysis methods.
The FDR2 value of the DSLD2 method was 0.0236, which
was the smallest among 7meta-analysis methods based on
effect sizes.
Histograms were constructed to compare the differ-

ences in differentially expressed genes (p < 0.05) among
different groups detected by various meta-analysis meth-
ods (see Fig. 1). The numbers of studies that were differ-
entially expressed for gene g in 1 ∼ 200, 201 ∼ 400,
401 ∼ 600, 601 ∼ 800, 801 ∼ 1000, 1001 ∼ 2000 were 1,
2, 3, 4, 5 and 0, respectively . The DSLD2 method identi-
fied fewer DE genes in group 1, group 2 and group 0 (see
Fig. 1). More differentially expressed genes were detected
by the DSLD2 method in groups 3, 4 and 5 (see Fig. 1).
The DE genes discovered by the DSLD2 method showed
an increasing trend, and the differentially expressed genes
in group 5 could be completely identified by the DSLD2
method (see Fig. 1). The numbers of DE genes identified
by the DSLD2method in every group were consistent with
the data simulation method (see Fig. 1).
Precision is an important descriptor of random errors.

Line graphs and tables were constructed to compare the
precision among 7 meta-analysis methods (see Fig. 2,
Additional file 3: Figures S1-S2 and Additional file 4:
Tables S1–S3). The precision of all the methods increased
significantly from 10 to 60 samples and fluctuated slightly
between 60 and 220 samples under the first hypothe-
sis, the second hypothesis and the third hypothesis (see
Fig. 2, Additional file 3: Figures S1–S2). The precision of
the DSLD2 method was lower than other methods in 10
studies, however, the precision values of DSLD2 method

went up to 1.0 when numbers of sample sizes per study
were larger than 60 under the first hypothesis. Under the
first hypothesis, the DSLR2 method had the lowest preci-
sion among the meta-analysis methods combining effect
sizes. Under the second and third hypothesis, the FEM
method had the highest precision values among 7 meta-
analysis methods combining effect sizes (see Additional
file 3: Figures S1, S2 and Additional file 4: Tables S2, S3).
Accuracy is a critical descriptor of systematic errors.

Among the meta-analysis methods based on effect sizes,
DSLD2 had the highest accuracy among 7 meta-analysis
methods based on effect sizes under the first hypothesis
(see Fig. 3 and Additional file 4: Table S4). Under the first
hypothesis, the accuracy of the DSLD2 method experi-
enced a decrease from 10 to 100 samples and tended to
be steady between 100 and 220 samples (Fig. 3). The accu-
racy of FEM method is the lowest among 7 meta-analysis
methods based on effect sizes under the first hypoth-
esis (see Fig. 3 and Additional file 4: Table S4). Under
the second hypothesis, the accuracy of FEM method was
highest among 7 meta-analysis methods (Additional file 3:
Figure S3 and Additional file 4: Table S5). Under the
third hypothesis, the SJ method had the highest accuracy
values among 7 meta-analysis methods when the num-
bers of sample sizes per study were between 60 and 220
(Additional file 3: Figure S4 and Additional file 4:
Table S6).
The false positive rate (FPR) is the probability of falsely

rejecting the null hypothesis of a test. Under the first
hypothesis, DSLD2 had the highest FPR value when num-
ber of sample sizes per study was 10 (see Fig. 5 and
Additional file 4: Table S7). However, the FPR value of
DSLD2 method went down to 0.0 when numbers of sam-
ple sizes per study were larger than 60 under the first
hypothesis (see Fig. 4 and Additional file 4: Table S7).
Under the first hypothesis, the DSLR2 method had the
highest FPR values when numbers of sample sizes per
study were more than 60 (see Fig. 4 and Additional file 4:
Table S7). Under the second and the third hypothesis, the
FEM method had the lowest FPR values among 7 meta-
analysis methods (see Additional file 3: Figures S5, S6 and
Additional file 4: Tables S8, S9).
The Matthews correlation coefficient (MCC), a numer-

ical measure of correlation, indicates a statistical relation-
ship between the predicted and observed binary classifi-
cations. An MCC close to 1 denotes perfect prediction.
Under the first hypothesis, the DSLD2 method had the
highest MCC among the 7 meta-analysis methods based
on effect sizes (see Fig. 5 and Additional file 4: Table S10).
The FEM method had the lowest MCC values among the
7 meta-analysis methods under the first hypothesis (see
Fig. 5 and Additional file 4: Table S10). Under the first
hypothesis, the SJ method had the lowest MCC values
among the 6 random-effects meta-analysis methods (see
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Fig. 1 The histograms of DE genes detected by the 7 meta-analysis methods. The DSLD2 method is proposed in this paper. Genes 1 to 200 are
differentially expressed in only one study; genes 201 to 400 are differentially expressed in two studies; genes 401 to 600 are differentially expressed
in three studies; genes 601 to 800 are differentially expressed in four studies; genes 801 to 1000 are differentially expressed in all studies; and genes
1001 to 2000 are not differentially expressed in any studies

Fig. 5 and Additional file 4: Table S10). Under the second,
the FEM method had the highest MCC values among the
7 meta-analysis methods (see Additional file 3: Figure S7
and Additional file 4: Table S11). Under the third hypoth-
esis, the SJ method had the highest MCC values among
7 meta-analysis methods based on effect sizes when the
numbers of sample sizes per study were between 60 and
220 (see Additional file 3: Figure S8 and Additional file 4:
Table S12).
Sensitivity is a statistical measure of the performance

of binary classification tests. Under the first hypothe-
sis, the DSLD2 method had the highest sensitivity values

among the 7 meta-analysis methods based on effect sizes
(see Fig. 6 and Additional file 4: Table S13). The FEM
method had the lowest sensitivity values among the 7
meta-analysis methods under the first hypothesis (see
Fig. 6 and Additional file 4: Table S13). Under the sec-
ond hypothesis, the 7 meta-analysis methods had close
sensitivity curves (see Additional file 3: Figure S9 and
Additional file 4: Table S14). Under the third hypothesis,
the random-effect meta-analysis methods had close sensi-
tivity curves which are higher than the curve of the FEM
method. (see Additional file 3: Figure S10 and Additional
file 4: Table S15).
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Fig. 2 Plot of the precision under the first hypothesis. The DSLD2 method is developed in this paper. The precision values of DSLD2 method go up
to 1.0 when numbers of sample sizes per study are larger than 60

The receiver operating characteristic curve (ROC) is a
tool for selecting possibly optimal models, and the area
under the curve (AUC) measures how well two diagnos-
tic results can be distinguished. AUC ∈ (0.9, 1.0], AUC ∈
(0.7, 0.9] and AUC ∈ (0.5, 0.7] represent high, moderate
and low accuracy, respectively. The DSLD2 method had
AUC values of 0.996, 0.940 and 0.979 under the first, sec-
ond, and third hypotheses, respectively. Under the first
hypothesis, the DSLD2 method had the highest roc curve
among all 7 meta-analysis methods (see Fig. 7). Under the
second hypothesis, the roc curve of the DSLD2 method
was the highest among 6 random-effects methods (see
Additional file 3: Figure S11). Under the third hypothesis,
the roc curve of the DSLD2 method was highest among
the 7 meta-abnalysis methods based on effect sizes (see
Additional file 3: Figure S12).
When the labels are highly imbalanced, ROC-AUC may

give pretty good results and be misleading. Precision-
recall plots could provide the researcher with a more
accurate prediction because they evaluate the proportion

of true positives among positive predictions [32]. Under
the first hypothesis, the precision-recall curve of DSLD2
method was the highest among sevenmeta-analysis meth-
ods (see Fig. 8). The precision-recall curves of FEM and
DSLR2 were lower than other curves under the first
hypothesis (see Fig. 8). The DSL, PM, RML and SJ meth-
ods had almost the same precision-recall curve under the
first hypothesis (see Fig. 8). Under the second hypothe-
sis, the precision-recall curve of DSLD2 method was the
highest among the curves of random-effectsmeta-analysis
methods (see Additional file 3: Figure S13). The random-
effects meta-analysis methods had close precision-recall
curves which are lower than the curve of FEM under the
third hypothesis (see Additional file 3: Figure S14).
Bias and root mean square error (RMSE) are outcomes

directly related to the between-study variance estimator
D2
g . The DSLD2, DSL, PM and RML methods had close

bias and RMSE curves when τ 2 was set to 0.0 and 1.0 (see
Figs. 9, 10, 11 and 12, Additional file 3: Figures S15–S18
and Additional file 4: Tables S16-S23). The bias and RMSE

Fig. 3 Plot of accuracy under the first hypothesis. The DSLD2 method is proposed in this paper. The accuracy of the DSLD2 method is the highest
among that of the 7 meta-analysis methods
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Fig. 4 Plot of FPR under the first hypothesis. The DSLD2 method was introduced in this paper. The FPR values of DSLD2 method go down to 0.0
when numbers of sample sizes per study are larger than 60

curves of DSLD2, DSL, PM and RMLmethods were lower
than that of SJ and DSLR2 methods when SMD was cho-
sen as the effect size measure and τ 2 was set to 0.0 (see
Figs. 9 and 10). The DLSR2 method had the lowest bias
and RMSE curves when MD was chosen as the effect
size measure and τ 2 was set to 0.0 (see Figs. 11 and 12).
The bias and RMSE values of DSLD2, DSL, PM and RML
methods were lower than that of the SJ method when MD
was chosen as the effect size measure and τ 2 was set to
0.0 (see Figs. 11 and 12). The DSLD2, DSL, PM and RML
methods had the close bias and RMSE curves when the
between study variance was set to 1.0 (Additional file 3:
See Additional file 3: Figures S15–S18).
The DSLD2, DSL, PM and RML methods had close

mean values of I2 (see Figs. 13 and 14, Additional file 3:
Figures S19–S20 and Additional file 4: Tables S24-S27).
The I2 curves of DSLD2, DSL, PM and RML methods
were lower than that of DSLR2 and SJmethods when SMD
was chosen as the effect size measure (see Fig. 13 and
Additional file 3: Figure S19). The I2 values of DSLD2,

DSL, PM and RML methods were higher than that of
DSLR2 method when MD was chosen as the effect size
measure (see Fig. 14 and Additional file 3: Figure S20). The
SJ method had the highest I2 curves when MD was cho-
sen as the effect size measure (see Fig. 14 and Additional
file 3: Figure S20).

Application in genomic data
Alzheimer’s gene expression datasets
Alzheimer’s disease (AD), a neurodegenerative disease, is
common in elderly indiviuals [33]. The incidence of AD
has increased and is increasingly diagnosed in younger
individuals. However, the etiology of AD is still unknown
[34]. In this section, we used the DSLD2 method to ana-
lyze Alzheimer’s disease from a genetic perspective. Seven
public AD gene expression datasets of the hippocam-
pus from postmortem brain samples were used in this
paper. The phenotypic and gene expression data are avail-
able through GEO accession numbers GSE36980 [35],
GSE29378 [36], GSE84422 [37], GSE1297 [38], GSE5281

Fig. 5 Plot of MCC under the first hypothesis. The DSLD2 method is developed in this paper. The MCC value of the DSLD2 method is the highest
among that of the 7 meta-analysis methods
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Fig. 6 Plot of sensitivity under the first hypothesis. The DSLD2 method is developed in this paper. The sensitivity value of DSLD2 is the highest
among that of the 7 meta-analysis methods

[39–41], GSE28146 and GSE48350 [42–48]. After within-
study data preprocessing, filtering out genes with very
low gene expression and excluding small variation genes,
the meta-analysis of the DSLD2 method was conducted
on 3257 target genes in 305 subjects (168 AD and 137
controls).

A Venn diagram was plotted to compare DE genes (p <

0.01) detected by the DSLD2, PM, SJ and RML methods.
The DSLD2, PM, SJ and RMLmethods identified 364, 454,
611, 410 significantly DE genes (p < 0.01), respectively
(Fig. 15). The four meta-analysis methods found 299 over-
lapping DE genes. The DE genes detected by the DSLD2

Fig. 7 ROC curves of various meta-analysis methods under the first hypothesis. The DSLD2 method is developed in this paper. The ROC curve of
DSLD2 is the highest among that of the 7 meta-analysis methods. The sample size of every study is 100
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Fig. 8 Precision-recall plot of various meta-analysis methods under the first hypothesis. The DSLD2 method is developed in this paper. The
precision-recall curve of DSLD2 is the highest among that of 7 meta-analysis methods. The sample size of every study is 100

method were different from DE genes identified by the
PM, SJ and RML methods.
To biologically annotate the differentially expressed

genes identified by DSLD2, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis was
performed using over-representation analysis (ORA),
and the first ten pathways are listed in Table 2. The
differentially expressed genes with p < 0.001 were

significantly enriched in the neurological disease path-
ways, including the MAPK signaling pathway (hsa04010),
the ErbB signaling pathway (hsa04012), Helicobac-
ter pylori infection-induced epithelial cell signaling
(hsa05120) and the hippo signaling pathway (hsa04392).
Many studies have shown that Alzheimer’s disease is
closely related to the MAPK signaling pathway. For exam-
ple, Eun Kyung and Eui-Ju reported that deviation from

Fig. 9 Bias plot of 6 meta-analysis methods when τ 2 is set to 0.0 and SMD is chosen as the effect size measure
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Fig. 10 RMSE plot of 6 meta-analysis methods when τ 2 is set to 0.0 and SMD is chosen as the effect size measure

the control of the MAPK signaling pathway influenced
the progression of Alzheimer’s disease [49]. ErbB, a key
NRG1 receptor, plays a significant role in the develop-
ment and plasticity of Alzheimer’s disease. Woo et al.
showed that the upregulation of ErbB4 immunoreactiv-
ity implicates the development of AD pathology [50]. The
relationship between Helicobacter pylori infection (Hp-I)
and Alzheimer’s disease was investigated by histological
diagnosis [51]. Studies have shown that the pathophysiol-
ogy of AD is influenced by Helicobacter pylori infection
through many mechanisms [51]. Many studies have sug-
gested that Alzheimer’s disease is related to the hippo
signaling pathway [52].

Discussion and conclusion
This paper proposed a meta-analysis method (DSLD2)
based on new between-study variance estimator D2

g . The

biases and RMSE ofD2
g were lowest among 6meta analysis

methods when τ 2 was set to 0 and SMDwas chosen as the
effect size measure (see Figs. 9 and 10). The DSLD2, DSL,
PM and RML methods had close bias and RMSE values
when τ 2 was set to 0 or 1 and SMD or MD was chosen as
the effect sizemeasure (see Figs. 9, 10, 11 and 12 andAddi-
tional file 3: Figures S15–S18). The I2 values of DSLD2,
DSL, PM and RML methods were close when the τ 2 is set
to 0.0 and 1.0 (see Figs. 13 and 14 and Additional file 3:
Figures S19–S20).
We applied 7 meta-analysis methods based on effect

sizes to simulation datasets of gene expression levels
and compared the performance between the DSLD2
method and the other meta-analysis models. The FDR1
values of DSLD2 were smaller than that of DSL,
PM, FEM, RML and SJ methods (see Table 1). The
DSLD2 method had the lowest FDR2 values among

Fig. 11 Bias plot of 6 meta-analysis methods when τ 2 is set to 0.0 and MD is chosen as the effect size measure
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Fig. 12 RMSE plot of 6 meta-analysis methods when τ 2 is set to 0.0 and MD is chosen as the effect size measure

the 7 meta-analysis methods based on effect sizes
(see Table 1).
Under the first hypothesis, the precision, accuracy, sen-

sitivity, FPR and MCC of the DSLD2 method varied
greatly from 10 to 20 samples but tended to be stable
between 60 and 220 samples (see Figs. 2, 3, 4, 5 and
6). The accuracy, MCC, sensitivity, ROC and precision-
recall curve of the DSLD2methodwere the highest among
the 7 meta-analysis methods (see Figs. 3, 5, 6, 7 and 8).
The precision of DSLD2 method wen up to 1.0 when
the number of sample sizes per study was larger than
60 (see Fig. 2). The FPR of DSLD2 method wen down
to 0.0 when the number of sample sizes per study was
larger than 60 (see Fig. 4). The FEM method had the
lowest curves of precision, accuracy, sensitivity, FPR and
MCC (see Figs. 2, 3, 4, 5 and 6). The curves of pre-
cision, accuracy, sensitivity, FPR and MCC for the SJ

method was lowest among random-effects meta-analysis
methods (see Figs. 2, 3, 4, 5 and 6). The results of this
simulation show that DSLD2 is a suitable method for
detecting differentially expressed genes under the first
hypothesis.
Under the second hypothesis, the DSLD2 and DSLR2

methods had the highest sensitivity values of approxi-
mately 1.0 (see Additional file 3: Figure S9). The ROC
curve and precision-recall curve of DSLD2 method
were the highest among 6 random-effects methods (see
Additional file 3: Figures S11 and S13). The FEM
method had the highest values of the precision, accu-
racy, FPR and MCC among 7 meta-analysis methods
based on effect sizes (see Additional file 3: Figures S1, S3,
S5 and S7).
Under the third hypothesis, the DSLD2 method had

the high sensitivity values of approximately 1.0 (see

Fig. 13Mean of I2 plot of 6 meta-analysis methods when τ 2 is set to 0.0 and SMD is chosen as the effect size measure
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Fig. 14Mean of I2 plot of 6 meta-analysis methods when τ 2 is set to 0.0 and MD is chosen as the effect size measure

Additional file 3: Figure S10). The ROC curve and
precision-recall curve of DSLD2 method were the highest
among 6 random-effects methods (see Additional file 3:
Figures S12 and S14). The SJ method had the highest val-
ues of accuracy and MCC when number of sample sizes
per study was between 60 to 220 (see Additional file 3:
Figures S4 and S8). The FEMmethod had the highest pre-
cision values and the lowest FPR values (see Additional
file 3: Figures S2 and S6).

We also applied the DSLD2 method to microarray data
of Alzheimer’s disease. The differentially expressed genes
with p < 0.01 were significantly enriched in the neuro-
logical disease pathways, including the MAPK signaling
pathway, the ErbB signaling pathway, Helicobacter pylori
infection-induced epithelial cell signaling and the hippo
signaling pathway. Moreover, many previous studies sug-
gest that Alzheimer’s disease is related to pathways that
DSLD2 discovered [49–52].

Fig. 15 Venn diagram of differentially expressed genes detected by the DSLD2 (introduced in this paper), PM, SJ, and RML methods
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Table 2 Pathways of the differentially expressed genes discovered by the DSLD2 method

PathwayID Pathway name C O E R P-value FDR

hsa05212 Pancreatic cancer 66 7 1.22 5.72 0.0002 0.060

hsa04010 MAPK signaling pathway 255 13 4.72 2.75 0.0008 0.062

hsa05200 Pathways in cancer 397 17 7.35 2.31 0.0009 0.062

hsa04012 ErbB signaling pathway 88 7 1.63 4.29 0.0011 0.062

hsa05131 Shigellosis 65 6 1.20 4.97 0.0012 0.062

hsa04962 Vasopressin-regulated water reabsorption 44 5 0.81 6.13 0.0012 0.062

hsa05120 Epithelial cell signaling in Helicobacter pylori infection 68 6 1.26 4.76 0.0015 0.066

hsa04392 Hippo signaling pathway 29 4 0.53 7.44 0.0018 0.066

hsa01522 Endocrine resistance 98 7 1.81 3.85 0.0021 0.066

hsa04520 Adherens junction 74 6 1.37 4.37 0.0023 0.066

Note: C represents the number of reference genes in the category, O represents the number of genes in the category and also in the gene set, E represents expected number
in the category, and R represents the ratio of enrichment
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