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Impact of 3D cell culture on bone

regeneration potential of mesenchymal
stromal cells
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Abstract

As populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most
prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU
and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a
third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can
be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the
development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the
jaw.
The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative
therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options.
However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their
osteogenic differentiation potential.
Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and
differentiation of stem cells compared to cultivation on conventional flat systems.
This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation,
viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of
MSCs.
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Background
Bone remodelling is a continuous cycle of degeneration
and regeneration, involving osteoblasts (bone-forming
cells) and osteoclasts (cells that absorb bone tissue)
(Fig. 1). If the balance between bone formation and bone
resorption is lost, the bone becomes vulnerable to osteo-
porosis [1].
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Osteoporosis is characterised by low bone mass which
is strongly associated with increased bone resorption
combined with reduced bone regeneration [2] and
mostly affects postmenopausal women [3]. In the con-
text of bone homeostasis, oestrogen regulates osteoblast
survival and suppresses cellular apoptosis [4]. The onset
and development of osteoporosis are related to the life
span of osteoblasts. Oestrogen plays an important role
in the reduction of apoptotic gene expression in osteo-
blasts [5] with nuclear oestrogen receptors and androgen
receptors being directly involved in the process of bone
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Fig. 1 Bone remodelling cycle and bone degeneration in osteoporosis. The dynamic relationship between osteoblasts and osteoclasts is primarily
regulated by a fine balance between bone formation and bone resorption. a In healthy bone tissue, resorption of bone following the resting
phase is mediated by osteoclasts and counter-balanced by deposition of new bone material by osteoblasts. Once new bone material has been
deposited, another resting phase follows. b With increasing age and in patients with osteoporosis, the balance shifts towards higher levels of
osteoclast activation with reduced osteoblast differentiation, thereby impairing the regenerative potential of the bone and resulting in structural
deterioration of the bone tissue along with reduced bone strength
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remodelling and in modulation of the levels of
interleukin-6 (IL-6) [6].
In addition to its impact on osteoblasts, oestrogen has

two potential roles in regulating osteoclasts. Briefly, it
decreases osteoclast cell differentiation by suppressing
receptor activator of nuclear factor kappa-Β ligand/
macrophage colony-stimulating factor (RANKL/M-CSF)
signalling [7] and indirectly blocks the production of the
bone-resorbing cytokines IL-1β, IL-6, tumour necrosis
factor-α (TNF-α), M-CSF and prostaglandins [8]. In
addition, it inhibits bone resorption by directly inducing
apoptosis of osteoclasts [9].
In addition to oestrogen, inflammatory signalling and

the activity of the immune system are also involved in
bone and regeneration and degeneration. In the acute
phase after injury or at the onset of osteoporosis, local
levels of pro-inflammatory cytokines in the bone tissue
rise causing immune cell infiltration, macrophage polar-
isation towards the pro-inflammatory M1 phenotype
and release of chemokines. This in turn induces migra-
tion of the cellular ancestors of osteoblasts, MSCs, from
their niche to the bone and has a positive influence on
bone regeneration [10, 11]. However, if the inflammation
becomes chronic as in osteoporosis, this promotes
strong and persistent activity of immune cells interfering
with bone regeneration [12].
Given this complex nature of molecular and cellular

mechanisms involved in osteoporosis, development of
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therapeutic interventions is challenging and represents a
major and unmet clinical need.

Current therapeutic options and their limitations
Prior to 2002, one of the most common therapies pre-
scribed for osteoporosis was hormone replacement ther-
apy (HRT). In addition to prescribing HRT for female
patients with osteoporosis, postmenopausal women were
advised to take oestrogen to prevent a loss of bone dens-
ity [13]. In 2002, however, it was reported that HRT in-
creases the risk of breast cancer and heart disease. As a
result, less patients are now prescribed HRT [14].
In recent years, alternative approaches to treat bone

degeneration have been developed. These range from
systemic pharmacological approaches to surgical
procedures.
Currently, the main therapeutic agents for treating

osteoporosis include anti-resorptives such as HRT, se-
lective oestrogen-receptor modulators (SERMs) and
anti-RANKL antibodies. An ideal pharmacological inter-
vention treating bone loss should suppress osteoclastic
activity and enhance osteoblast-mediated bone forma-
tion [13]. A humanised monoclonal antibody (denosu-
mab) has recently been developed that inhibits
osteoclastic differentiation by preventing RANKL from
binding to its receptor [13]. Long-term administration of
denosumab has been shown to have positive effects not
only on the prevention of fragility fracture, but also on
the amelioration of joint damage in osteoporotic patients
[15]. However, treatment with denosumab is linked to
an increased risk of hypocalcaemia and osteonecrosis of
the jaw [16].
As an alternative pharmacological treatment option,

parathyroid hormone therapy (PTH) has been explored
for treating severe osteoporosis in men and postmeno-
pausal women with osteoporosis. A systematic review on
the PTH for the treatment of osteoporosis revealed that
PTH increases bone mineral density and reduces the risk
of fractures by decreasing osteoblast apoptosis. It also
enhances differentiation of osteoblasts from pre-
osteoblasts, thereby inducing new bone deposition. Des-
pite its high potential, PTH therapy has its drawbacks
including side effects like headaches, injection-site ten-
derness and nausea in osteoporotic patients [17].
A sclerostin (SOST) antibody and interferon γ (IFNγ)

also have therapeutic potential in treatment of osteopor-
osis [13]. The SOST antibody modulates osteoblastic ac-
tivity and bone formation, by inhibiting Wnt/β-catenin
signalling [18]. IFNγ can be an effective anabolic treat-
ment for osteoporosis as in the bone micro-environment
it is secreted by MSCs to promote osteogenic differenti-
ation [19]. However, there are risks associated with local
interferon therapy for bone loss, such as gastrointestinal
tract symptoms [19]. Bisphosphonates (BPs) are
commonly used for the treatment of osteoporosis, as
they have the potential to suppress osteoclast formation
[20, 21] and can break the osteoblast/osteoclast coup-
ling. However, a drawback of BPs is that they can cause
osteonecrosis of the jaw [22].
In addition to these pharmacological options, osteo-

porosis treatment can involve surgical procedures in-
cluding autologous bone grafts, allograft implantations
and free fibula vascularised grafts [23]. Even though au-
tologous bone grafting is currently seen as the gold
standard, this technique still has drawbacks in terms of a
high risk of morbidity and intervention-induced inflam-
mation [24].
Thus, safe and predictable therapies for osteoporosis

are an unmet clinical need. In this respect, stem cell
therapy for osteoporosis is a novel approach proposed to
increase bone formation.

MSCs as a potential stem cell therapy for bone
degeneration
In light of the limitations of conventional therapies, the
use of stem cells has been explored in the context of
bone healing. Due to their wide availability, minimally
invasive isolation procedures and their regenerative po-
tential, MSCs are considered the most suitable stem cell
type to be used in treatment of osteoporosis [25].
MSCs are fibroblast-like cells able to differentiate into

mesenchymal derivatives including bone, fat and cartil-
age cells (see [26] for review). They can be readily ob-
tained from various adult tissues including the bone
marrow, adipose tissue and peripheral blood. Their high
availability and low-risk profile made MSCs a promising
stem cell type for clinical exploitation [27]. As of July
2020, over 1100 clinical trials have been registered on
the ClinicalTrials.gov database with a wide indication
profile including diabetes, cardiovascular disorders and
musculoskeletal symptoms.
As cellular ancestors of osteoblasts, MSCs can contrib-

ute to bone regeneration either directly by integrating
and differentiating into bone tissue or by indirect stimu-
lation of endogenous regeneration processes.
Direct differentiation of rat MSCs into the osteogenic

lineage was first reported by Friedenstein et al. as early
as 1974 [28]. Following this discovery, MSCs from nu-
merous species and origins have been demonstrated to
undergo differentiation into osteogenic cells. Conse-
quently, in their position paper, The International Soci-
ety for Cellular Therapy Position Statement defined the
ability to give rise to bone cells in vitro as one of the
minimal criteria for defining MSCs [29]. In addition to
in vitro differentiation, even more stringent evidence for
osteogenic potential of MSCs has been provided by sev-
eral in vivo studies in different small and large animal
models including rats [30], sheep [31] and pigs [32].

http://clinicaltrials.gov
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Cumulatively, these promising in vitro and in vivo re-
sults motivated several clinical trials designed to assess
the feasibility, safety and efficacy of MSCs in oral bone
regeneration [33–35]. Although several individual trials
suggested that transplantation of MSCs is safe and asso-
ciated with improved oral bone regeneration, a more re-
cent meta-analysis did not reveal a significant increase in
vital bone mass [36]. This can be at least partly attrib-
uted to the fact that in contrast to early pre-clinical
studies claiming that a high number of transplanted
MSCs undergo differentiation to regenerate the bone,
very few regenerative cells survive following transplant-
ation [37]. This has been eloquently demonstrated in a
recent study, where human MSCs have been trans-
planted into large segmental bone defects in rats [38].
Although a significantly improved healing of large seg-
mental bone defects has been demonstrated, tracking ex-
periments failed to conclusively demonstrate long-term
survival and differentiation of MSCs in the regenerated
bone.
According to the database ClinicalTrials.org, no clinical

trials utilising MSC transplantation as a therapeutic option
to treat osteoporosis or osteoporotic fractures have been
completed as of July 2020. However, MSCs have been
shown to prevent progression of osteoporosis in a mouse
model of age-related osteoporosis [39]. Briefly, the authors
demonstrated that a single dose of MSCs increased the
Fig. 2 Contribution of MSCs to regeneration in bone fractures. In the acute
magnitude of paracrine factors which in turn attract immune cells and add
include modulation of endogenous cell differentiation, proliferation and an
osteogenic differentiation thereby replacing lost bone material. Finally, in t
by releasing soluble and extracellular vesicle embedded immunomodulato
bone turnover rate and reversed the age-associated reduc-
tion of bone formation compared to sham controls. These
promising results indicate that MSCs may have relevance
in the treatment of osteoporosis in humans.
In addition to differentiation and functional integration,

MSCs are widely believed to contribute to regeneration
via paracrine factors, acting as ‘bystander cells’ that modu-
late endogenous regeneration (Fig. 2). Indeed, in light of
the general consensus that the therapeutic benefit of
MSCs is paracrine, Arnold I. Caplan, who first coined the
term ‘mesenchymal stem cells’, recommends referring to
this cell type as ‘medicinal signalling cells’ [40]. Current
understanding of these ‘bystander effects’ mediated by the
secretome of MSCs is that they include two main fac-
tors—immunomodulation and reduction of inflammation.
In the context of immunomodulation, MSCs and their
secretome can affect a wide variety of immune cells in-
cluding but not limited to macrophages, dendritic cells, T
cells, B cells and natural killer cells (reviewed in [41]),
resulting in local immunosuppression.
Notably, the anti-inflammatory action of the MSC secre-

tome is not limited to immune cells as it can reduce the
levels of pro-inflammatory markers in other tissues including
cartilage [42] and muscle tissue [43]. In addition, ‘bystander
effects’ on the surrounding tissue include paracrine modula-
tion of angiogenesis, anti-apoptosis and chemoattraction, as
well as stimulation of resident cell proliferation [44].
phase after a bone fracture, resident or transplanted MSCs release a
itional MSCs to the side if the injury. Paracrine actions of MSCs also
giogenesis. In addition, they are able to integrate and undergo
he late stage of bone regeneration, MSCs contribute to regeneration
ry and anti-inflammatory factors including proteins and miRNAs

http://clinicaltrials.org
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The paracrine factors responsible for the effects intro-
duced above are soluble factors including cytokines,
growth factors and chemokines in addition to proteins
and miRNAs embedded within extracellular vesicles
(EVs) (reviewed in [45]). Indeed, multiple pre-clinical
and clinical reports provided evidence that MSCs exert
at least part of their therapeutic functions via EVs such
as exosomes and microvesicles [43, 46–49]. EVs are se-
creted by almost all cell types under physiological and
pathological situations, are anti-inflammatory and im-
munomodulatory and have a specific combination of
proteins, lipids and microRNAs as their cargo [50, 51].
Despite the high clinical potential, MSC-based ap-

proaches to tackle osteoporosis are limited by the fact
that osteoporosis has a negative impact on the number
and osteogenic differentiation potential of MSCs [52–
54]. This can at least partly be attributed to a shift of
osteoporotic MSCs towards an adipogenic fate, which is
believed to interfere with new bone formation in osteo-
porosis [55, 56].
An additional factor playing a role in the lower osteo-

genic potential of osteoporotic MSCs is that in senile
osteoporosis, MSCs undergo cellular senescence result-
ing in a growth arrest [57].
Finally, it has been demonstrated that MSCs isolated

from mice with experimental osteoporosis have a signifi-
cantly lower anti-inflammatory potential and lower ex-
pression levels of immunomodulatory cytokines
including TGF-β and IL-10 compared to MSCs derived
from control mice [58].
Thus, increasing the viability, as well as the prolifera-

tive and osteogenic differentiation capacity, while retain-
ing the anti-inflammatory and immunomodulatory
potential of MSCs are still essential steps required to de-
liver a successful and reliable autologous stem cell-based
therapy for osteoporosis.

Impact of 3D cell culture on bone regeneration-
relevant properties of MSCs
Traditional, two-dimensional (2D) cell culture on flat
plastic or glass surfaces is still widely used in regenera-
tive medicine and basic stem cell research. However, re-
moving stem cells from their endogenous 3D niche
results in unnatural polarity, changes in growth kinetics
and last but not least, an altered differentiation potential.
In this context, 2D culture of MSCs is known to result
in a loss of multipotency and premature cellular senes-
cence [59]. Moreover, 2D cell culture conditions have
been linked to accumulation of chromosomal aberra-
tions within the MSC genome [60, 61].
To address these problems, MSCs have been subjected

to a wide range of 3D cell culture methods including
cultivation as scaffold-free spheroids [62, 63] (reviewed
in [64]) and different hydrogel scaffolds including
alginates [65], collagen [66], Matrigel [67] and various
formulations of cellulose [68–71].
In the following sections, we will summarise current

knowledge on the impact of 3D cell culture on funda-
mental properties of MSCs that are pivotal in bone re-
generation. To directly assess the effects of 3D cell
culture on MSCs, the following sections only cover stud-
ies that have explicitly used 2D controls. Moreover, re-
ports using less than two independent methods to
determine the cell fate have been excluded.

Viability and proliferation
3D cell culture has been widely used in cancer research.
Notably, the impact of 3D cultivation on cell viability
and proliferation has been shown to be cell type and
technique dependent. While some studies reported an
increase in viability and proliferation compared to the
respective 3D controls, others observed opposite effects
(reviewed in [72]). This can be, at least partly, attributed
to the nature of the 3D cell culture method. Since osteo-
porosis and ageing in general negatively affect viability
and proliferation of MSCs, assessing the impact of 3D
cell culture technology on these parameters is important
for developing successful therapeutic strategies.
Briefly, spheroid cell culture has often been associated

with decreases in cellular proliferation and viability,
while 3D hydrogels can have an equal or superior per-
formance compared to 2D cultures (reviewed in [73]).
Contrary to reports on the impact of spheroid culture
on other cell types including cancer cells and neural
crest-derived stem cells indicating negative effects on
cell proliferation and viability [74], the consequences of
cultivation of MSCs as spheroids are still controversial.
While some studies suggested an increase in cell viability
and proliferation of MSCs within the spheroids [75, 76],
others reported no effects [77] or a reduced cell prolifer-
ation [78–80]. This could be attributed to a non-
homogenous nutrient and oxygen supply and impaired
waste product diffusion in the core if a critical sphere
size has been reached (reviewed in [64]).
Similar to the contradicting reports on the impact of

spheroid cultures on cell proliferation and viability, the
effects of 3D culture of MSCs on scaffolds and within
hydrogels are complex. While some 3D scaffolds includ-
ing gelatine, poly lactic-co-glycolic acid and chitosan do
not seem to affect viability and the proliferation of MSCs
[81], other substrates have been reported to change
these properties. In this context, collagen seems to have
different effects depending on its preparation and the
source of MSCs. Lo and colleagues did not observe sig-
nificant changes in cell viability and proliferation of
collagen-embedded human MSCs [81], while rat bone
marrow MSCs (BM-MSCs) have been reported to in-
crease their proliferation in the same scaffold [82]. Other
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reports also suggest that small differences in the scaffold
composition and preparation technique can be decisive
for the biological outcome.
In 2013, a study by Rampichová et al. suggested that

3D cultivation of minipig MSCs in electrospun 3D poly-
caprolactone increases both, their proliferation and via-
bility [83].
In contrast to these findings, 3D printed polycaprolac-

tone/tricalcium phosphate did not affect the viability of
human adipose tissue-derived MSCs (AD-MSCs) and
BM-MSCs [84]. Interestingly, Brennan and colleagues
demonstrated that sprayed micro-fibre polycaprolactone
scaffolds increase human BM-MSC proliferation, while
electrospun variants of the same scaffold decreased pro-
liferation compared to the 2D controls [85]. This pro-
vides further evidence that small differences in the
nature of the scaffold can dictate very different cell fates.
In general accordance with this hypothesis, woven bio-
degradable composite fibres from poly (L-lactic acid)
substituted with hydroxyapatite had an overall positive
effect on BM-MSC viability, while the same substrate
alone reduced it [86]. Conversely, Nguyen and colleagues
reported that electrospun scaffolds significantly reduced
proliferation of human MSCs as early as 7 days after
seeding on nanofibrous scaffolds composed of poly (L-
lactic acid) and type I collagen [87].
In our lab, we have studied the effects of 3D nanofi-

brillar cellulose on human MSCs derived from various
tissue types. In our hands, low concentrations (0.2%) of
nanofibrillar cellulose did not negatively affect the prolif-
eration of BM-MSCs, AD-MSCs and palatal MSCs,
whereas higher concentrations (0.5%) significantly re-
duced cellular viability and proliferation compared to 2D
controls [70]. In contrast, a follow-up study showed that
an anionic form of nanofibrillar cellulose significantly in-
creased the viability of human AD-MSCs [71]. Similarly,
Yin and colleagues recently reported that 3D cultivation
of AD-MSCs in a nanofibrous polysaccharide hydrogel
increases their proliferation and viability [88].
Overall, the effects of 3D seem to rely on multiple fac-

tors including but not limited to the nature of the scaf-
fold, its preparation and the origin of the MSCs.

Osteogenic differentiation
In addition to influencing the viability and proliferation
of MSCs, multiple reports suggest that 3D cultivation
might have an impact on their osteogenic differentiation.
In contrast to the controversial impact of MSC viability,
3D cell culture seems to increase the osteogenic differ-
entiation compared to conventional 2D culture.
It has been demonstrated that cultivation of rat BM-

MSCs as spheroids resulted in an increased osteogenic
potential compared to 2D controls [67]. This has been
evidenced by a higher expression of Osterix, increased
ALP activity and higher level of mineralisation
in vitro. Similarly, scaffold-free 3D spheroid culture of
murine BM-MSCs resulted in a 5-fold higher mineral-
isation compared to osteogenic differentiation of 2D
cultures [79].
A 2008 report provided evidence that 3D nanofibrillar

scaffolds prepared from rat tail collagen increased the
expression of osteogenic markers including type I colla-
gen, osteopontin (OPN) and osteonectin in human AD-
MSCs compared to differentiation conducted in 2D. Al-
though Alizarin Red S staining in this report suggested
that calcification could also be increased, the significance
of the data was not assessed [89]. Similar effects on the
expression levels of osteocalcin, OCN and OPN in rat
BM-MSCs were observed if purified collagen was used
to create a 3D scaffold [82]. Notably, von Kossa staining
revealed statistically significant increase of calcification.
In 2012, Nguyen and colleagues used a blended scaffold
composed of collagen and electrospun poly(L-lactic acid)
to study the influence of 3D cell culture on the differen-
tiation of human MSCs of undefined origin. In their
study, they showed that differentiation in 3D signifi-
cantly increases expression of OCN and OPN and aug-
ments the levels of calcification compared to cells
differentiated in 2D [87]. Moreover, use of pure poly (L-
lactic acid) scaffolds as a substrate showed similar in-
creases in expression of pro-osteogenic markers com-
pared to human BM-MSCs differentiated in 2D [86].
This was accompanied by a significant increase of Ca2+

deposition demonstrated via von Kossa and Alizarin Red
S staining.
In addition to collagen, poly(L-lactic acid) and blends

of these materials, Matrigel, a hydrogel mainly composed
of type IV collagens, entactin, perlecan and laminin has
been shown to increase the osteogenic differentiation
potential compared to 2D cell culture. If differentiated
within a Matrigel scaffold, human BM-MSCs showed
higher activity of alkaline phosphatase (an early marker
of osteogenesis) compared to the 2D counterparts [90].
In addition, Alizarin Red S staining revealed higher Ca2+

deposition in cells differentiated in 3D.
As alternative scaffolds, different polycaprolactone-

based substrates have been explored in combination
with MSCs. An elastic 3D poly (ε-caprolactone) has been
shown to increase the expression of bone sialoprotein
and OCN in minipig BM-MSCs subjected to differenti-
ation in 3D [83]. In accordance with this report,
polycaprolactone-tricalcium phosphate scaffolds and jet
sprayed micro-fibre polycaprolactone scaffolds have
shown similar osteoinductive effects in human foetal
and adult BM-MSCs [85, 91]. There are also reports on
increased osteogenic differentiation of AD-MSCs and
BM-MSCs in 3D vs 2D, if gelatine and blends of gelatine
and alginate are used as a scaffold [81, 92].
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Cellular senescence
Increased cellular senescence of MSCs is one of the con-
tributing factors for poor osteogenic regeneration in
osteoporosis. Although studying the impact of 3D cell
culture on cellular senescence is a relatively new field,
there is some evidence suggesting that propagation of
cells in 3D might reduce their cellular senescence. In
this context, Cheng and colleagues have clearly demon-
strated that 3D cultivation of human AD-MSCs as
scaffold-free spheroids prolongs their replicative lifespan
and decreases their senescence compared to 2D controls
[93]. However, a recent report provided evidence that
the number of senescent cells within MSC spheroids in-
creases over time [94].
In contrast, it has been reported that cultivation of hu-

man periodontal ligament fibroblasts, a cell type which
is phenotypically indistinguishable from MSCs [95], in
3D methylcellulose hydrogels results in suppression of
TNF-α-induced cellular senescence and an increase in
proliferation and migration [96]. In an attempt to study
the stress response in human endometrial MSCs culti-
vated as 3D spheroids in comparison to conventional 2D
culture, Domnina and colleagues exposed cells cultivated
under both conditions to heat shock and treatment with
H2O2 [97]. This study demonstrated that 2D monolayer
MSCs developed premature senescence, while MSCs in
3D exhibited decreased viability without cell cycle arrest
and other signs of senescence. Interestingly, subsequent
analyses revealed that 3D MSCs that did not undergo
apoptosis in response to heat shock-induced stress, re-
sumed cell division and had comparable proliferation
rates and cell cycle dynamics compared to the 2D con-
trols. These results suggest that 3D culture can be help-
ful in eliminating senescent cells from MSC cultures.
Finally, a very recent comparison of cellular senes-

cence in human adipose-derived MSCs cultivated in a
monolayer and cells in a commercial polysaccharide
hydrogel revealed significant reduction of senescence-
associated β-galactosidase activity in 3D. Moreover, an
overall higher telomerase activity and greater telomere
length was observed in MSCs in 3D. This was accom-
panied by a higher adipogenic and osteogenic differenti-
ation potential [88].
Overall, this promising data suggests that 3D cultiva-

tion might reduce cellular senescence of MSCs, thereby
facilitating the ability to obtain clinically relevant cell
numbers in a shorter time frame.
MSC secretome, immunomodulation and anti-
inflammatory potential
In addition to its direct impact on characteristics of
MSCs, 3D cell culture has been suggested to modulate
the regenerative potential of their secretome.
Although there is some evidence that 3D cultivation as
spheroids can reduce the anti-inflammatory and immu-
nomodulatory potential of MSCs [98], most secretomes
produced by MSCs cultivated in 3D hydrogels seem to
have higher anti-inflammatory and immunomodulatory
properties, and an overall greater regenerative potential
compared to both spheroids and conventionally
cultivated cells.
Cultivation of human AD-MSCs as spheroids has been

shown to increase expression of vascular endothelial
growth factor (VEGF) and hepatocyte growth factor
(HGF) compared to 2D, although no significant differ-
ences in the levels of fibroblast growth factor-2 (FGF-2)
have been observed [93]. Moreover, human BM-MSCs
cultivated as spheroids generated by the hanging drop
method showed higher levels of the anti-inflammatory
cytokine interleukin 24 (IL-24) [63]. Interestingly, the
same study provided evidence that spheroid MSCs were
more efficient in supressing LPS-induced inflammation
compared to their 2D counterparts. In accordance with
these findings, dynamic culture of human MSC spher-
oids in spinner flasks has been shown to result in in-
creased levels of IL-24 secretion [99]. A more recent
study provided further evidence for a change of para-
crine properties of spheroid MSCs. Briefly, Sun and col-
leagues demonstrated that MSC spheroids secrete higher
levels of VEGF [100]. In addition, spheroid cultures of
MSCs have been demonstrated to produce higher levels
of prostaglandin E2 that mediated polarisation of macro-
phages towards the anti-inflammatory M2 phenotype
[101, 102].
In addition to spheroid cultures, a higher regenerative

potential of secretomes from 3D cultivated AD-MSCs
compared to 2D culture has been reported by Chierchia
et al. [103]. In this study, MSC secretome-mediated neu-
roprotection of SH-SY5Y neuroblastoma cells following
6-hydroxydopamine treatment was increased if the
MSCs were cultivated in bovine collagen/polyethylene
glycol and collagen/low-molecular weight hyaluronic
acid hydrogels. However, to date, no molecular profiling
of these secretomes has been reported.
In 2018, it was also reported that 3D spheroid cultures

of human BM-MSCs secreted higher levels of VEGF
compared to 2D controls [62]. These findings are in line
with several other reports demonstrating that 3D culti-
vation of AD-MSCs results in an increased secretion of
multiple growth factors including HGF, VEGF, stromal
cell-derived factor (SDF) and FGF-2 [75, 104, 105].
More recently, Carter and colleagues studied the

wound healing potential of 2D, and 3D cultivated human
BM-MSCs in vitro and ex vivo [106]. In their study, they
demonstrated that 3D cell culture of MSCs on electro-
spun gelatine/polycaprolactone fibres increased the se-
cretion of FGF-2, IL-6, VEGF and HGF compared to 2D
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controls. In addition, 3D cell culture significantly im-
proved secretome-mediated corneal wound healing in a
rabbit corneal organ culture system [106].
A comparative analysis of the secretomes of umbilical

cord MSCs cultivated as spheroids and as adherent
monolayer revealed that 3D cultivation significantly in-
creases the secretion of IL-10, LIF, FGF-2, I-309, SCF
and GM-CSF [107]. Moreover, this study also showed
that secretome from 3D cultivated MSCs has superior
regenerative and anti-inflammatory potential in an
in vivo model of arthritis in adult Wister rats.
Overall, 3D cultivation is associated with increased

level of secreted molecular factors that are pivotal in
bone regeneration (see Table 1). Thus, the findings sum-
marised above suggest that 3D cultivation can indeed in-
crease the levels of bone regeneration-relevant
components within the MSC secretome.

Potential mechanisms instructing osteogenic
potential of MSCs in 3D
In addition to biochemical signals, mechanophysical cues
including surface stiffness and presence of micro- and
nanoscale pores, pillars and pits are known to heavily in-
fluence the fate of stem cells [120]. In vivo, many of
these cues are provided by the extracellular matrix
(ECM) and include matrix stiffness and presence of
pores, pillars and pit-like structures at microscale and
nanoscale (macro- and nanotopography). The stiffness
of the ECM in the human body ranges from 0.1–1 kPa
in the brain to 25–40 kPa in osteoids (unmineralised, or-
ganic portion of the bone matrix that develops prior to
the maturation of bone tissue) [121]. In contrast, con-
ventional cell culture plastic material is very rigid with a
stiffness of 1–10 GPa [122]. Indeed, MSCs have been de-
scribed to be highly sensitive to substrate stiffness. How-
ever, reports on the optimal osteoinductive stiffness are
conflicting. While Hwang et al. reported a stiffness of
4.47 kPa as osteoinductive [95], a much higher Young’s
modulus ranging from 62 to 800 kPa has been suggested
in studies from other laboratories [94, 96]. Importantly,
although stiffness can be manipulated in 2D to study
Table 1 Examples of bone homeostasis-relevant paracrine factors re

Target Paracrine factors

Osteogenic differentiation TGFβ, BMP-1 and mi

Anti-inflammation IL-10, TGFβ, TSG-6, L

Immunomodulation PGE-2, HLA-G5, HGF,

Anti-apoptosis VEGF, HGF, IGF-1, sta

Angiogenesis VEGF, IGF-1, PIGF, MC

Support of growth and differentiation of stem cells SCF, LIF, M-CSF, SDF

Chemoattraction CCL2, 3, 4, 5, 6, 20 an

Anti-fibrosis HGF, FGF-2 and adre
MSC differentiation [121, 123], it is important to con-
sider that in vivo MSCs are exposed to the mechanophy-
sical cues in all three dimensions of the surrounding
niche. Therefore, spheroid cultures and hydrogels sur-
rounding the cells might provide stronger inductive cues
compared to the more artificial environment in 2D.
In addition to the stiffness, both macro- and nanoto-

pography of the stem cell niche play an inductive role in
cell differentiation.
In this context, it has been established that nanopores

with a diameter of 30 nm within elastic (collagen) and
rigid 2D surfaces (titanium) are strong osteoinductive
cues for adult stem cells [124–126]. In addition, 2D mi-
cropores of 60 and 550 μm have been reported to have a
positive impact on osteogenic differentiation [127].
Interestingly, electron microscopic analyses of the struc-
ture of various hydrogels including different forms of
nanofibrillar cellulose and fibrin have revealed a pres-
ence both nano- and micropores [70, 71, 128]. Thus,
these nanoscopic and microscopic features could provide
a potential explanation for the increased osteogenic po-
tential of MSCs in 3D. Notably, differences in the nano-,
micro- and macropore profiles of different scaffolds
would have an impact on nutrient, oxygen and waste
product diffusion and could explain the differences in
viability and proliferation described earlier.
Interestingly, physical properties of scaffolds can also

dictate the paracrine potential of MSCs [129] with sub-
strates with an elasticity of 20 kPa resulting in an in-
crease of expression of anti-inflammatory factors
compared to more elastic substrates with an elasticity of
2 kPa. In 3D and depending on the nature of the hydro-
gel, retention of the secreted soluble factors and EVs
could also contribute to the increased osteogenic poten-
tial. Indeed, peptide-modified hyaluronic acid hydrogels
have been shown to retain EVs and show beneficial
therapeutic outcomes in animal models of spinal cord
injury [130]. Similarly, umbilical cord MSC-derived EVs
encapsulated in functional peptide hydrogels increased
the retention and stability of exosomes and improved
heart function in a rat myocardial infarction model
leased by MSCs

References

R-196a [108–110]

IF, miR-146a-5p, miR-548e-5p, let 7 family, miR-145 [43, 108, 111–115]

iNOS, TGFβ and IL-10 [108, 116, 117]

nniocalcin-1, GM-CSF and TGFβ [108, 118]

P-1, FGF-2 and IL-6 [118]

-1 and angiopoietin-1 [113, 118]

d 26 and CXCL5, 11, 1, 2, 8, 10 and 12 [117, 118]

nomedullin [113, 118, 119]



Fig. 3 Effects of 3D cell culture on MSC-properties relevant for bone regeneration. a Advantages and drawbacks of 3D cell culture compared to
traditional 2D cell cultivation. Advantages are highlighted in green, drawbacks in red. b 3D cell culture increases osteogenic differentiation
potential of MSCs and decreases their cellular senescence. In addition, both anti-inflammatory and immunomodulatory potential of MSCs seems
to be increased under 3D conditions. In contrast, the effects of 3D cell culture on cell viability and proliferation are dependent on the nature of
the 3D cell culture and the cell density
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[131]. Recently, it has been demonstrated that alginate
hydrogels loaded with AD-MSC-derived EVs can pro-
mote tissue regeneration in full-thickness skin wounds
[132]. Finally, cellulose hydrogels have been shown to re-
tain EVs and allow their continuous release from encap-
sulated cells [133]. Therefore, a potential additional
mechanism increasing the osteogenic potential MSCs in
3D hydrogels could be a retention of soluble pro-
osteogenic factors and EVs. This could exhibit both
autocrine on and paracrine effects that drive osteogen-
esis in 3D.

Conclusions
As outlined above, the nature of the 3D scaffolds and
small variations in their composition can influence the
viability as well as the osteogenic and paracrine potential
of MSCs (Fig. 3). Therefore, rational design of 3D cell
culture parameters could further improve the
performance of MCSs in bone regeneration. To achieve
this, an ideal 3D scaffold should be biocompatible and
osteo-conductive-inductive (reviewed in [134]). More-
over, scaffold stiffness, its topography and potential re-
tention and release of paracrine factors need to be
considered. Finally, as electrical stimulation of MSCs has
been shown to enhance the osteogenic potential of
MSCs [135], conductivity could also represent an im-
portant factor in designing optimal osteoinductive
biomaterials.
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