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ABSTRACT

How DNA sequence variation influences gene ex-
pression remains poorly understood. Diploid organ-
isms have two homologous copies of their DNA se-
quence in the same nucleus, providing a rich source
of information about how genetic variation affects a
wealth of biochemical processes. However, few com-
putational methods have been developed to discover
allele specific differences in functional genomic data.
Existing methods either treat each SNP indepen-
dently, limiting statistical power, or combine SNPs
across gene annotations, preventing the discovery
of allele specific differences in unexpected genomic
regions. Here we introduce AlleleHMM, a new com-
putational method to identify blocks of neighboring
SNPs that share similar allele specific differences in
mark abundance. AlleleHMM uses a hidden Markov
model to divide the genome into three hidden states
based on allele frequencies in genomic data: a sym-
metric state (state S) which shows no difference be-
tween alleles, and regions with a higher signal on
the maternal (state M) or paternal (state P) allele. Al-
leleHMM substantially outperformed naive methods
using both simulated and real genomic data, partic-
ularly when input data had realistic levels of overdis-
persion. Using global run-on sequencing (GRO-seq)
data, AlleleHMM identified thousands of allele spe-
cific blocks of transcription in both coding and non-
coding genomic regions. AlleleHMM is a powerful
tool for discovering allele specific regions in func-
tional genomic datasets.

INTRODUCTION

DNA encodes the blueprints for making an organism, in
part by coordinating a complex cell-type and condition-

specific gene expression program. Regulatory DNA affects
gene expression by controlling the rates of a variety of
steps during the transcription cycle, including opening chro-
matin, decorating core histones and DNA with chemical
modifications, initiating RNA polymerase I1 (Pol II) at tran-
scription start sites (TSSs), and releasing Pol II from a
paused state into productive elongation (1). In addition,
mRNAs are subjected to a host of post-transcriptional reg-
ulatory processes, most of which are influenced by the se-
quence of the RNA (2). How DNA or RNA sequences con-
trol each step during transcription, mRNA processing, and
mRNA degradation remains poorly understood.

Finding allele specific differences in the distribution of
marks along the genome is a powerful strategy for under-
standing the link between DNA sequence and the various
biochemical processes that regulate gene expression (3,4).
Diploid organisms have two copies of their DNA sequence
in the same nuclear environment, providing a rich source of
information about how genetic variation affects biochem-
ical processes. Additionally, alleles in a diploid genome
share the same environmental signals, cell type-specific dif-
ferences within a complex tissue, and other potential con-
founding factors. Therefore allele specific signatures are a
rigorous source of information about how DNA sequence
affects gene expression.

Despite the general utility of allele specific expres-
sion measurements, surprisingly few computational meth-
ods have been proposed to detect allelic differences. Cur-
rent methods that examine allele specific enrichment ei-
ther test single-nucleotide polymorphisms (SNPs) indepen-
dently (4,5) or combine the location of SNPs using gene an-
notations (6). Each of these methods has important limita-
tions. Treating SNPs independently requires a high sequenc-
ing depth, and exhibits a bias in which regions with higher
abundance of the mark of interest are much more likely to
be discovered. Summing up the reads within contiguous ge-
nomic regions, such as annotated genes, can improve sensi-
tivity and reduce bias by pooling information across SNPs
that are more likely to share the same allele specificity. How-
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ever, combining reads requires a well-annotated reference
genome, which is not available in some species, and also pre-
vents the analysis of marks in unannotated or non-coding
regions which are critical for proper genome function.

Here, we introduce AlleleHMM, a novel computational
tool that was designed to address these limitations. Al-
leleHMM identifies genomic blocks of SNPs that share the
same allele specificity in mark abundance using a hidden
Markov model (HMM). We show that AlleleHMM has sig-
nificantly higher sensitivity and specificity when compared
to tests that treat each SNP independently. AlleleHMM has
similar statistical power compared to the practice of merg-
ing reads inside of gene annotations, and can also iden-
tify allele specific differences in unannotated non-coding
RNAs when running genome-wide. When applied to pub-
licly available global run-on sequencing (GRO-seq) data, a
direct measurement of RNA polymerase, AlleleHMM dis-
covers the location of the vast majority of genes discovered
by merging gene annotations, and also identified over one
thousand allele specific blocks that lie in unannotated ge-
nomic regions. Blocks of allele specific transcription are in-
versely correlated with the allele specific differences in re-
pressive chromatin marks. Thus, AlleleHMM is a powerful
new strategy to identify allele specific differences in func-
tional genomic data.

MATERIALS AND METHODS
Overview of AlleleHMM

The primary goal of AlleleHMM is to identify allele specific
blocks of signal in distributed functional genomic data. Al-
leleHMM relies on the key assumption that contiguous ge-
nomic regions share the same allele specificity (Figure 1A).
This may happen for a variety of reasons depending on the
genomic mark; for example RNA polymerase across a tran-
scription unit shares the same allele specific differences that
were derived from the rates of Pol II initiation or release
from pause on the promoter which controls expression of
that transcription unit (1).

We developed an HMM (7) that represents allele speci-
ficity in a distributed genomic mark using three hidden
states: symmetric (S) distribution of the mark from both al-
leles (which shows no allele specificity), and an imbalance
of the mark specific to either the maternal (M) or pater-
nal (P) alleles (Figure 1B). AlleleHMM takes as input read
counts corresponding to each allele, computed using Al-
leleDB (4,5). AlleleHMM uses this information to set the
parameters of the HMM using Baum-Welch expectation
maximization (8), save for a single holdout parameter used
to tune the balance between sensitivity and specificity of
AlleleHMM (see below). The Viterbi algorithm (9) is then
used to identify the most likely hidden states through the
data, resulting in a series of candidate blocks of signal that
show evidence of allele specificity. We last calculated the
coverage of allele specific read counts in each predicted Al-
leleHMM block and performed a binomial test to verify
that the block predicted by the HMM is significantly allele
specific. The last binomial test was performed to eliminate
any false positives that result from multiple counts of a sin-
gle read that map to multiple nearby SNPs, which are diffi-
cult to handle in the context of the HMM.

PAGE 2 OF 10

Paternal | Maternal

—
R
T/2

-t 1-1

Figure 1. AlleleHMM uses a hidden Markov model (HMM) to infer the
allele specificity of genomic markers at each SNPs. (A) Cartoon shows the
frequency of reads mapping to the paternal (light blue bars) and maternal
(pink bars) allele at positions across the genome (X-axis). Nearby SNPs
show similar signatures of allele specificity depicted as blue (P, paternal
allele specificity), red (M, maternal allele specificity), or black (S, no ev-
idence of allele specificity) background identified using AlleleHMM. (B)
The model structure of AlleleHMM. We model allele specificity using three
hidden states: a symmetric state which shows no allele specificity (S, black),
and states representing maternal- (M, red) or paternal-specific (P, blue) re-
gions. SNPs can transition between hidden states. Green arrows represent
the transition probabilities set using a user-adjustable tuning parameter, 7.

AlleleHMM can be downloaded from: https://github.
com/Danko-Lab/AlleleHMM.

HMM structure

There are three hidden states in AlleleHMM (Figure 1B):
(S) a symmetric state which represents no allele specificity,
and (M) or (P) which represent regions with evidence of
allele specificity on the maternal or paternal allele. Each
state can transition to the other two states or stay in the
original state. We used allele specific read counts of SNPs
with at least one mapped read as observed emissions for Al-
leletHMM. The distance between SNPs was not considered
in the model.

Transition probability

Transitions are permitted between all of the hidden states
(Figure 1B). To control the balance between sensitivity and
specificity of AlleleHMM, we used a tuning parameter, T
(Figure 1B), to limit the transition out of the M or P states.
We set the transition probability from the M or P states to
any of the other states to 7/2, and the transition probability
to stay in the M or P state to 1-1. The transition probability
of the S state to either M or P were set using the Baum-—
Welch expectation maximization (EM) algorithm (7.,8).

Emission probability

Each hidden state in AlleleHMM is associated with a sepa-
rate probability distribution (called the ‘emission probabil-
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ity’) that was used to represent the input data. The emis-
sion probabilities for all three states were calculated using
the binomial distribution. The input to AlleleHMM is the
total read count and maternal read count for each SNP in
the genome. The input data is provided as:

SNP : 1, 2, 3, ... L
Total read count : ng, np, N3, ... 1
Maternal read count : Xy, X3, X3, ... X|

Given these input data, the emission probability for state
jis defined as:

le n;! Xi (ni—x;)
Hautosomes 1_[1‘ =1 xi!(ni _ x;)!pj (1 - pﬁll)

The value p; for each state (S, M, and P) was estimated
from the data using the EM algorithm, as described below.

Learning procedure for transition and emission probabilities

We use the Baum—Welch EM algorithm (8) to learn the
transition and emission parameters in AlleleHMM (with
the exception of the user adjustable tuning parameter, ).
The EM algorithm uses the forward-backward algorithm
to compute the probability of each state at every heterozy-
gous SNP in the genome with one or more mapped read
(E-step). These probabilities are used to maximize the like-
lihood of the model given the input data (M-step). After
learning model parameters using EM, we identify the most
likely path of hidden states at every mapped heterozygous
SNP using the Viterbi algorithm (9). These algorithms are
described in detail by Durbin et al. (7).

Tuning parameter optimization using GRO-seq data

AlleleHMM defines a user-adjustable tuning parameter, T,
that controls the balance between sensitivity and speci-
ficity by limiting the frequency of transitions between model
states. Intuitively, users can think about 7 as the threshold
P-value that must be overcome by the input data to support
a state transition.

The optimal value of T depends on the type of data, the
sequencing depth, and the heterozygosity of the genome of
interest. To determine the optimal value of T for GRO-seq
data in this manuscript, we assumed that changes in allele
specificity should usually arise near a transcription start site
(TSSs) (Supplementary Figure S1A), because allele speci-
ficity across a gene is controlled by the rate of initiation and
release from pause at the TSS (1). We evaluated the propor-
tion of AlleleHMM blocks that start within a fixed distance
of a TSS defined using dREG (discriminative regulatory-
element detection from GRO-seq) (10,11) over a range of T
in the dataset of interest. As 7 increased, a larger fraction of
AlleleHMM blocks occurs within a predefined distance of a
dREG annotated TSS (Supplementary Figure S1B). We se-
lected the 7 for each dataset at which this value approached
a saturation point. For instance, in the 129/castaneus F1 hy-
brid mouse embryonic stem cells (mESC) dataset, as T ap-
proached 1le-05, the fraction of AlleleHMM blocks begin-
ning within 5 kb of a dREG site saturated at ~50% (Sup-
plementary Figure S1B, black line, Supplementary Figure
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S1C). Although the value of saturation varied with differ-
ent window sizes, the value of 7 that defined the saturation
point was fairly well conserved over a reasonable range of
7 (Supplementary Figure S1B). In analyses that follow we
fixed 7 to 1e-05 (full GM 12878 dataset, mESC dataset). For
subsampled GM 12878, the same criteria used above sug-
gested an optimal value of T as 1e-04 (50% of total reads),
1e-03 (25% of total reads), and le-2 (12.5 and 6.25% of total
reads).

To provide an orthogonal validation for the value of T
selected using the TSS strategy described above, we mea-
sured the sensitivity and specificity of AlleleHMM over dif-
ferent values T in each dataset, using gene annotations as a
gold-standard (see below; Supplementary Figure S1D-F).
We found that setting T using the saturation point of TSSs
generally produced a sensitive model with a specificity near
1.0, as desired for the problem of discovering allele specific
blocks in the unbalanced setting of an entire genome.

Preparing data for input to AlleleHMM

Allele specific read counts were computed using AlleleDB
(4,5) with some modifications. Briefly, reads were mapped
to paternal and maternal genomes separately using Bowtie
(14). Reads with ambiguous mapping bias were removed,
following the procedure in AlleleDB (5). The Bowtie out-
put of each parental genome was merged and each read
was assigned to either the paternal or maternal haplotype
based on the amount of difference between the read and
each individual genome. Reads that differed from both in-
dividual genomes by the same amount were assigned ran-
domly to one of the individual genomes. The merged Bowtie
output was separated to plus strand and minus strand using
in house scripts because AlleleDB was designed for non-
strand-specific datasets. The allele specific read counts of
each SNP on each strand were computed using AlleleDB
(4,5). The AlleleDB output was further parsed into a tab-
delimited table as shown in Supplementary Table S1.

An example input file can be found here:
https://github.com/Danko-Lab/AlleleHMM/blob/master/
input_file_exmaples/AlleleHM M _input.txt

Identify allele specific transcribed blocks

We used the Viterbi algorithm (9) to identify the most likely
set of states (M, P or S) at each heterozygous position in the
genome of interest. Nearby SNPs sharing the same hidden
state were stitched into blocks. We then calculated the cov-
erage of reads in each block as follows: Reads were mapped
to the diploid genome using Bowtie (12) as implemented
in AlleleDB (5). The Bowtie output, including reads and
their mapping position, were separated into maternal- and
paternal-specific text files. Then, the coordinates were trans-
ferred to the appropriate reference genome (mm10 or hgl9)
using liftOver (13). We used the older hgl9 human reference
genome because existing fully phased personal references
for each of the two GM 12878 haplotypes were available in
this coordinate system (4,5), but not in the newer hg38. We
calculated the number of reads from the maternal or pa-
ternal haplotype in each AlleleHMM block using bedtools
(14). Binomial tests were performed for each block and the
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Figure 2. AlleleHMM had better sensitivity and specificity compared with
standard methods performing independent binomial tests for each SNP.
(A) Scatterplots show the sensitivity for each SNP in the center block of
AlleleHMM (red) and independent binomial tests (blue) as a function of
the length of a maternal specific blocks (the number of continuous SNPs
sharing same allele specificity, left), the average read count at each SNP
(center), or the expected maternal reads fraction (right). Error bars repre-
sent the standard error of 1000 independent simulations. The dotted line
indicates the average number of SNPs per human gene. (B) Scatterplots
show the specificity of AlleleHMM (red) and independent binomial tests
(blue) as a function of the length of the symmetric middle block (the num-
ber of continuous SNPs sharing same allele specificity, left) or the average
read count at each SNP (right). Error bars represent the standard error of
1000 independent simulations. The dotted line indicates the average num-
ber of SNPs per human gene.

false discovery rate was estimated to correct for multiple hy-
pothesis testing (15). These steps were performed to elimi-
nate false positives derived from multiple counts of a sin-
gle read that mapped to multiple nearby SNPs, which were
more complicated to consider in the context of our HMM.
AlleleHMM outputs two bed files: one with all blocks and
the other only reports the blocks with an FDR <10% as
significantly allele specific.

Performance test with synthetic data

To test how the performance of AlleleHMM compared with
current standards in the field, which involve testing SNPs
independently, we developed a simulation strategy. We used
a simulation strategy because the location and magnitude
of allele specific blocks could be controlled precisely, pro-
viding a confident ground truth dataset for rigorous per-
formance evaluation. The synthetic data was composed of
three blocks, each representing a region with allele speci-
ficity as shown on the top of Figure 2. The flanking blocks
were symmetric, and were simulated using parameters that
were kept consistent throughout the study.

The following parameters were changed to simulate the
middle block with allele specific transcription: length, ex-
pression level, and the degree of allele specificity. Length
was defined as the number of contiguous SNPs sharing the

PAGE 4 OF 10

same allele specificity, and was set to 100 when testing other
parameters, settings that were within the range of a typ-
ical gene in F1 hybrid mice (Supplementary Figure S2A,
top). Expression level, or the average read count per SNP
in the block, was set to 10 when testing other parameters.
The degree of allele specificity was defined as the proba-
bility that a read comes from the maternal allele in a bi-
nomial or beta-binomial event, and was set to 0.9 when
testing other parameters. The total read counts of each lo-
cation were simulated with a Poisson distribution and the
allele specific read count was simulated by either the bi-
nomial or beta-binomial distribution with overdispersion
of 0.25. The overdispersion of 0.25 was chosen based on
the estimates of two real data sets: GRO-seq in GM 12878
and 129/ castaneus F1 hybrid mESCs. The estimate was per-
formed in R using the VGAM library (16) using all SNPs
covered by at least 5 reads. The parameters used are sum-
marized in Supplementary Table S2.

Performance test with real biological data

To test the performance of AlleleHMM with GRO-seq data,
we applied AlleleHMM and independent binomial tests im-
plemented in AlleleDB to GRO-seq from GM12878 and
129/ castaneus F1 hybrid mESCs. The allele specificity of
each GENCODE gene annotation was estimated and used
as a surrogate for the ground truth. Allele specific reads
within each GENCODE gene annotation were counted us-
ing bedtools (14). Binomial tests were then performed for
each gene annotation and the false discovery rate was used
to correct for multiple hypothesis testing. We used Release
28 (mapped to hg19/ GRCh37) for GM12878 and Release
M17 (mm10/ GRCm38.p6) for 129/castaneus F1 hybrid
mouse. The sensitivity, specificity, and precision were cal-
culated at the SNP-level. All SNPs inside GENCODE gene
annotations with at least one read mapped were used. The
allele specificity was determined by AlleleHMM, indepen-
dent binomial tests, and using GENCODE gene annota-
tions were summarized and used to calculate performance
using in-house scripts.

Comparison with H3K27me3 ChIP-seq data

To test the correlation between transcription and
H3K27me3 in GM12878, we mapped the H3K27me3
ChIP-seq reads to the diploid genome of GM12878 using
Bowtie as implemented in AlleleDB (5). The Bowtie output,
including reads and their mapping positions, was separated
into maternal- and paternal-specific files. Coordinates were
transferred to the reference genome (hgl9) using liftOver.
We used bedtools coverage to calculate the number of
H3K27me3 ChIP-seq reads falling into each AlleleHMM
block obtained from GRO-seq in GM12878. We then cal-
culated the ratio of maternal-specific and paternal-specific
H3K27me3 ChIP-seq reads in each GRO-seq AlleleHMM
block and summarized using in-house R scripts.

Data used in this study

GRO-seq of 129/castaneus F1 hybrid mouse embryonic
stem cells: SRA ID number SRR4041366.
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GRO-seq of GM12878: SRA ID number SRR 1552485

H3K27me3 ChIP-seq data of GM12878 were fastq files
from ENCODE: ENCFFO000ASV, ENCFF000ASW,
ENCFF000ASZ, ENCFF001EXM, ENCFF001EXO

Software availability

The source code of AlleleHMM is available under
the BSD 2-clause license https://github.com/Danko-Lab/
AlleleHMM

Scripts used for each computation are available at:
https://github.com/Danko-Lab/AlleleHMM/tree/master/
analysis_for_AlleleHMM _manuscript

RESULTS

Finding allele specific differences using a hidden Markov
model

Differences in mark abundance between two heterozygous
alleles are often correlated across multiple adjacent SNPs
(Figure 1A). We developed AlleleHMM to identify genomic
regions that share allele specific differences in functional
mark abundance. AlleleHMM takes as input counts of
reads mapping unambiguously to each of the two alleles in
heterozygous positions of a phased reference genome. Al-
leleHMM models the data using a hidden Markov model
(HMM) that divides the genome among three hidden states:
a symmetric state (state S) which shows no allelic difference
in mark abundance, and regions with a higher signal on the
maternal (M) or paternal (P) allele (Figure 1B; see Materi-
als and Methods). AlleleHMM models the distribution of
read counts mapping to each allele using a binomial dis-
tribution. To control the tradeoff between sensitivity and
specificity, we introduced a user-adjustable tuning parame-
ter, T, that constrains the transition probability out of either
the maternal or paternal state. Aside from 7, all other model
parameters are set using expectation maximization over the
provided data.

Performance test with binomial-distributed simulated data

To determine how AlleleHMM performed in practice, we
simulated blocks of contiguous SNPs with specific levels
of allele specificity. We simulated a sequence of SNPs com-
posed of three blocks using the binomial distribution (Fig-
ure 2A, top): two blocks with equal signal in both alleles
and one middle block that exhibited a known difference in
signal between alleles. We evaluated the performance of Al-
leleHMM after we systematically changed the length, sig-
nal level, and degree of allele specificity in the middle block
holding other parameters constant (see methods) (Figure
2A). We evaluated the accuracy of AlleleHMM by examin-
ing the sensitivity (the fraction of true positives recovered).
We also examined the specificity (the fraction of correctly
classified true negatives) and precision (the fraction of true
positives over all positive calls) of AlleleHMM, incorporat-
ing simulations in which the middle block was symmetric to
compute precision. We chose simulation parameters char-
acteristic of global run-on and sequencing (GRO-seq) (17),
a direct measurement of RNA polymerase which is chal-
lenging to use in allele specific measurements because only
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a few reads map to each SNP in a typical dataset, resulting
in poor statistical power.

AlleleHMM identified allelic differences in simulated
data with higher sensitivity, specificity, and precision com-
pared with simple methods that perform independent bi-
nomial tests at each SNP (Figure 2; Supplementary Figure
S2A). The sensitivity of AlleleHMM for each simulated al-
lele specific SNP in the center block increased with block
length. AlleleHMM had a higher sensitivity than indepen-
dent binomial tests when the center block contained as few
as 8 adjacent SNPs, and a higher precision with only 10 ad-
jacent SNPs (Figure 2A, Supplementary Figure S2A, left),
shorter than observed in most mammalian genes (on aver-
age, 39.7 SNPs per gene for human CEPH Utah and 237.2
SNPs for 129/castaneus F1 hybrid mouse, Supplementary
Figure S2B). AlleleHMM had a higher sensitivity across the
spectrum of signal levels (Figure 2A, center). Likewise, we
found that AlleleHMM was more sensitive across an impor-
tant range of allele specificity magnitudes (<0.25 or >0.75;
Figure 2A, right). Treating SNPs independently resulted
in a higher sensitivity when the allele specificity was much
lower in magnitude (0.25-0.75), which we attribute to the
presence of rare individual SNPs that have a higher magni-
tude of allele specificity than the average for that block due
to random statistical fluctuations. AlleleHMM had a higher
specificity throughout the range of expression and block
length parameters than treating SNPs independently (Fig-
ure 2B), and generally had superior precision as well (Sup-
plementary Figure S2A), demonstrating that AlleleHMM
does not trade a higher sensitivity for a lower specificity.
Thus we conclude that AlleleHMM had better sensitivity
and specificity for allele specific transcription in synthetic
data simulated using the binomial distribution.

Performance test with overdispersed synthetic data

Many short-read datasets exhibit overdispersion due to a
variety of technical factors, which increases the rate of
false positive allele specific differences (5). To test how Al-
leleHMM performed with overdispersed data, we applied
a similar simulation strategy using a beta-binomial dis-
tribution to simulate read counts with varying degrees of
overdispersion. AlleleHMM had a reasonably high sensi-
tivity, precision, and specificity across the spectrum of dis-
tinct overdispersion values (Figure 3A; Supplementary Fig-
ure S3A). AlleleHMM retained a sensitivity >0.95, while
maintaining both precision and specificity near 1.0 at re-
alistic overdispersion levels estimated using two indepen-
dent GRO-seq datasets: human GM 12878 lymphoblastoid
cells (overdispersion of 0.24) (18) and 129/ castaneus F1 hy-
brid mouse embryonic stem cells (mESCs) (overdispersion
of 0.26) (19).

To test how AlleleHMM performance varied with the
length, signal level, and the degree of allele specificity when
the input data was overdispersed, we fixed overdispersion
to 0.25 (dashed lines in Figure 3A and Supplementary Fig-
ure S3A) and performed simulation experiments similar to
those described for the binomial distribution, above. Al-
leleHMM sensitivity and precision increased with block
length, and were higher than independent binomial tests
with as few as 8 (or 5, respectively) adjacent SNPs (Fig-
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Figure 3. AlleleHMM had better sensitivity and specificity compared with
the naive standard practice of performing a binomial test for each SNP in-
dependently in overdispersed data. (A) Scatterplots show sensitivity (left)
and specificity (right) of AlleleHMM (red) and independent binomial tests
(blue) as a function of the overdispersion parameter in beta-binomial dis-
tributed simulated data. Error bars represent the standard error of 1000
independent simulations. Dashed lines indicate the mean of overdispersion
estimated from GRO-seq of GM 12878 and GRO-seq of 129/castaneus F1
hybrid mESCs. (B) Scatterplots show the sensitivity of AlleleHMM (red)
and independent binomial tests (blue) as a function of the length of a ma-
ternal specific blocks (the number of continuous SNPs sharing same al-
lele specificity, left), the average read count at each SNP (center), or the
expected maternal read fraction (right) with an overdispersion of 0.25. Er-
ror bars represent the standard error of 1000 independent simulations. The
dotted line indicates the average number of SNPs per human gene. (C) Scat-
terplots show the specificity of AlleleHMM (red) and independent bino-
mial tests (blue) as a function of the length of the symmetric middle block
(left) or the average read count at each SNP (right) with an overdispersion
of 0.25. Error bars represent the standard error of 1000 independent sim-
ulations. The dotted line indicates the average number of SNPs per human
gene.

ure 3B, Supplementary Figure S3B, left). AlleleHMM was
also highly sensitive over an important range of allele speci-
ficity magnitudes (<0.25 or >0.75; Figure 3B, right). Al-
leleHMM had a higher specificity than independent bino-
mial tests across the spectrum of length (the number of
SNPs per gene, Figure 3C, left) and signal levels (average
read counts per SNP, Figure 3C, right). The specificity of
both AlleleHMM and independent binomial tests declined
as read count increased (Figure 3C, right). However, Al-
leleHMM maintained a reasonable precision throughout
this range, while independent binomial tests never achieved
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a precision >0.75 in this test (Supplementary Figure S3,
center). Moreover, AlleleHMM exhibited a high sensitiv-
ity within the range at which it maintained a high speci-
ficity (2-20 reads supporting each SNP, Figure 3B, center),
suggesting that subsampling highly expressed regions may
be a viable strategy to deal with overdispersion in practice.
Thus, AlleleHMM improved specificity in overdispersed
data while maintaining a higher sensitivity compared with
state-of-the-art tools using realistic parameters taken from
GRO-seq data.

Performance comparison with independent SNPs using
GRO-seq data

We next asked whether AlleleHMM provides a higher sen-
sitivity, specificity, or precision using real GRO-seq data as
input. We used AlleleHMM to analyze two public GRO-
seq datasets: one from 129/ castaneus F1 hybrid mESCs and
the other from a human GM 12878 lymphoblastoid cell line
(18,19).

To estimate the accuracy of AlleleHMM using real data
in which there was no ground truth, we identified anno-
tated genes with evidence for allele specific transcription by
combining reads across the entire gene annotation. Because
RNA polymerase in the gene body is loaded in the promoter
region, SNPs residing in the same gene annotation should
generally share the same level of allele specificity. Therefore
we estimated the allele specificity of each gene annotation
using all reads that fall inside, and assigned this magnitude
of allele specificity to every SNP that resides inside that an-
notation (see Methods). Using gene annotations as a sur-
rogate for a ground truth, we found that AlleleHMM had
a higher sensitivity than independent binomial tests, espe-
cially within the range of allele specificity magnitudes that
was most likely to contain biologically relevant allelic dif-
ferences (maternal read ratio of the gene <0.25 or >0.75,
Figure 4A, Supplementary Figure S4, left), consistent with
its performance in synthetic data. AlleleHMM had a similar
or higher precision compared with independent binomial
tests (Figure 4A, Supplementary Figure S4, right). Thus,
AlleleHMM is both more sensitive and precise when using
real GRO-seq data as input.

Most genomics applications are highly imbalanced, with
negative examples greatly outnumbering positive examples,
resulting in poor precision despite a high specificity. To
measure performance in cases where data are highly im-
balanced, we generated datasets based on SNPs in genes
where the magnitude of allele specificity was <0.2 or >0.8
(true positives) or between >0.45 and <0.55 (true nega-
tives). Using these highly imbalanced datasets (ratio of pos-
itive to negative examples < 0.05), AlleleHMM retained a
high precision (>0.66) at relatively high sensitivity (>0.76).
AlleleHMM outperformed independent binomial tests by a
wide margin in this task (sensitivity < 0.4 and precision <
0.2; see Supplementary Figure S5). We note that a precision
of 1.0 is not necessarily expected or desired in these tests,
because numerous differences exist between gene annota-
tions and the actual patterns of transcription that occur in
cells (as described below). These results suggest that even in
a setting where less than 5% of SNPs are true positives, Al-
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Figure 4. Comparison between AlleleHMM and independent binomial
tests. (A) Scatterplots show the sensitivity (left) and precision (right) of
AlleleHMM (red) and independent binomial tests (blue) as a function of
the maternal reads fraction in the gene annotation using GRO-seq data
from GM12878. (B) Scatterplots show the sensitivity of AlleleHMM as a
function of the fraction of maternal reads in the gene annotations. Differ-
ent lines indicate the read depth of the subsampled GRO-seq reads from a
deeply sequenced human GM 12878 dataset. The total sequencing depth is
187 896 441. (C) Venn diagrams show the number of allele specific SNPs
identified by AlleleHMM only (H, red), independent binomial tests (I,
blue, implemented in AlleleDB), and intersection of both methods (B, pur-
ple) from GRO-seq data of a 129/castaneus F1 hybrid mouse (top) and
a human cell line GM 12878 (bottom). (D) Pie charts show the propor-
tion of allele specific SNPs in GM12878 GRO-seq data that are within
genes having no evidence of allele specificity over the gene (symmetric,
S, pink), or genes that show higher expression on the same (concordant,
C, white) or the opposite (discordant, D, light blue) haplotype. (E) His-
tograms show the fraction of genes as a function of the number of allele
specificity switches the gene contains. Allele specificity was determined by
AlleleHMM only (H, red, top), independent binomial tests (I, blue, bot-
tom), and intersection of both methods (B, purple, middle) using GRO-seq
data from a human cell line GM12878.

leleHMM still obtains useful information about allele speci-
ficity, whereas the use of independent tests does not.

To examine how library sequencing depth affects the per-
formance of AlleleHMM, we subsampled GRO-seq reads
from the deeply sequenced human GM12878 dataset and
evaluated recovery using annotations with true positive/
negative labels generated based on the entire dataset. We
found that AlleleHMM was remarkably sensitive even at
sequencing depths that were <10% of the total read count
(Figure 4B), at a consistent precision and specificity (Sup-
plementary Figure S6A, center and right). In contrast, the
sensitivity of independent binomial tests, which was not
very high to begin with, dropped off rapidly with sequenc-
ing depth (Supplementary Figure S6B, left). Thus, even a
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modest sequencing depth (~20 million uniquely mapped
reads) is enough to identify the majority of allele specific
differences in transcription using GRO-seq data.

To more rigorously understand the differences between
AlleleHMM and independent binomial tests, we divided
SNPs based on whether they were identified as allele spe-
cific using AlleleHMM, independent binomial tests, or both
methods. Few SNPs were identified as allele specific using
both AlleleHMM and independent binomial tests on each
SNP (Figure 4C). In GM 12878, for example, AlleleHMM
identified 32,599 heterozygous SNPs with 1 or more read in
4,026 AlleleHMM blocks. Only 13,086 of the SNPs iden-
tified using AlleleHMM were also discovered using inde-
pendent binomial tests (~40% of SNPs; Figure 4C, bot-
tom). As expected, SNPs identified only by AlleleHMM
largely reflect heterozygous positions covered by too few
reads to confidently assign allele specificity when treating
SNPs independently, whereas those identified using both
methods had a higher read depth (Supplementary Figure
S7). Taken together, these observations are consistent with
AlleleHMM making substantial improvements in sensitiv-
ity for allele specific differences in genes with lower expres-
sion levels.

We were more surprised to find large numbers of SNPs
reported as allele specific using independent binomial
tests without a corresponding discovery by AlleleHMM
(n = 21,145 [mESC] or 79,562 [GM12878]). To investi-
gate whether these SNPs were false negative calls by Al-
leleHMM or false positives by the binomial test, we again
used SNPs within annotated genes under the assumption
that RNA polymerase across a gene shares the same allele
specificity. The majority of allele specific SNPs identified by
AlleleHMM were found to have the same direction (mater-
nal or paternal) of allele specificity as the gene annotation,
henceforth called ‘concordant’ (Figure 4D, concordant [C]
in white). By contrast, SNPs identified as allele specific us-
ing only independent binomial tests were most often iden-
tified within genes where the entire annotation showed no
evidence of allele specificity, henceforth called ‘symmetric’
(Figure 4D, symmetric [S] in pink). We also directly investi-
gated whether gene annotations tend to have a single allelic
state using each method, as implied by the assumption that
RNA polymerase density is largely determined by events
occurring at a single promoter region. We found that Al-
leleHMM identified a single block covering annotations in
>80% of cases (Figure 4E, top). In contrast, the direction of
allele specificity detected by independent binomial tests of-
ten switched across the annotation (Figure 4E, bottom), re-
sulting in no evidence of allele specificity when SNPs within
annotations were merged. Taken together, these observa-
tions provide additional support to our analysis of preci-
sion in unbalanced genomic data (Supplementary Figure
S5) and suggest that many of the SNPs identified only by
independent binomial tests are false positives.

Widespread non-coding allele specific transcription identified
using AlleleHMM

Despite achieving a high concordance with gene annota-
tions when available, AlleleHMM was also able to iden-
tify allele specific differences in unannotated transcription
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Figure 5. Application of AlleleHMM to GRO-seq data. (A) Genome browser view shows the application of AlleleHMM and independent binomial tests
(implemented in AlleleDB) to GRO-seq data from a 129/castaneus F1 hybrid mouse. The allele specific read counts of the blocks and SNPs are denoted
as P{M:12,P:136}, meaning that the block is paternal specific (P) with 12 maternal-specific (M) reads and 136 paternal-specific (P) reads. (B) Histograms
show the distribution of AlleleHMM block size of GRO-seq data from a 129/castaneus F1 hybrid mouse (red) and GRO-seq data from a human cell line
GM12878 (blue) in log scale (X-axis). (C) Histograms show the fraction of AlleleHMM blocks as a function of the number of genes it contains. GRO-seq
data from a 129/castaneus F1 hybrid mouse is in red and GRO-seq data from a human cell line GM 12878 is in blue.

units. For instance, AlleleHMM identified the transcription
unit upstream and antisense to Pdpn as sharing the same al-
lele specificity as the Pdpn coding region (Figure SA). Like-
wise, in cases where AlleleHMM disagreed with gene anno-
tations, it frequently identified cell-type specific transcrip-
tion units that were correctly classified upon careful exami-
nation. For instance, in the GM 12878 dataset AlleleHMM
found that transcription originating from enhancers within
the DTN B gene annotation was maternal-specific, although
most of the DTNB annotation itself was not (Supplemen-
tary Figure S8). These observations demonstrate that Al-
leleHMM provides substantial advantages useful for new
biological discovery compared with heuristics that summa-
rize signals within well-known gene annotations.
AlleleHMM revealed thousands of regions with ma-
ternal or paternal-specific RNA polymerase abundance
genome-wide. AlleleHMM identified 3,483 and 4,026
blocks with significant allele specific differences in mESCs
and GM12878, respectively. The average genome size of
each block in the F1 hybrid dataset was ~166 kb (Fig-
ure 5B). Blocks were larger in the mESC dataset than in
GM12878, likely owing to a combination of differences
in heterozygosity and sequencing depth between datasets
(Supplementary Figure S9). Approximately 25% of Al-

leleHMM blocks did not contain any GENCODE gene an-
notation (Figure 5C), for example the antisense transcrip-
tion unit upstream of Pdpn (Figure 5A). Many AlleleHMM
blocks contained more than one gene annotation (28% of
F1 hybrid mouse blocks and 13% of GM12878 blocks),
indicating groups of nearby genes and non-coding tran-
scription units that share similar allele specificity in their
transcription. Thus, AlleleHMM identified widespread evi-
dence for allele specificity in non-coding transcription, as
well as coordination between nearby transcription units
that was not evident from strategies that merged gene an-
notations.

Allele specific transcription negatively correlates with allele
specific repressive chromatin marks

To find further independent validation for blocks of al-
lele specific transcription identified using AlleleHMM, we
asked whether we could recover the negative relationship
expected between transcription and histone marks associ-
ated with transcriptional repression, especially H3K27me3.
We focused on GM 12878, for which there is publicly avail-
able ChIP-seq data profiling the distribution of H3K27me3
(20,21). Mapping H3K27me3 ChIP-seq data onto Al-
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Figure 6. Allele specific transcription correlates with allele specific
H3K27me3. Scatterplots show the allele specificity of H3K27me3 ChIP-
seq data (Y-axis) as a function of allele specificity in GRO-seq data (X-
axis). The trendline shows the best fit based on a total least squares regres-
sion. The Pearson correlation is shown on the plot (R = —0.57, P-value <
2.2e-16). The slope of the best fit line is —2.5.

leleHMM blocks identified using GRO-seq revealed 113
blocks with a significant allele specificity in H3K27me3
ChIP-seq data. As expected, the degree of allele specificity
in H3K27me3 ChIP-seq was inversely correlated with that
of GRO-seq (Pearson’s R = —0.57; Figure 6). The slope of
the best fit line implies that a 2-fold change in H3K27me3
was associated with ~5.7-fold change in transcription. As-
suming a similar dynamic range in both assays, this re-
sult implies that relatively modest changes in H3K27me3
may have a relatively large average impact on transcription.
Thus, AlleleHMM reveals blocks of allele specificity which
are largely in agreement with orthogonal genomic assays.

DISCUSSION

Here we have introduced AlleleHMM to identify allele spe-
cific differences in functional genomic marks. AlleleHMM
models the spatial correlation in allele specific differences
in a phased diploid genome using hidden Markov mod-
els (HMMs). We show that AlleleHMM provides substan-
tial improvements in both sensitivity and specificity for de-
tecting allele specific SNPs compared with existing com-
putational tools, using both simulation studies and analy-
ses of real GRO-seq data. AlleleHMM is applicable to any
type of functional genomic data and to any diploid species
with a high-quality phased reference genome. AlleleHMM
can now be deployed to understand the interplay between
chromatin environment, transcription, and mRNA across a
wide variety of organisms, providing new insights into how
DNA sequences influence biochemical processes in the nu-
cleus.

Although there has been extensive interest in using allele
specific information to understand the interplay between
functional marks, surprisingly few computational methods
have been developed for this task. One of the current meth-
ods to identify allelic differences requires performing inde-
pendent statistical tests at each SNP (4,5). This approach
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of treating SNPs independently requires a high sequencing
depth with dozens of reads covering each SNP in order to
be statistically powered to identify allele specific differences.
Additionally, because signal for the majority of marks tends
to be unevenly distributed along the genome, this strategy
is prone to significant biases where loci with a higher sig-
nal intensity tend to be better represented due to statistical
power. Finally, as has been reported elsewhere (5), and as we
show here, the application of independent statistical tests is
prone to a high rate of false discoveries. Although false pos-
itives can be addressed by using more conservative statisti-
cal models (5), this more conservative strategy exacerbates
issues with statistical power. AlleleHMM addresses this de-
ficiency in an alternative way, by modelling the correlation
between adjacent signal intensities, thus pooling statistical
power across adjacent positions.

An alternative approach that is commonly used to iden-
tify allele specific differences in mark abundance is to use
pre-established boundaries of genes or other genomic fea-
tures as a way to pool SNPs within regions of the genome
(6). This alternative strategy improves upon the use of in-
dependent statistical tests by using information between
nearby alleles. However, there are still a number of im-
portant limitations with this approach. Chiefly among the
limitations of this strategy is that allele specific differences
in functional marks cannot be identified if they fall out-
side of the boundaries of pre-established gene annotations.
Likewise, cell-type specific differences in transcript isoforms
are common, even in well annotated genomes like human
and mouse, which provide a substantial source of error for
annotation-based approaches. Finally, the use of annota-
tions requires a well annotated reference genome, which
is only available in well studied model organism such as
Drosophila, humans, or mice. AlleleHMM addresses these
limitations by providing a rigorous and statistically moti-
vated method to identify the boundaries of allele specific
blocks de novo.

Although AlleleHMM is a powerful tool that makes sig-
nificant improvements compared with existing strategies,
it does have several limitations. Chiefly among these, Al-
leleHMM will provide the most significant benefit for func-
tional assays where marks are spread broadly across the
genome, rather than focused within specific functional re-
gions. This provides the broadest benefit for assays such as
GRO-seq, RNA-seq, and several of the broadly distributed
ChIP-seq marks. AlleleHMM may provide less benefit for
assays such as 3’ mRNA-seq or chromatin accessibility as-
says (e.g., ATAC-seq or DNase-I-seq), where signals are dis-
tributed within a specific position of the genome. Neverthe-
less, AlleleHMM will still work under these settings, and
may still provide a substantial benefit for detecting expres-
sion differences that span multiple genes or chromatin ac-
cessible regions.

Using AlleleHMM, we have identified thousands of
regions harboring allele specific differences in human
GM12878 and murine ESCs. We have found that allelic
differences tend to occur over large genomic regions that
harbor multiple transcription units, often sharing the same
gene annotation. This finding is reminiscent of the shared
architecture of quantitative trait loci (QTLs) across broad
genomic regions (22). This finding may also reflect similar
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regulatory principles as the positionally dependent varia-
tion in gene expression across distinct biological replicates
(23). Altogether, the use of AlleleHMM provides a novel
tool that will be useful to rigorously examine how homol-
ogous DNA sequences in the nucleus differ in the distribu-
tion of functional genomic marks. We are confident that fu-
ture studies will use this tool to unravel multiple aspects of
genome function and organization.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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