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Abstract

Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is 

extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to 
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protect the liver in both experimental models and clinical studies. The chemopreventive activity 

of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can 

modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell 

cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, 

silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects 

of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the 

side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various 

cancer types, especially in gastrointestinal cancers. This review examines the recent studies and 

summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of 

gastrointestinal cancer.
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1. Introduction

Many recent studies have scientifically investigated the use of natural-derived components 

or micronutrients, and their potent benefits on human health [1,2]. Plant-derived compounds 

have been reported to target various cellular processes at a molecular level [3]. Currently, 

there are more than 1600 flavonoid-related and 3000 polyphenol-related patents. The 

pharmaceutical benefits of phytomolecules have been recognized in many disorders, 

including cancers, inflammatory disorders like arthritis, cardiovascular disorders (CVDs), 

autoimmune diseases, ophthamological disorders, etc [4–8]. As a prominent class of 

micronutrients and natural products, plant-derived flavonolignans contain a flavonoid moiety 

linked to a lignan or phenylpropanoid moiety.

The concept of chemoprevention was first described by Michael Sporn in 1976 in an 

investigation evaluating the preventive effects of natural forms of vitamin A against 

epithelial carcinogenesis [9]. Currently, chemoprevention is being tested as a strategy, which 

uses natural or synthetic substances for the inhibition, reversal, or delay of multistage 

carcinogenesis-related processes, with minimum toxicity against normal cells or tissue.

In 2002, Nanjoo Suh and Michael Sporn, in a commentary in Nature Reviews Cancer, 

stated that “Elongation of the latency period of carcinogenesis is a very beneficial approach 

for managing cancer and increasing lifespan, even if complete treatment of malignancy 

is not achieved” [10]. If cancer could be made into a chronic disease, there could be a 

higher quality of life for patients before death from other causes in old age. In addition 

to chemoprevention, some molecules, especially those with a natural origin, have been 

reported to be able to reverse the problem of chemoresistance frequently encountered in 

cancer [11]. The concept of chemosensitization is based on using specific drugs to promote 

the pharmaceutical activities of other drugs by regulating specific chemoresistance-related 

mechanisms. A chemosensitizer compound may also exert intrinsic anti-cancer activity, 

or may be a component without any significant chemopreventive activity. In other words, 

various compounds may be used to minimize the toxicity of traditional chemotherapy to 
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normal cells, to modulate the alterations that occur in drug metabolism, and to overcome 

mechanisms of intrinsic or extrinsic resistance in cancer patients. According to the FDA 

(Food and Drug Administration), the plant kingdom has been the most significant source 

of newly discovered anti-proliferative agents. Forty percent of the presently approved 

chemotherapy drugs are plant-derived, or have been inspired by natural products, of which > 

70% are used in cancer therapy.

The use of natural products such as polyphenols, may be useful for modulating xenobiotic

metabolizing enzymes and metabolic pathways to induce death in cancer cells. In addition 

to their chemopreventive properties, many natural products have been shown to be 

chemosensitizers. Flavonoids and flavolignans are a class of polyphenols, typified by 

silymarin an extract from Silybum marianum, also called milk thistle [12]. The major 

biologically active flavonolignan compound is called silibinin. Emerging evidence has 

shown that silymarin may have both chemopreventive and chemosensitizing activity in 

various experimental cancer models.

1.1. Silymarin structure and chemistry

Pelter and Hansel were the first to establish the chemical structure of silybin in 1968 

(Fig. 1). They elucidated the chemical structure using a laborious study of MS and 1 H 

NMR spectra (DMSO-d6, 100 MHz) [13]. The absolute configuration of silybin at the 

C-2 and C-3 positions was revealed by a degradative approach in 1975 [14]. Silybin (also 

known as flavobin, silybine, silliver, silymarin I) has a molecular weight of 482.441, a 

molecular formula of C25H22O10, and a CAS Number of 22888–70–6 (PubChem). Two 

main domains exist in the molecular structure of silybin. The first domain is the flavononol 

group, found in flavonoids such as taxifolin. The second domain is the phenylpropanoid 

group, found in coniferyl alcohol. These domains are connected by a 1, 4-dioxane ring 

[15,16].

Silybin is a highly stable compound in Brønsted acidic media, but under basic conditions 

or in Lewis acids, it shows lower stability. Extended heating over 100 C results in skeleton 

disruption. This compound shows good resistance to reduction but is easily oxidized to 

2,3-dehydrosilybin by reaction with two O2 molecules [17]. In aqueous media at neutral 

pH, silybin acts as a weak acid with, pKa = 6.63 for 5-OH group, pKa = 7.7–7.95 for 

7-OH group, and pKa = 11.0 for 20-OH group [18,19]. Silybin contains five hydroxyl 

groups, which serve as the main targets for derivatization. The 5-OH, 7-OH, and 20-OH 

groups all show phenolic properties. The 5-OH group undergoes strong hydrogen bonding 

with the adjacent oxo group, which is conjugated to an aromatic ring and acts as a free 

electron donor to form a hydrogen bond with the 5-OH group. The 20-OH and 7-OH 

groups show the same properties, however the 7-OH group shows higher reactivity than 

the 20-OH group because of its lower steric hindrance and the presence of hydrogen 

bonding. The 23-OH group undergoes oxidation or esterification with carboxylic acids. 

The 3-OH group is easily oxidized to a ketone (even with atmospheric O2), resulting in the 

production of 2, 3-dehydrosilybin. Silybin is poorly soluble in polar protic solvents (MeOH 

and EtOH) and cannot be dissolved in non-polar solvents (chloroform and petroleum ether). 

However it is extensively soluble in polar aprotic solvents, including DMF, acetone, THF 
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and DMSO [17]. Silybin exists as two trans diastereoisomers called A and B which are 

different due to the C-11 and C-10 asymmetric positions within the 1, 4-benzodioxane ring 

[15,20]. Both silybin A and silybin B show identical 13 C and 1 H NMR spectra, and 

the individual isomer detection is difficult [21]. High-performance liquid chromatography 

(HPLC) is the best separation method for these diastereoisomers, which have different 

retention times [22,23]. Silybin A has 11R, 10R, 3R and 2R isomers, with the IUPAC name 

of (2 R,3 R)–2-[(2R,3R)–2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)–2-(hydroxymethyl)–

1,4-benzodioxin-6-yl]–2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one. Silybin B 

has 11R, 10R, 3S, 2S configuration, with the IUPAC name 

of (2R,3R)–2-[(2S,3S)–2,3-dihydro3-(4-hydroxy-3-methoxyphenyl)–2-(hydroxymethyl)–

1,4-benzodioxin-6-yl]–2,3-dihydro-3,5,7-trihydroxy4H-1-benzopyran-4-one (Fig. 1) 

[21,24,25]. These silybin diastereoisomers have different optical rotations: silybin A has 

[α] 23 D + 20.0 (c 0.21, acetone), while silybin B has [α] 23 D − 1.07 (c 0.28, acetone) [25]. 

Crystallization also leads to differences between silybin A and B. Silybin A crystallized 

from MeOH–H2O produces flat yellow crystals yellow with a melting point of 162–163 

C, while silybin B forms grainy yellow crystals from MeOH–H2O with a melting point of 

158–160 C [21].

1.2. Silymarin metabolism and absorption

There have been some studies on the metabolism and bioavailability of silymarin 

and silibinin [26–28]. Silibinin was reported to show low bioavailability after oral 

administration, with only 0.95% found in rats [29]. Following oral consumption of extract of 

milk thistle, the flavonolignans were analyzed. Legalon was absorbed and excreted rapidly 

[28], while silibinin showed a 6-h half-life [30–32]. Conjugation was shown to be the 

main biotransformation pathway of silybin and its derivatives [26]. Silibinin, like other 

flavonoids, is metabolized by phase II drug metabolism enzymes. Oral administration of 

silibinin leads to an increase in glutathione S-transferase (GST) and quinone reductase (QR) 

activity in the liver, stomach, lungs, small bowel, and skin, in a time- and dose-dependent 

manner [33]. A conjugated form of silibinin can frequently be detected in the systemic 

circulation [33,34]. After oral consumption of silymarin in healthy volunteers, only 10% 

[22] to 17% [35] of overall plasma silibinin was free and non-conjugated. The most common 

metabolites are mono-glucuronides, di-glucuronides, and sulpho-glucuronides, but in total 

31 different compounds have been characterized [23]. Both conjugated and free forms of 

silibinin are rapidly excreted in rats and humans with a half-life of 6.32 h [30]. Thus, 

silibinin is characterized by rapid metabolism, comparatively low bioavailability, and its 

plasma concentration is commonly within the nanomolar range limits.

2. Silymarin and gastrointestinal cancer

2.1. Silymarin and gastric cancer

Apoptosis or programmed cell death is a key function of normal cells designed to maintain 

homeostasis through modulating cell numbers in specific locations, and removing damaged 

or dysfunctional cells that are unable to recover or be repaired by physiological processes 

[36]. Two pathways have been found to play critical roles in the induction of apoptosis: (1) 

death receptor-related extrinsic pathway; (2) mitochondrial-related intrinsic pathway (Fig. 
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2) [37]. In the extrinsic pathway, the binding of a death ligand to a death-related receptor 

located on the cell membrane activates the caspase pathway [38,39]. In the intrinsic pathway 

the release of apoptotic-associated mediators from the mitochondria triggers a signaling 

cascade [40]. Following the delivery of extracellular stimuli, a signaling cascade involving 

the nucleus, leads to activation of mitogen-activated protein kinases (MAPK) which regulate 

cell proliferation, growth, differentiation, and death [37]. MAPKs include, c-Jun N-terminal 

kinase/stress-activated protein kinase (JNK/SAPK), extracellular signal-regulated protein 

kinase 1/2 (ERK1/2), and p38 MAPK. ERK1/2 affects growth hormone-associated signal 

transduction, and regulates cell proliferation, viability, and differentiation [37]. Stimuli such 

as extracellular stress can activate p38 and JNK, and their downstream signaling to cause 

inflammation and cell death.

Kim et al. evaluated the effects of silymarin on proliferation and apoptosis in human 

gastric cancer cells (AGS) [37]. Viability and migration of AGS cells were significantly 

decreased in a dose-dependent manner after administration of silymarin. Silymarin increased 

the apoptosis rate and the number of apoptotic bodies in a concentration-dependent manner. 

Silymarin significantly up-regulated the levels of phosphorylated (p)-JNK, Bax, and p-p38, 

and cleaved poly-ADP ribose polymerase (PARP), while it down-regulated Bcl-2 and p

ERK1/2 expression, in a dose-dependent manner. The inhibitory effect of silymarin against 

in vivo tumor growth was also investigated. Silymarin (100 mg/kg) decreased the tumor 

volume in an AGS xenograft mouse model and increased apoptosis in the tumors. These 

effects were attributed to inhibition of p-ERK and p-p38, and activation of p-JNK. Silymarin 

may have a role in cancer treatment due to its ability to induce apoptosis and inhibit tumor 

growth [37].

Several plant-derived phytochemicals, such as resveratrol, lycopene, sulforaphane, or 

silybinin have been shown to have anti-tumor activity, along with relatively low-toxicity 

to normal cells. Therefore they could be used in combination with conventional anti-tumor 

drugs, and may show synergistic effects as a cancer treatment [41–44].

Paclitaxel (PTX, brand name Taxol) is a naturally occurring tricyclic diterpenoid compound 

isolated from the needles and bark of Taxus brevifolia, the Pacific yew tree [45]. This 

widely used naturally-derived drug has shown a unique anti-cancer mechanism [46]. 

Tubulin-binding anticancer compounds prevent tubulin assembly within microtubules. In 

contrast, PTX induces the accumulation of tubulin in the microtubules and thus blocks 

the disassembly of microtubules, and prevents mitosis, cell cycle progression and cancer 

cell proliferation [47]. The synergistic therapeutic effect of silibinin combined with PTX 

has been evaluated [48]. Silibinin alone, paclitaxel alone, or the mixture of silibinin plus 

PTX triggered apoptosis, and cell cycle arrest at G2/M stage. Furthermore, the combination 

of silibinin plus PTX increased the Bcl-2/Bax ratio, and the expression of TNF receptor 

superfamily member 6 (TNFRSF6)/Fas ligand, to trigger the extrinsic apoptosis pathway of 

SGC-7901 human gastric cancer cells. This study suggested that silibinin could be used to 

promote the therapeutic effect of PTX against SGC-7901 cells [48].
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Several different kinds of epithelium-derived cancers (prostate, colorectal, bladder, and lung 

cancer) have been shown to be strongly inhibited by silibinin [49,50]. Silibinin inhibited 

tumor growth, invasiveness, and the metastasis of various tumor cells in vitro [51].

Different doses of silibinin were used to treat BGC-823 gastric cancer cells [52]. Silibinin 

produced a time- and dose-dependent inhibitory effect on cancer cell proliferation. The 

higher silibinin doses induced both late and early apoptosis. Silibinin up-regulated the 

production of mitochondrial-mediated apoptosis-associated signaling mediators [52]. The 

signal transducer and activator of transcription (STAT)-3 can be constitutively activated 

in several malignancies and tumor cell lines, including prostate, breast, pancreatic ductal 

adenocarcinoma (PDAC), colon carcinoma, and gastric cancer. It is known that the increased 

activation and expression of STAT3 promotes cancer cell survival, proliferation, and 

angiogenesis, and is strongly associated with tumor invasion, metastasis, and poor prognosis 

in patients [53–59]. Moreover, inhibition of STAT3 activation can impede growth and 

invasiveness, while inducing apoptosis [60–63]. STAT3 can be targeted using low molecular 

weight chemical inhibitors, or other natural products and plant extracts [61,63,64].

Wang and colleagues investigated the effects of different concentrations of silibinin against 

human gastric cancer cells MGC803 [65]. MGC803 cell growth was inhibited in a 

silibinin concentration-dependent and time-dependent manner. Silibinin induced apoptosis 

and cell cycle arrest in G2/M phase in MGC803 cells. Silybinin down-regulated p-STAT3 

protein expression and also its downstream genes (such as Mcl-1, survivin, Bcl-xL, and 

STAT3). Silibinin increased caspase-3 and caspase-9 mRNA and protein expression levels. 

Furthermore, silibinin significantly reduced the expression level of cyclin B1 and CDK1 

at the protein and mRNA levels. These findings suggested that silibinin could inhibit cell 

proliferation, and triggered apoptosis and cell cycle arrest by inhibiting survivin, cyclinB1, 

Bcl-xL, CDK1, and Mcl-1, as well as promoting caspase-3 and caspase-9 activity [65].

Table 1 lists some studies reporting anti-gastric cancer effects of Silymarin.

2.2. Silymarin and pancreatic cancer

Amylin (islet amyloid polypeptide) increased apoptosis in INS-1 rat islet β cells, by 

increasing the TUNEL-positive ratio and decreasing the expression level of PKA and 

glucagon-like peptide-1 receptor (GLP-1R) [69]. Antagonists of GLP-1R or PKA inhibitors 

strongly up-regulated apoptosis-related proteins and increased the TUNEL-positive ratio. 

Addition of silibinin produced an anti-apoptotic effect by up-regulating GLP-1R and 

PKA expression levels. They concluded that silibinin protected INS-1 cells against amylin

triggered apoptosis by activating GLP-1R/PKA signaling. Silibinin also inhibited the toxic 

effects of Aβ1–42 peptide, but this was reported to be independent of GLP-1R/PKA 

signaling [69].

Various studies have shown that there are low expression levels of concentrative nucleoside 

transporter (CNT) family members in human pancreatic adenocarcinoma cells such 

as capan-2 cells [70–74]. Therefore the bi-directional human equilibrative nucleoside 

transporter (hENT1) is involved in gemcitabine uptake, but can also act as an efflux 

protein. Although hENT1 is abundantly expressed, its expression was altered during the 
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induction of chemoresistance to gemcitabine [75]. Furthermore, other efflux proteins such 

as, MRP5 (ABCC5), MRP1 (ABCC1), and P-gp (ABCB1) are expressed in pancreatic 

cancer cell lines, and govern the chemosensitivity to gemcitabine [70,75–77]. Indeed, 

some drugs with the ability to modulate the expression level of influx and efflux proteins 

(i.e. hENT1, ABCC5, ABCC1, and ABCB1) have been shown to be potential therapeutic 

agents in combination with chemotherapy. Butylated hydroxytoluene (BHT) and butylated 

hydroxyanisole (BHA) are two important synthetic phenolic antioxidants, which have 

found widespread use in medicine and the food industry. They have been extensively 

used in the daily human diet, particularly for protecting fat containing foods against 

air oxidation [78,79]. BHT is also used as a synthetic antioxidant in the cosmetics and 

pharmaceutical industries, while BHA is also employed as a food preservative and in 

stabilizing some medications [79–81]. Both these chemicals has been tested in animals 

to assess their carcinogenicity, while a report from the International Agency for Research 

on Cancer suggested that there was limited evidence for BHT-induced carcinogenicity in 

both experimental animals and in humans [82]. Calcitriol (1,25-dihydroxycholecalciferol) 

is an active vitamin D metabolite that regulates bone mineral metabolism, and intestinal 

absorption of calcium [83,84]. Calcitriol has been shown to have promising anti-proliferative 

activity by affecting different cell processes, including apoptosis and cell cycle arrest 

[83–86]. Both in vivo and in vitro models have been used to show that the activity of 

chemotherapy drugs, such as gemcitabine and paclitaxel, could be enhanced by calcitriol 

[87,88].

In one study, Capan-2 pancreatic cancer cells were pretreated with BHT, BHA, calcitriol, 

or silibinin for 24 h, and then treated with gemcitabine [89]. BHT, BHA and silibinin all up

regulated the expression levels of efflux proteins and decreased gemcitabine uptake, while 

calcitriol strongly suppressed the expression of efflux proteins, and increased gemcitabine 

uptake. Pre-treatment with calcitriol protected the cells against gemcitabine toxicity, while 

BHA increased the cell death rate. Neither BHT nor silibinin had any significant effect on 

the cell death rate [89].

Silibinin inhibited hypoxia-inducible factor 1α (HIF1α) and mTOR signaling, which are 

involved in cancer progression [90,91]. The anti-cancer and anti-cachectic effects of silibinin 

in pancreatic cancer were assessed using in vivo and in vitro experiments [92]. Silibinin 

significantly suppressed the growth rate and glycolytic activity of pancreatic cancer cells 

in a dose-dependent manner, and triggered global metabolic reprogramming as shown by 

metabolomics data based on LC-MS/MS. Silibinin decreased the expression of c-MYC, and 

inhibited STAT3 signaling in the tumor cells. Over-expression of active STAT3 reversed the 

silibinin-mediated down-regulation of the metabolic phenotype and c-MYC inhibition. An in 
vivo model of pancreatic cancer demonstrated that silibinin caused significant reduction in 

tumor growth and proliferation, and prevented loss of muscle and body weight. The physical 

activity of the mice was improved after silibinin administration in orthotopic tumor-bearing 

mice [92].

Histone deactylase (HDAC) inhibitors have emerged as a major class of anti-cancer 

compounds, and have produced meaningful anti-proliferative effects in various cancers, 

including pancreatic adenocarcinoma. By altering the acetylation of both non-histone 
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and histone proteins, HDACs can modify the chromatin structure [93]. An imbalance 

between the acetylation and deacetylation of histones has been found to affect the aberrant 

transcription of target genes, and has detrimental effects on multiple cellular processes [94–

96]. Studies have reported that the cytotoxicity of anti-cancer drugs, including gemcitabine 

[97], proteasome inhibitors [73], and the smoothened antagonist SANT-1, could be enhanced 

by treatment with the HDAC inhibitor TSA (trichostatin A) [98]. Therefore, the anti-cancer 

activity of silibinin might be enhanced by HDAC inhibitors [93]. The synergistic effects 

of HDAC inhibitors combined with silibinin have been evaluated in colon cancer cells and 

non-small lung cancer cells in previous investigations [93,99, 100].

Feng et al. evaluated the cytotoxicity of a combination of TSA and silibinin in Panc1 and 

Capan2 pancreatic cancer cell lines [93]. Results indicated that combination of the HDAC 

inhibitor TSA and silibinin caused synergistic effects on inhibiting pancreatic cancer cell 

growth. Besides, the combination treatment significantly triggered cell cycle arrest (G2/M 

phase) and apoptosis in Panc1 and Capan2 cells. Moreover, the TSA and silibinin mixture 

significantly decreased the expression levels of cyclinB1-Cdk1 complex, cyclinA2, and 

survivin [93].

Table 2 summarizes some studies on the anti-pancreatic cancer effects of silymarin and 

silibinin.

2.3. Silymarin and colorectal cancer

The molecular mechanisms underlying the initiation and progression colitis-associated 

colorectal cancer and sporadic colorectal cancer have been suggested to be different [104]. 

However, these two types of colorectal cancer often show some common genetic alterations, 

such as tumor suppressor gene silencing, dysregulation of oncogene expression, and 

genetic instability. The classical sequence of progression from normal mucosa-to-adenoma

to-carcinoma, which has been established in sporadic colorectal cancer progression has 

not been established in colitis-associated cancer. Colitis-associated cancer originates in 

chronically inflamed mucosa, but the typical sequence of inflammation-to-dysplasia-to

carcinoma has not been confirmed in sporadic colorectal cancer [105,106]. The IL-6/STAT3 

signaling pathway is a critical tumor promoter in colitis-associated cancer [107,108]. T cells 

within the regions of chronic inflammation, as well as monocytes and macrophages within 

the region of acute inflammation are involved in the production of IL-6 that binds to the 

membrane-bound IL-6 receptor (mIL-6R) and the soluble IL-6 receptor (sIL-6R) [104]. The 

complex of IL-6 and its receptor has been demonstrated to interact with glycoprotein130 

(gp130) to activate its down-stream targets [107]. STAT3 is one of the most important 

gp130-associated targets [104], and is involved in the regulation of cell proliferation and cell 

cycle [104]. Chemotherapeutic drugs designed to target the IL-6/STAT3 signaling pathway 

may be a candidate to prevent or delay colitis-related cancer [104].

Azoxymethane (AOM) is one of the most commonly used carcinogens employed as a 

model for sporadic colorectal cancer (CRC) to study the underlying mechanisms and 

possible treatments [109]. AOM is a potent carcinogen that strongly induces colon cancer in 

rodent models [110]. The carcinogenesis process accurately reflects the pattern observed in 

humans. Rodents, especially susceptible mice, subjected to frequent intraperitoneal AOM 
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treatment, reliably and easily develop distal colon-specific tumors, which make them 

good models of colon cancer. Epithelial cells exposed to AOM develop aberrant crypt 

foci (ACF) that progress to adenomas and malignant adenocarcinoma [111,112]. Under 

in-vivo conditions, the AOM metabolites induce mutations in DNA molecules and shifts the 

nucleotides from G:C to A:T. The time of colon cancer induction in rats or mice is 14 weeks 

[112].

A study by Velmurugan et al., showed that silibinin significantly decreased the formation of 

aberrant crypt foci induced by AOM in vivo [113]. Moreover, silibinin also decreased the 

formation of polyps in another mouse model [114]. Zheng and colleagues investigated the 

chemopreventive effects of silibinin in mice with colitis-associated cancer, and the effects 

of silibinin on the IL-6/STAT3 signaling pathway [104]. Various concentrations of silibinin 

were also used to treat IMCE and HCT-116 intestinal tumor cells. AOM and dextran 

sulfate sodium salt was administered to mice at 750 mg/kg/day for 10 weeks to induce 

the formation of polyps. Silibinin significantly suppressed the production of inflammatory 

cytokines, phosphorylation of STAT3, and intestinal tumor cell viability. Furthermore, the 

number and size of AOM/DSS-induced polyps were significantly decreased after silibinin 

administration in the mice. Silibinin also decreased colitis and tumor scores, inhibited 

cell proliferation of the colonic tumor, and promoted cellular apoptosis. Additionally, 

silibinin can be used for promoting the function of the colonic mucosal barrier. STAT3 

phosphorylation was inhibited after silibinin treatment, suggesting that by inhibiting IL-6/

STAT3 signaling in mice, silibinin could act as a chemopreventive agent against colitis

associated cancer [104].

The poor bioavailability of silymarin has been suggested to be a crucial reason for 

explaining its limited therapeutic efficacy. Therefore, the encapsulation of silymarin 

into nanovehicles, such as liposomes, micelles, polymeric nanoparticles, or solid lipid 

nanoparticles could be a route to improving its solubility and bioavailability [115–119]. 

Generally speaking, both small hydrophilic and lipophilic molecules, or large proteins and 

nucleic acids can be delivered using liposomes [120]. Liposomes are vesicles enclosed by 

a spherical lipid bilayer, which have an aqueous core for carrying water soluble molecules, 

and a lipophilic membrane region for dissolving hydrophobic molecules. Liposomes are 

widely used to increase the safety and efficacy of chemotherapeutic drugs [116,121–126]. 

Micelles possess a lipophilic core, and are formed from detergents with a polar head group 

and a non polar tail [127]. With a size range between 5 and 20 nm, micelles are generally 

considered to be smaller than liposomes [128].

Silymarin-loaded liposomes significantly increased the cellular uptake of silymarin 

compared to its free form [129]. In a recent investigation, the absorption of silymarin-loaded 

micelles was found to be much higher than free silymarin in different sections of the 

intestine in an in vivo model [130].

The bioavailability and solubility of silymarin can be improved by its encapsulation in 

solid lipid nanoparticles, micelles, liposomes, or polymer nanoparticles [118,131,132]. 

Liposomes are often used for delivering nucleic acids, large-structured proteins, and delicate 

materials with lipophilic or hydrophilic properties. The liposomal structure consists of a 
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closed spherical lipid bilayer with an internal aqueous region capable of being loaded with 

therapeutic drugs to enhance their activity and alter the immune response [133,134]. The 

micelle structure is composed of a cluster of amphiphlic lipid molecules with a lipophilic 

core containing fatty acids [135]. Micelles vary in size between 5 and 20 nm and smaller 

than liposomes [128]. Nanosilymarin showed a more potent cytotoxic effect against HT-29 

cells compared to free silymarin (p < 0.01). Colony numbers were remarkably decreased 

in the nanosilymarin-treated cells compared to free silymarin-treated cells. Nanosilymarin

treated HT-29 cells also showed more apoptosis and necrosis in comparison with free 

silymarin-treated cells. Nanosilymarin or free silymarin caused no significant alteration 

in the proliferation, viability, or apoptosis of NIH-3T3 normal control cells. Hence, 

nanosilymarin could be an improved formulation of silymarin to control colon cancer in 

humans [120]. Fig. 3 shows some mechanisms such as inflammatory pathways that could be 

affected by silibinin and silymarin.

Nafees et al. showed that a combination of two different flavonoid compounds (rutin 

and silibinin) produced synergistic effects against HT29 human colorectal cancer cells 

[136]. The combination produced more apoptosis, and regulated the expression of apoptosis

associated genes, modulated inflammation- and MAPK pathway-related proteins compared 

to either compound used alone.

CD44 is a membrane adhesion molecule that specifically binds to hyaluronic acid. CD44 

has been found to regulate various biological mechanisms in cancer, including cell growth, 

cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression [137,138]. 

Transcripts of CD44 can undergo complex alternative splicing, which leads to the production 

of functionally different isoforms in various epithelial cells [139]. Although the CD44 

variant isoform (CD44v) plays a role in the development and progression of cancer, the 

standard isoform (CD44s) has been more comprehensively investigated [139,140]. Amongst 

the variant isoforms, CD44v6 has been reported to act as a functional biomarker, which 

is strongly associated with cancer cell growth, tumor metastasis, tumor recurrence, poor 

prognosis, and significantly worse 5-year survival in patients with colon cancer. Indeed, 

this marker of cancer stem cells (CSCs) needs to be further investigated to evaluate the 

effectiveness of agents that could affect CD44v6, as a potential therapeutic target [140–142]. 

Therefore, it is necessary to discover potential lead compounds which are active against 

CD44v6, and to investigate the molecular mechanisms and various signaling pathways 

involved with CD44v6 in CSCs [143]. Targeting CD44v6 could overcome chemoresistance, 

and reduce cancer relapse and tumor metastasis, and improve the survival rate in patients 

with colon cancer [144–146].

Although CD44v6 could be a viable therapeutic target, the lack of a holistic model is 

hindering the discovery and development of potential lead compounds [143]. Patel et al. 

carried out a study to predict the protein structure of human CD44v6, screen different anti

CD44v6 lead compounds, using different modeling strategies, including molecular docking, 

homology modeling, and a molecular dynamic simulation approach [143]. HCT116-derived 

cancer stem-like CD44 + cells were used to investigate the effect of candidate compounds 

on the mechanistic and functional properties, including anchorage-independent growth, 

invasion, migration, expression of EMT markers, regulation of cell cycle, induction of 
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apoptosis, autophagy, and various down-stream pathways [143]. A thorough analysis of 

CD44v6 and these compounds could help to discover novel CSC-targeted drugs in the future 

[143].

Patel et al. carried out the screening and prediction of 1674 potential lead compounds 

against CD44v6 [143]. HCT116-derived CD44 + cells were used to evaluate the cytotoxicity 

of silibinin, 5FU (5-fluorouracil), and 5FU + silibinin. The proliferation of CD44 + 

subpopulation cells was inhibited at lower concentrations of 5FU + silibinin compared with 

silibinin alone. Furthermore, 5FU + silibinin reduced the expression of CD44v6, CDKN2A, 

CTNNB1, and Nanog, while the expression of E-cadherin was enhanced in the HCT116

derived CD44 + subpopulation. The synergistic effects of these two compounds significantly 

inhibited the formation of cell spheroids and cell migration, while also inducing PARP 

cleavage, mitochondrial membrane potential perturbation, resulting in the activation of 

intrinsic apoptosis and autophagic cell death. Notably, 5FU + silibinin suppressed activation 

of PI3K/MAPK and triggered G0/G1 cell cycle arrest. Thus, synergistic CD44v6 inhibition 

could attenuate the stemness of colon cancer stem cells [143].

Table 3 lists some studies on anti-colorectal cancer effects of silymarin and silibinin.

2.4. Silymarin and hepatocellular carcinoma

Carvedilol is a non-selective anti-oxidant β-blocker used for the reduction of portal blood 

pressure, prevention of esophageal varices, and reducing the risk of bleeding in chronic liver 

disease [184]. Carvedilol possesses potent anti-fibrotic, anti-inflammatory, anti-proliferative, 

and anti-carcinogenesis properties. Balaha and colleagues assessed the possible preventative 

effects of carvedilol in rats with hepatic cirrhosis who were at risk of progressing to 

hepatocarcinogenesis [184]. Carvedilol (10 mg/kg/day) silymarin (50 mg/kg/day), or both 

were administered to manage hepatic cirrhosis for 69 days. Their results indicated that the 

increased serum concentrations of ALT, ALP, AST, BIL, and IL-6, and the hepatic levels 

of IL-6, MDA, STAT-3 and hydroxyproline were significantly decreased by both silymarin 

and carvedilol used individually, and given in combination. Besides, treatment restored 

the reduced serum level of ALB, the activity of hepatic CAT, and GSH concentration. 

Treatment strongly restored the normal architecture of the hepatic tissue, the distribution 

of collagen, and the expression levels of E-and N-cadherin. Interestingly, the effect of 

carvedilol on the improvement of MDA levels was more pronounced compared with 

silymarin. Moreover, the combination treatment showed significantly better effects against 

CCL4-induced hepatotoxicity in comparison with either treatment alone [184].

Silymarin extracts were administered to chronic hepatitis C patients without cirrhosis at 

doses of 2.1 g/d [185]. To increase the absorption and bioavailability of the silymarin 

extract, it was combined with phosphatidylcholine (silybin/phosphatidylcholine ratio of 

1:2) was introduced as a commercially available formulation called “Siliphos” (Indena 

S.p.A, Milan, Italy). Ladas et al. administered 320 mg of silybin phosphatidylcholine per 

day, in a randomized, controlled trial with 50 children suffering from acute lymphoblastic 

leukemia (ALL), who were receiving chemotherapy with vincristine, 6-mercaptopurine, or 

methotrexate [186]. The goal was to test if Siliphos could reduce dose-limiting hepatic 

toxicity. The results showed that Siliphos a trend toward significant reductions in liver 
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toxicity, but did not antagonize the effects of chemotherapy agents used for the treatment of 

ALL. The results from another phase I trial [187] showed that a maximal dose of silybin 

phosphatidylcholine (13 g per day) was tolerated in subjects with prostate cancer.

In one trial on advanced HCC patients, the authors evaluated Siliphos in doses of 2, 

4, 8, and 12 g per day for 12 weeks [188]. Advanced HCC patients who were not 

eligible for conventional therapy were included in the phase I clinical trial of silybin 

phosphatidylcholine [188]. The trial was planned to include four cohorts receiving different 

doses (2, 4, 8, and 12 g/day) over 12 weeks, but only three patients were recruited. The 

3 patients received 2 g of Siliphos in divided doses, daily. Results indicated that serum 

levels of silibinin glucuronide and silibinin were increased during the first to third weeks 

of intervention. In all three subjects, abnormalities of hepatic α-fetoprotein and hepatic 

function worsened in the first 3 weeks, but after 56th day, liver function abnormalities 

and biomarkers of inflammation were improved in one patient. All 3 subjects died 

between the 23th to 69th days of the study, possibly from hepatic failure. Taken together, 

silibinin and silibinin glucuronide were reported to be increased after short-term silybin 

phosphatidylcholine intervention in subjects with advanced HCC [188].

Roundabout receptor (Robo) and Slit glycoprotein (Slit) are axonal guide molecules, which 

are involved in the modulation of numerous physiological processes [189]. These proteins 

play pivotal functions in the development of different organs, including liver, kidney, lungs, 

eyes, breast, and reproductive organs [189]. The slits family in humans is composed of three 

members, Slit-1, -2, and -3 all containing a single polypeptide with approximately 1500 

amino acids [190]. Slit family proteins have been shown to be structurally similar in all 

vertebrates [189]. Slit proteins contain four N-terminal regions (D1–D4) with six EGF-like 

sequences (EGF), leucine-rich repeats (LRR), a laminin-G region, and a C-terminal domain 

with a cysteine-rich node [189]. The LRR D2 region is conserved and has a critical function 

in binding to Robo proteins [191]. The high molecular weight Robo proteins are composed 

of a conserved cytoplasmic region, and a transmembrane receptor protein containing 1000–

1600 amino acids [191,192]. All Robo proteins have five fibronectin III regions (Fn III) 

and immunoglobulin regions (Ig) in the extracellular region, but Robo-4 Fn III motifs 

possess just two Ig regions [189]. Robos and Slits are large proteins responsible for different 

cellular signaling pathways, such as cell proliferation and motility, axonal guidance, and 

angiogenesis [193]. Recent investigations have suggested that Robos and Slits can play 

crucial functions in tumor initiation, tumor progression, and metastasis. Studies have shown 

that the Slit/Robo signaling pathway can modulate many oncogenic pathways.

Chemokines have a critical role in tumor cell growth and tumor progression and can 

also induce angiogenesis [189]. Chemokines and chemokine receptors are involved in the 

pathogenesis of hepatocellular carcinoma and its metastasis mechanisms [194]. CXCR4 is 

a common chemokine receptor, which has been reported to be over-expressed in different 

cancers, and has important roles in tumorigenesis [189]. Taken together, the expression level 

of CXCR4 could be considered as a prognostic biomarker for the progression and survival 

rate of cancer patients [189].
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Silymarin significantly induced apoptosis and decreased the expression level of CXCR-4 

in HepG2 cells in a concentration-dependent manner. Silymarin also reduced the protein 

level of Slit-2/Robo-1 at a low dose, but increased it at a high dose. Through modulating 

the Slit-2/Robo-1 signaling pathway in HepG2 cells, silymarin showed proapoptotic, anti

carcinogenic, and anti-metastatic properties, in a dose-dependent manner [189].

To overcome the decreased oral bioavailability of silymarin, and protect it from chemical, 

physical, or environmental degradation, some novel strategies including nano-based methods 

have been developed [195]. Nanomaterials with nanoscale dimensions, have various 

advantages compared with conventional biomaterials, including improved bioavailability 

and enhanced cellular interactions [64,130]. Nano-structured biomaterials can be solutions 

to various challenges in tissue engineering and drug delivery systems [196]. Nano-based 

vehicles have been used to deliver conventionally undeliverable compounds, including 

molecules with low solubility, and gene therapy associated molecules [197,198]. These 

approaches include the incorporation of active compounds inside inert lipid carrier 

vehicles [199]. These can be made from oils [200], surfactants [201–203], self-emulsifying 

complexes [204,205], emulsions [206–209], micro-emulsions or nano-emulsions [210–212], 

or liposomes [213]. Nano-emulsions offer some benefits compared with conventional drug 

delivery systems, such as higher solubility, earlier onset of action, decreased inter-subject 

variability by protection from gastrointestinal fluid (GIF), an extended shelf life [214], and 

greater safety and non-toxicity [215].

Ahmad et al. characterized and evaluated a prepared nano-emulsion loaded with silymarin, 

based on the conductivity, refractive index, volume, viscosity, surface morphology, and 

in vitro drug release [195]. They also tested the effects of an optimized silymarin nano

emulsion against human hepatic carcinoma cells [195].

A nano-emulsion was developed for silymarin delivery, using the aqueous titration method 

[195]. Polyethylene glycol 400 (Smix; 2/1; 28.99% v/v, Kolliphor RH40, Sefsol 218 (5.8% 

v/v) were used as the oil phase, surfactant and co-surfactant, in distilled water (65.22% 

v/v). The mean particle size (21.24 nm) with the optimized formulation (NE9) showed 

the maximum drug release (97.75%), minimum viscosity (9.59 cps) during 24 h. Besides, 

the NE9 complex had a higher Cmax (p < 0.01) and AUC (p < 0.01) as well as lower 

Tmax (p < 0.05) compared to standard conventional silymarin suspensions. The complexes 

were very stable when stored in a refrigerator compared to room temperature (p > 0.05). 

In vitro investigations with cancer cells showed that the silymarin-loaded nano-emulsion 

significantly decreased viability, while it promoted chromatin condensation and ROS 

generation, suggesting that silymarin- nano-emulsion could improve the oral administration 

and bioavailability of silymarin, and could be used to treat human hepatocarcinoma with 

relative non-toxicity to normal cells [195].

Table 4 lists some studies on the anti-hepatocarcinoma cancer effects of silymarin and 

silybinin.
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2.5. Silymarin and esophageal cancer

Stress can reportedly activate adenosine monophosphate-activated protein kinase (AMPK) 

which functions as a cellular “fuel gauge” [217]. Phosphorylated AMP-activated protein 

kinase (p-AMPK) can be thought of as an active form of AMPK, which is associated 

with decreased energy-consumption and increased generation of adenosine triphosphate 

[218,219].

Metformin is an oral biguanide drug used as an antihyperglycemic medication to treat 

diabetes, that was first isolated from Galega officinalis, also known as French lilac, Italian 

fitch or goat’s rue [9–15]. Biguanide drugs, including metformin, buformin, and phenformin 

were usually adminstered over short-term treatment plans. Later, phenformin and buformin 

were excluded due to toxicity and lactic acid formation [220,221]. Metformin can be added 

to chemotherapy and radiotherapy regimens, and to improve the response to androgen 

deprivation therapy (ADT) for prostate cancer, and in chemoprevention of different types of 

cancer [222]. Metformin can reduce the harmful effects of ADT, as well as the possibility 

of relapse, cancer mortality, and cancer incidence. It can improve the response in cancer 

cells during chemotherapy and radiotherapy. Therefore, metformin can be included in 

complementary therapies for prevention and treatment of cancer [222].

In one investigation, the authors evaluated p-AMPK expression levels in human ESCC, and 

found that the p-AMPK expression level in ESCC tumor tissues were significantly lower 

than in paired contiguous normal tissue samples [217]. The exact function of p-AMPK in the 

pathogenesis of ESCC is still obscure, but it has been demonstrated that metformin-treated 

acute myeloid leukemia, melanoma, and hepatocellular carcinoma cells showed remarkable 

AMPK activation, and the proliferation and invasion of these cells was decreased [223–

225]. However, metformin is generally recognized to induce lactic acidosis, which could be 

considered an adverse effect.

Silibinin significantly reversed the chemoresistance of ESCC cells to conventional 

chemotherapeutic drugs (5-FU and cisplatin) [217]. In addition, there is limited evidence 

for silibinin-mediated effects on the AMPK signaling pathway [217]. Silibinin-mediated 

anticancer activity against ESCC using both in vivo and in vitro experiments, suggested the 

beneficial effects of silibinin on ESCC significantly depended on AMPK induction [217].

A comparison between human esophageal normal tissue and ESCC samples showed that 

AMPK was inactivated (69.4%) in ESCC tissues. Silibinin triggered apoptosis, suppressed 

in vitro ESCC cell proliferation, and inhibited in vivo tumor growth with no sign of any 

adverse effects. Silibinin also significantly inhibited the invasion of ESCC cells in vitro, and 

suppressed ESCC lung metastasis in vivo. Delivery of a shRNA targeted against AMPK 

abrogated the silibinin-mediated anti-cancer effects. Besides, silibinin significantly reversed 

the chemoresistance of ESCC cells and tumors to both 5-FU and cisplatin. They suggested 

that AMPK could be a promising therapeutic target in ESCC, and silibinin could have 

substantial therapeutic benefits [217].
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2.6. Limitations of silymarin and silibinin and some possible solutions

As mentioned earlier, silymarin shows relative low toxicity and has generally been reported 

to be safe. However, because silymarin can induce an increase in bile secretion and bile flow, 

some instances of laxative effects at high doses have been reported as a rare adverse effect 

[226].

GI tract-associated adverse effects, including diarrhea, nausea, bloating, and dyspepsia 

were reported in 2–10% of subjects in a clinical trial study [227]. However, serious rare 

side effects such as gastroenteritis–induced collapse or serious allergies have been only 

occasionally observed in patients [228].

Silymarin can be regarded as a potential natural immunomodulatory therapy, but its 

poor bioavailability has limited its wider application. Considering this issue, higher 

concentrations of silymarin are needed to achieve sufficient plasma levels to have a 

therapeutic effect. Therefore several literature studies have suggested a varity of approaches 

to improve silymarin bioavailability.

Blumenthal et al. [229] showed that the levels of absorption of silymarin varied from 20% to 

50%. Different reasons, including poor enteral absorption [230,231], gastric acid-mediated 

degradation of silymarin [229], and its poor solubility [229,232–234] have all been proposed 

to explain the poor bioavailability of silymarin. Therefore higher doses of silymarin are 

often to increase its absorption and overcome the problems.

As mentioned above, pharmaceutical formulation approaches have successfully been tested 

to improve the delivery and bioavailability of silymarin. These formulations have included 

a combination with cyclodextrin [235,236], incorporation as a fine solid dispersion [237], 

providing silymarin in a salt form with polyhydroxyphenylchromanones [232], preparation 

of various more soluble derivatives [238], and complex formation with phospholipids 

[233,239,240].

Soo Woo et al. formulated silymarin in a self-micro-emulsifying drug delivery system 

(SMEDDS) to improve the solubility [241]. A diagram of the pseudo-ternary phases led 

to the optimal composition, namely 15% silymarin, 37.5% polysorbate 20, 10% glyceryl 

monooleate (oil phase), 37.5% transcutol (cosurfactant), and HCO-50 (1:1, surfactant), at 

a surfactant/cosurfactant ratio of 1:1. The average oil phase droplet size was 67 nm within 

the microemulsion. The release profile of silybin from the SMEDDS capsules showed 

significantly higher drug release compared to Legalonβ as a reference capsule formulation. 

The percentage release of silybin from SMEDDS after six hours was 2.5 times greater 

than the reference. The pharmacokinetics demonstrated about a two-fold reduction in 

tmax with SMEDDS, an eight-fold increase in Cmax, and a 3.6 fold increase in AUC. A 

marked improvement was seen in silymarin bioavailability using SMEDDS, compared to the 

standard reference dosage.

Abrol et al. investigated a combination of silymarin and phospholipids, which were 

encapsulated in microspheres to demonstrate its hepatoprotective effects, and compared 

the mentioned formulation with free silymarin [242]. Different silymarin-loaded emulsions 
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were formulated using soybean oil, lecithin, Tween 80 and propylene glycol as the internal 

oily phase and surfactant, respectively. The in vitro release profile when stirred at 50 rpm 

indicated that the release approximately was increased 4-fold after 36 h, suggesting that 

the sub-micron sized lipid emulsion could promote the drug bioavailability. Furthermore, 

an experiment was conducted in an animal model of hepatoprotective activity in vivo. This 

involved measuring the length of sleep time induced by administration of phenobarbitone 

in rats. The silymarin loaded emulsion significantly reduced the phenobarbitone-induced 

sleep time, and also reduced the elevation of liver enzymes (SGOT and SGPT) compared 

with rats who received silymarin solution or controls. The silymarin lipid emulsion induced 

hepatoprotective effects against carbon tetrachloride-mediated liver toxicity, which were 

more pronounced compared to silymarin solution or plain lipid emulsion as judged by 

histopathological examination at necroscopy.

Arcari et al. developed another formulation containing silybin and β-cyclodextrin to 

overcome the poor bioavailability of silymarin. This complex was compared with silybin, 

silymarin, and a conventional silybin-based formulation in dissolution rate testing in vitro, 

and in a rat bile elimination test in vivo. The findings indicated that the drug complex 

dissolution rate (>90% in 5 min) was dramatically faster than silybin (< 5%). The in vivo 

investigation confirmed the result of the dissolution rate; oral administration of the silybin 

complex increased the rat bile silybin concentration approximately 20-fold compated to free 

silybin or the conventional formulation. These findings revealed that the complexation with 

β-cyclodextrin increased the silybin bioavailability [236].

Yanyu et al. investigated phospholipid and silybin formulations for increasing poor silymarin 

bioavailability in rats, and comparing the bioavailability and pharmacokinetics of silybin-N

methylglucamine and silybin-phospholipid complexes [243]. The phospholipid and silybin 

were dissolved in an organic solvent (ethanol), and then evaporated under vacuum, resulting 

in the complex formation in a thin film. The solubility of the silybin complex in water 

and octanol was increased 1000 fold compared to a simple physical mixture. The solubility 

of the silybin at pH 6.8 was much higher than at pH 1.2. At the end of 1 h, 158.4 

mg of silybin was dissolved at pH 6.8 in comparison with only 6.3 mg at pH 1.2. 

Therefore, the silybin solubility was pH dependent. Rat bioavailability studies showed that 

the bioavailability of the silymarin phospholipid complex was up to 5 times greater than 

silybin-N-methylglucamine.

Yanyu and colleagues studied oral silymarin bioavailability in beagle dogs by preparing 

silymarin proliposomes [244]. Proliposomes are a free flowing dried preparation that can 

easily be rehydrated to form liposomes. They used a round-bottom flask with a dry 

film formed from a silymarin-phospholipid mixture and a mannitol vector. Proliposomes 

solubility at either pH 1.2 or 6.8 showed that the silymarin was completely dissolved after 

20 min, regardless of the pH value. A silymarin-loaded mannitol powder as a control was 

also prepared by the same approach but without the phospholipids. Findings also showed 

that the proliposomes-mediated dissolution of silymarin was greater than the control. The 

formulation encapsulation efficacy was reported to be > 90% with a 196.4 nm mean particle 

size, which at 40 °C was stable for 3 months. The pharmacokinetics indicated a tmax of 

30 min for either silymarin proliposomes or silymarin, aCmax of 472.62 ng/mL and 89.78 
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ng/mL, and AUC values equal to 2606.21 ng/mL and 697 ng/mL for silymarin proliposomes 

and free silymarin, respectively. Results showed that the proliposomes promoted silymarin 

absorption in the GI tract.

El-Samaligy and colleagues prepared hybrid liposomes loaded with silymarin, using a 

reverse evaporation technique with lecithin, stearyl amine, cholesterol, and Tween 20 

[245]. The encapsulation efficiency of the hybrid liposomes was 69.22%. A 1:1 mixture 

of silymarin-loaded liposomes and unloaded liposomes was found to be the most effective 

to prevent aggregation. The formulation was stable after three months at a temperature of 

4 °C as judged by drug loading and particle size. Differential scanning calorimetry and 

Fourier transform infrared spectroscopy provided evidence of phospholipid and silymarin 

interactions. The goal was to increase permeation and thus enhance the bioavailability of 

silymarin. According to in vivo experiments, the liposomal silymarin formulation decreased 

the elevated serum levels of SGPT which were due to acute carbon tetrachloride-induced 

liver toxicty, better than a silymarin suspension. Histopathological examination showed that 

carbon tetrachloride-mediated liver necrosis was improved by silymarin liposomes.

As mentioned previously, lipid-based SMEDDS were prepared using a dialysis bag 

technique from ethanol, Tween 80 and ethyl linoleate as cosurfactant, surfactant and oil 

phase, respectively [246]. In vitro studies revealed that the release of silymarin from 

SMEDDS was incomplete, as expected from a sustained release system. The silymarin 

SMEDDS relative bioavailability was 1.88-fold higher than silymarin PEG 400 suspension, 

and 48.82-fold higher than silymarin solution. The high bioavailability of the SMEDDS 

silymarin was attributed to its effects on the lymphatic transport system [247], and the 

presence of long-chain fatty acids, which promote lipoprotein biosynthesis and lymphatic 

absorption.

2.7. Clinical trials

The effectiveness of silymarin and silymarin-related preparations in several cancer types 

has been evaluated in a limited number of phase 1, 2, and 3 clinical trials. When silymarin 

is administered at therapeutic doses it seems to be relatively safe in humans. It has been 

shown to be tolerated by patients at a large dose (700 mg) thrice per day over six months 

[248]. Interestingly, two clinical studies reported that silymarin has promising protective 

effects in patients undergoing chemotherapy. Based on a phase I clinical trial, daily 

administration of silymarin (800 mg) for three months in patients receiving chemotherapy 

with 6-mercaptopurine or methotrexate showed normal levels of hepatic transaminase [249]. 

Silymarin was used in combination with lycopene, soy and anti-oxidants in one phase III 

clinical trial to delay the progression of prostate specific antigen following radiotherapy 

and prostatectomy in subjects with prostate cancer, [250]. Results showed that silymarin 

supplementation produced a 2-log reduction in PSA compared with the placebo control.

3. Conclusion

Recent advances in epidemiology, molecular biology, and biochemistry have extended our 

knowledge of the use food as pharmaceuticals. Our dietary habits have crucial roles in 

health maintenance, and several health problems can be caused by a misbalanced diet. 
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Anti-oxidants have been reported to be one of the main modulators of many physiological 

pathways, and the anti-oxidant/pro-oxidant balance (redox balance) in our diet, can affect 

the gastrointestinal organs, blood circulation, and tissues. There are thousands of phenolic 

compounds found in natural products, which are consumed by humans and other animals. 

Furthermore, different types of phytochemicals like flavonoids, are an indispensable part 

of our diet, and are involved with the maintenance of the optimal status of anti-oxidant 

defenses. Flavonoids in general are not well absorbed in the intestines, therefore their 

serum and tissue levels are relatively low. However even this low concentration seems to be 

sufficient for the activation of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), and 

the suppression of NF-κB. Indeed, the activation of the Keap1/Nrf2/ARE signaling pathway 

and the inhibition of the NF-κB pathway, could be considered to be the most important 

mechanisms behind the phytochemical-induced health benefits, rather than direct scavenging 

of free radicals.

The redox-sensitive Nrf2 belongs to the transcription factor family called “Cap’n’collar” 

(CNC), which is involved in adaptation to cellular stress. Nrf2 is trapped in the cytoplasm 

by Keap1 (kelch-like ECH associated protein 1) under normal homeostatic conditions, 

and is targeted for degradation and ubiquitination via 6S proteoromes [251]. The Keap1/

CUL3/RBX1 E3-ubiquitin ligase complex is deactivated by redox modification and/or 

phosphorylation of the cysteine residues in Keap1 during stress conditions [252]. In the 

next step, nuclear translocation of Nrf2 occurs, and it is dimerized via musculoaponeurotic 

fibrosarcoma (Maf) proteins. Then, it interacts with an antioxidant response element 

(ARE, also known as electrophile response element, EpRE), which is an enhancer 

sequence or a cis-regulatory element present in the promoter region of some genes that 

encode cytoprotective proteins and detoxification enzymes, such as glutathione synthetase 

(GSS), heme oxygenase-1 (HO-1), and NAD(P)H quinone dehydrogenase 1(NQO1) [252]. 

Different endogenous or exogenous molecules are able to activate the Nrf2/Keap1/ARE 

signaling system. This pathway can regulate expression of several genes related to 

cell survival and proliferation [253]. Hence, consumption of phytochemicals, including 

silymarin, may improve the human anti-oxidant systems in general. Silymarin, and its main 

component silibinin, can be consumed as dietary phytochemicals, and could play a crucial 

role in the modulation of anti-oxidant defenses in the intestines and other parts of the body. 

Only a few studies have investigated the clinical effectiveness of silybin in cancer in general 

[254,255]. Hence, more studies are required to establish the utility of silymarin for treating 

GI cancers in humans.
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Fig. 1. 
Chemical structure of silybin. Structure generated from InChI code from http://

pubchem.ncbi.nlm.nih.gov/. Flavonolignans contain a flavonoid moiety linked to a lignan 

or phenylpropanoid moiety.
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Fig. 2. 
Apoptosis pathways.

Figure adapted from [66].
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Fig. 3. 
The anti-cancer and anti-inflammatory effects of silymarin. Silymarin can inhibit NF-B by 

preventing the degradation of inhibitor kappa B (IB), and thus decreases oxidative stress 

and inflammatory responses. Silymarin inhibits STAT3 and ERK1/2 signaling pathways that 

can lead to suppression of oncogenesis, cell proliferation, cell migration, and iNOS gene 

expression.

Figure adapted from [147].
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