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Genome-wide transcriptomics of the amygdala reveals similar
oligodendrocyte-related responses to acute and chronic
alcohol drinking in female mice
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Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in
men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics
targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular
mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to
different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central
and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both
drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/
translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition,
analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes
via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor,
Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in
alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes
in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for
future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly
in women.
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INTRODUCTION
Alcohol use disorder (AUD) is a chronic relapsing brain disorder
and a major public health concern in the United States, where the
lifetime prevalence of AUD among adults is nearly 30% [1].
Notably, although AUD has been more common in men than
women, women show a faster transition to dependence and suffer
severe behavioral and physical impairments [2, 3]. Despite the
disorder’s prevalence and severity, our understanding of the
molecular and behavioral mechanisms that drive alcohol
abuse, specifically from a gender perspective, is fragmented and
there are few effective treatments for alcohol abuse. One of the
hallmarks of AUD is a gradual increase in alcohol consumption
over time [4]. This increase in alcohol intake is thought to result
from neurobiological adaptation induced by repeated episodes of
alcohol drinking [5]. Moreover, prolonged heavy alcohol exposure
appears to cause progressive dysfunction in multiple brain areas,
most notably changes in neuronal plasticity in the brain’s reward
and stress systems, such as in the amygdala [6].
The amygdala is comprised of multiple interconnected nuclei

nested deep in the temporal lobe in humans, and its structures

and functions are well-conserved across species. It has been
associated with both emotion and motivation, playing an essential
role in processing aversive and appetitive valence [7–9]. Previous
neuroimaging studies demonstrated that alcohol cues trigger
amygdala activation which correlates with craving for alcohol in
humans with AUD [10, 11]. In animal models, chronic alcohol
exposure alters neuronal transmission in the central nucleus of the
amygdala (CeA), and the neural activity of the CeA during alcohol
withdrawal is associated with levels of alcohol drinking in alcohol-
dependent rats [12, 13]. Furthermore, the activation of the
basolateral amygdala (BLA) and its projections to the nucleus
accumbens is necessary for cue-induced alcohol seeking beha-
viors [14].
As alcohol has broad systemic and molecular targets, identify-

ing and characterizing transcriptional responses to alcohol in a
brain region-specific manner is vital to our understanding of the
molecular mechanisms underlying alcohol-related behaviors and
AUD development and susceptibility [15–18]. Several studies have
applied genomics to examine alcohol-induced transcriptional
effects using chronic models of voluntary ethanol consumption
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and forced exposure through ethanol vapor in rodents [19–23].
The results from these studies included molecular targets, such as
alterations in neuronal function and signal transduction, indicating
that chronic ethanol exposure and withdrawal have prominent
actions on gene expression in multiple brain areas including the
prefrontal cortex. However, these prior studies using microarrays
with pre-determined numbers of genes and forced alcohol
exposure have not directly addressed the genome-wide transcrip-
tional responses to repeated voluntary alcohol drinking that leads
to the escalation of alcohol intake over time. Furthermore, these
studies primarily examined male animals, resulting in an
incomplete understanding of the molecular and behavioral
mechanisms that drive higher alcohol intake in females. In
addition, few studies investigated gene networks in the amygdala
that are targeted by voluntary alcohol drinking, where molecular
processes may underlie the development and maintenance of
alcohol-drinking and seeking behaviors [24, 25].
To gain a better insight into gene expression alterations

impacted by acute and chronic/repeated voluntary oral ethanol
consumption, we subjected C57Bl/6J (B6) mice, an inbred strain
that shows high alcohol consumption and preference. Specifically,
we used B6 females that are known to self-administer higher
amounts of alcohol than males under most conditions in order to
parallel the findings from the current study with the existing
literature with male mice but to differentially address alcohol-
drinking driven transcriptional changes [26, 27]. We employed a
2-bottle choice ethanol drinking procedure, in which either a single
bout or chronic intermittent access that has been shown to
escalate ethanol intake over weeks in mice [27]. We then explored
transcriptional changes in the amygdala that may underly a
progressive increase in ethanol intake. We found that acute and
chronic ethanol drinking induced similar network-level changes in
gene expression, suggesting that a single episode of ethanol
consumption substantially alters amygdala transcriptomes that
may be long-lasting. Furthermore, we identified expression
networks that correlated with the level of ethanol consumption
and ethanol preference, suggesting mechanistic relationships
between amygdala gene expression and behavioral readout. Our
analyses also revealed that some of the most strongly correlated
genes, including Sox17, are associated with myelination and
oligodendrocyte differentiation. In addition, we used a viral vector-
assisted knockdown of Sox17 gene expression in the amygdala
and confirmed that Sox17 is involved in escalating alcohol intake
over time. Together, our findings provide systems-level evidence of
the relationships between voluntary alcohol drinking and
oligodendrocyte-related gene networks within the amygdala.

MATERIALS AND METHODS
For more detail, see Supplemental Material: Supplementary Methods.

Animals
Two separate batches (N= 12 for the first and N= 18 for the second
batches) of adult female C57BL/6J mice at 7 weeks of age were purchased
from Jackson Laboratories (Bar Harbor, ME) and kept under standard
conditions with 12:12 h light/dark cycle (lights on: 07:00). Animals were
group housed upon arrival and acclimated for 1–2 weeks. Then, mice were
individually housed and allowed access to tap water and free (ad libitum)
access to standard laboratory chow during the entire experimental period.
All experiments were approved by and carried out in accordance with the
Institutional Animal Care and Use Committee at McLean Hospital. All
experimental and animal care procedures met the guidelines outlined in
the NIH Guide for the Care and Use of Laboratory Animals. All efforts were
made to minimize distress and the number of animals used.

Alcohol drinking procedures
Twenty percent of ethanol solution (v/v) was prepared in tap water from
95% ethyl alcohol (Pharmaco-AAPER, Brookfield, CT). Mice were changed
to individual housing at least 24 h before the presentation of two 50-ml

plastic centrifuge tubes of water on the metal wire cage lid for 2 days for
acclimation to drinking from no. 6 rubber stoppers containing stainless
steel ball-bearing sippers (Ancare, Bellmore, NY). Centrifuge tubes were
securely held through the metal wire cage lid and presented to mice 2 h
before the dark cycle and weighed to the nearest hundredth of a gram,
24 h after the fluids were given, and the left/right position of the tubes
were alternated before each ethanol drinking session to avoid side
preferences. To control for spillage and evaporation, daily “drip” averages
(loss of fluid in two cages with no animal present) were subtracted from
individual fluid intakes. Mice were also weighed weekly to the nearest
tenth of a gram to calculate the grams of ethanol intake per kilogram of
body weight. Preference for ethanol was calculated for ethanol solution
compared with water, with formula being volume of ethanol intake (ml)
divided by total volume fluid intake (ml). Mice from each cohort were
assigned to three drinking groups. Mice in the acute drinking group (Acute
Drinking) were given two centrifuge tubes of water for 27 days, then a
tube with 20% ethanol and a tube with water on Day 28. The chronic
intermittent access drinking group (Chronic Drinking) of mice received
free-choice 24 h access to 20% ethanol and water on every-other-day
(EOD) basis for 4 weeks (28 days). Mice in the water drinking group (Water
Drinking) received the same schedule of total fluid access but consumed
only water from two tubes (Fig. 1A).

Tissue collection
After completion of the experiments on day 29, 2 h into the light cycle,
mice were sacrificed by decapitation following deep anesthetization with
isoflurane. In order to minimize gene expression alterations induced by
alcohol withdrawal and isoflurane exposure, mice in Acute and Chronic
groups were kept in their home cages with two tubes (alcohol and water),
and then transferred to an isoflurane chamber where they were
anesthetized for less than 2min. Trunk blood was collected in EDTA tubes
to measure blood ethanol concentration (BEC), and vaginal smear was
collected on non-coated glass microscope slides to determine the stage of
the estrous cycle. Brains were rapidly removed from the skull, and placed
on dry ice, and stored at −80 °C until further processing. Fresh frozen
brains were sectioned at a thickness of 300 μm, then micropunches (1 mm
in diameter and 1mm in thickness) were aimed to include the following
coordinates: ML ±3.2, AP −1.5, DV −5.0 mm, and bilaterally collected from
the entire amygdala including basolateral amygdala (BLA) and central
amygdala (CeA) based on established anatomical coordinates from the
mouse brain atlas [28]. All the samples were placed in microcentrifuge
tubes (1.5 ml), kept frozen in dry ice, and stored at −80 °C until RNA
isolation. BEC was determined using the Analox Analyzer (Analox
Instruments Inc., Lunenburg, MA) from blood samples (30 μl). Due to the
lack of clear plasma separation after centrifugation, BEC measurement
from the first cohort was not carried out. The vaginal cytology was carried
out using crystal violet staining [29].

RNA extraction and sequencing
Total RNA was isolated and purified using the Absolutely RNA Miniprep Kit
(Agilent Technologies, Santa Clara, CA) according to the manufacturer’s
protocol. The quality and concentration of the extracted RNA were
evaluated using a NanoDrop 8000 spectrophotometer (ThermoFisher
Scientific, Waltham, MA). As one mouse from each cohort was removed
due to a technical error, 11 samples from the first cohort (4 from Water, 4
from Acute and 3 from Chronic Drinking groups) and 17 samples from the
second cohort (6 from Water, 5 from Acute and 6 from Chronic Drinking
groups) were sent to BGI (Hong Kong, China) for sequencing. Library
construction and whole genome sequencing were conducted on the
BGISEQ-500 platform using the DNBseq short-read 100 bp paired-end
reads with the sequencing depth of 50 million. On average, 46–52 million
raw reads per sample were achieved.

Bioinformatics analyses
We performed multiple bioinformatic analyses including differential
expression analysis, pathway enrichment analysis, GWAS Catalog, and
DisGeNET comparison, and identification of hub genes and regulatory
transcription factors. Detailed analyses are provided in Supplementary
Methods.

Quantitative PCR (qPCR)
RNA samples were reverse transcribed into cDNA using superscript IV kit
(ThermoFisher Scientific, Waltham, MA) using random hexamer primers.
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Complementary DNA was amplified on a ViiA7 Real-Time PCR system
(ThermoFisher Scientific, Waltham, MA) with POWRUP SYBR Green
Master Mix (ThermoFisher Scientific, Waltham, MA). Primers for genes of
interest and the housekeeping gene Actb are described in Supplemen-
tary Table 1. Specificity of the qPCR reaction was confirmed with melt
curve analysis to ensure that only the expected PCR product was
amplified. Duplicates were run for each reaction, and Ct values were
normalized using the established delta-delta Ct method (2−ΔΔCt) and
then normalized to Actb Cts.

Viral-mediated gene transfer
Lentivirus encoding Sox17-shRNA was purchased (Santa Cruz Biotechnol-
ogy) and bilaterally microinjected into the amygdala of B6 female mice
that were subsequently subjected to the EOD drinking paradigm. Detailed
surgical procedures are provided in Supplementary Methods.

Statistical analysis
Data were analyzed using R (version. 4.0.0) or GraphPad Prism (version 9.1,
GraphPad Software, San Diego, CA). The level of significance was set at

Fig. 1 Experimental design, fluid consumption levels, and initial assessment of sequencing results. A Experimental design and timeline.
B Ethanol intake over 24 h on water/20% EtOH drinking days. C EtOH preference ratios. D BEC measured in Acute and Chronic Drinking groups
of 2nd cohort of mice on Day 28. E Correlation of BEC to the amount of ethanol consumed by mice in Acute and Chronic Drinking groups on
Day 28. Data are mean ± SEM. **p < 0.01 and ****p < 0.0001 difference between groups. F Diagram for amygdala tissue collection. G PCA plot
showing no separation on alcohol drinking condition over the first two principal components. H Bar graphs showing the estimated cell type
abundance for seven relevant cell types as determined by cell type deconvolution analysis. Each bar represents a single sample.
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p < 0.05, and results are presented as mean plus or minus standard error of
the mean (M ± SEM). For the drinking data, ethanol intake (g/kg), volume
(ml) of water and ethanol consumed, total fluid intake (ml), ethanol
preference (%), and body weight (g) were analyzed with multiple two-way
analyses of variance (ANOVAs), followed by Bonferroni post hoc analysis
when significant group effects were found (p < 0.05). BEC (mg/dl) and
single daily ethanol intake (g/kg) on day 29 between Acute and Chronic
Drinking groups were analyzed with one-way ANOVA. Differences in cell
type proportions were assessed with 2 sample t-test.

RESULTS
2-bottle choice EOD drinking
We employed a well-established 2-bottle choice every-other-day
(EOD) drinking paradigm [27] and divided two independent
batches of mice into 3 drinking groups (Water, Acute, and
Chronic) (Fig. 1A). Ethanol intake of the first batch was slightly
higher than that of the second batch in both Acute and Chronic
Drinking groups but the small difference was not statistically
significant (p= 0.7313, Supplementary Fig. 1A). Consistent with
previous behavioral studies [27, 30], mice in the Chronic
Drinking group increased ethanol intake across the first
2-week period, subsequently maintaining a stable level (a daily
average of 25.14 ± 0.50 g/kg in weeks 3–4). On day 28, mean
ethanol intake was 23.19 ± 1.62 g/kg for the Chronic Drinking
group, which was significantly higher (p < 0.0001) than that of
the Acute Drinking group (11.96 ± 2.36 g/kg) (Fig. 1B). As
expected, there were no differences in a daily average of total
liquid consumption across 4 weeks between the groups (Water,
4.80 ± 0.41 ml; Acute, 4.57 ± 0.41 ml; Chronic, 4.45 ± 0.38 ml)
(Supplementary Fig. 1B). Consequently, 24 h preference values
revealed that mice in the Chronic Drinking group showed
increased preference as early as after 1 week of intermittent
drinking, which was sustained at an average 72.60% in weeks
3–4. In contrast, mice in the Acute Drinking group displayed
45.98% preference on the first and only day of alcohol access,
Day 28 (Fig. 1C). During 4 weeks of the drinking period, body
weight (g) did not show any significant group differences on day
1 (Water, 19.60 ± 0.51; Acute, 19.63 ± 0.36; Chronic, 19.71 ± 0.32)
and day 29 (Water, 20.83 ± 0.47; Acute, 20.54 ± 0.23; Chronic,
20.81 ± 0.41). On the final day of the study, BECs of Chronic
Drinking group were significantly higher than those of Acute
Drinking group, as BECs positively correlated with ethanol intake
levels (Fig. 1D, E). In addition, all the mice in each drinking group
were in either proestrus or estrus phase of the estrous cycle (6
proestrus and 4 estrus in Water; 6 proestrus and 3 estrus in
Acute; 6 proestrus and 3 estrus in Chronic Drinking group).
There was no difference in alcohol consumption on Day 28
among mice in different phases of the estrous cycle in Acute and
Chronic Drinking groups (Acute, proestrus vs estrus, p= 0.9574;
Chronic, proestrus vs estrus, p= 0.9964), which is consistent
with previous findings that alcohol intake is not affected by
estrous cycle phase in female rodents [31, 32]. These data
demonstrate that our protocol succeeded in achieving standard
levels of both acute and chronic drinking behaviors for
subsequent transcriptional profiling of amygdala function.

RNA-seq analysis
Since both acute and chronic alcohol consumption can lead to
gene expression alterations and cellular adaptations, RNA
sequencing (RNA-seq) analysis was used to determine genome-
wide transcriptomic profiles. Given the important roles of the CeA
and BLA in alcohol-related synaptic changes and behaviors, we
collected micropunches containing these subnuclei from the three
drinking groups (Fig. 1F). We detected n= 49,477 transcripts in
our experiment. Filtering of low expression genes (<10 reads)
results in the exclusion of n= 33,217 transcripts. Since we
collected RNA samples from two independent batches of mice,

we first used principal component analysis (PCA) of remaining
n= 16,260 genes as input to determine the overall structure of the
expression dataset between batches. The results revealed 89% of
total variance and segregated clustering by batch (Supplementary
Fig. 2A). We next investigated whether transcriptional effects were
consistent between these two batches and found that expression
changes for the top 100 genes from Acute Drinking group in batch
1 showed significant positive correlation with the same genes
from Acute Drinking group in batch 2. Conversely, we also
observed significant positive correlation when comparing changes
for the top 100 genes in batch 2 with the corresponding genes in
batch 1 (Supplementary Fig. 2B). Similarly, significant positive
correlation was also seen between batch 1 and batch 2 in Chronic
Drinking group (Supplementary Fig. 2C). The results indicate that
an overall alcohol drinking-induced effect on these genes is
coherent in both batches.
To adjust for the batch effects and to increase statistical power,

we next used Combat-seq in R [33], a recent extension of the
original ComBat adjustment framework [34] (Supplementary Fig.
2A). We confirmed no outliers isolated by experimental conditions
along first two principal components with 51% of the total
variance (Fig. 1G and Supplementary 2D). Furthermore, since
differences in cell type proportions can be a major source of
variation in gene expression profiles, we used a computational cell
type deconvolution tool, BRETIGEA [35] to estimate the abun-
dances of six relevant cell types, including neurons, astrocytes,
microglia, oligodendrocyte precursor cells (OPC), oligodendro-
cytes, and endothelial cells. There were no significant differences
among Drinking groups (p= 0.1006, Water vs Acute; p= 0.1528,
Water vs Chronic; p= 0.2116, Acute vs Chronic) (Fig. 1H).
Moreover, to confirm no differences in cell type proportions, we
also used a different computational deconvolution tool, CIBER-
SORT, based on mouse cell type-specific markers from a previous
study [36] (p > 0.9999, Water vs Acute; p > 0.9999, Water vs
Chronic; p > 0.9999, Acute vs Chronic) (Supplementary Fig. 3A).
Notably, both digital deconvolution methods revealed similar or
larger contributions of oligodendrocytes and OPC to cell type
abundance, which, we speculated, may be due to reference data
sets that we used to run the methods. Nonetheless, these findings
suggest that most of the observed variation in gene expression
can be attributed to alcohol consumption rather than other
confounding factors.
To identify genes exhibiting significantly altered expression due

to alcohol drinking, we next calculated the expression level of
each transcript based on the number of transcripts per million
reads. Using the DESeq2 package with default parameters, we
identified 1300 and 1384 differentially expressed genes between
Acute and Water Drinking groups and between Chronic and Water
Drinking groups, respectively. Then, we used the more stringent
false discovery rate (FDR)-adjusted p-value cutoff of 0.05 to trim
potential false positive results. We further identified 29 (Acute vs.
Water, upregulated: 23 and downregulated: 6) and 97 (Chronic vs.
Water, upregulated: 36 and downregulated: 61) differentially
expressed genes (Table 1 and Supplementary Fig. 3B). These
results provide evidence for robustly and significantly differentially
expressed genes in the amygdala as a result of acute or chronic
ethanol voluntary drinking.

Validation of DEGs by qPCR
To validate the expression profiles obtained by bulkRNA-seq,
seven genes including brain cytoplasmic RNA 1 (Bc1), BTG anti-
proliferation factor 2 (Btg2), hydroxyacylglutathione hydrolase like
(Haghl), leucine rich repeat containing 24 (Lrrc24), neudesin
neurotrophic factor (Nenf), and lysine demethylase 3A (Kdm3a)
were used for qPCR (Supplementary Tables 1 and 2). We selected
these genes because (1) they displayed |Log2(fold change)| >0.2 in
the Chronic Drinking group, (2) their transcripts are detected in
mouse brain (Allen Brain Institute), and 3) some of genes including
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Bc1, Btg2, Nenf, and Nts have previously been shown to play roles
in synaptic plasticity [37], neuronal proliferation [38], anxiety [39],
and alcohol drinking [40], respectively. Consistent with the RNA-
seq findings, in all cases, the relative fold change of gene
expression was in the same direction in Acute and Chronic
Drinking groups.

Probing cell type-specificity signature of DEGs
BulkRNA-seq yields an averaged gene expression signals across all
different cell types. In recent years, more evidence on the cellular
heterogeneity in response to alcohol exposure is emerging.
Although our in-silico approach provides evidence for a stable
relative ratio of the different cell types among the drinking groups
(Fig. 1H and Supplementary Fig. 3A), we next addressed cellular
heterogeneity responding to alcohol exposure. By leveraging
previous bulk and single cell RNA sequencing data sets collected
from mouse and human tissues as reference single-cell type-
specific expression profiles [36, 41–43], we asked if any of DEGs in
our studies was included in the list. We found that some of DEGs
were enriched in genes with glia annotation, particularly astrocyte
and oligodendrocyte annotation (Supplementary Table 3), sug-
gesting that alcohol drinking alters glia-related gene expression in
the amygdala.

GO and KEGG gene enrichment analyses
To further identify networks of coordinately regulated genes that
might point to alcohol-related specific biological functions, we
next performed GO and KEGG Pathway enrichment analyses using
the lists of DEGs with the criteria of p-value < 0.05, which was set
to increase the number of genes in each drinking condition. We
found that the primary effects of acute and chronic alcohol
drinking were related to ribosome, cytoplasmic translation,
chromatin binding, histone modification pathways, and various
neurological diseases (Fig. 2A, B and Supplementary Fig. 4A, B).
Interestingly, among those GO enrichment terms, “myelin sheath”
(FDR-adjusted p= 0.0003) was in the top 5 upregulated pathways,
suggesting alcohol drinking affects molecular and cellular
mechanisms underlying oligodendrocyte maturation and myeli-
nation, consistent with our results from cell type-specificity
comparison and previous reports that demonstrated glial dysfunc-
tion in AUD pathophysiology [44]. These findings suggest that
alcohol drinking, particularly in repeated access, induces neuroa-
daptations mediated by glia-specific molecular alterations in the
amygdala.

Identification of the potential regulatory pathways
To identify a list of hub genes, we next used STRING using
identified DEGs (FDR p < 0.05) as inputs, a common online
database for predicting protein-protein interaction networks
[45]. It revealed hub genes with 4–5 nodes, including histone
deacetylase 2 (Hdac2), heterogeneous nuclear ribonucleoprotein
M (Hnrnpm), histone deacetylase complex subunit sin3a (Sin3a),
and chromodomain helicase DNA binding protein 1 (Chd1),
particularly in the Chronic Drinking condition (Supplementary
Fig. 5). The Hdac2, Sin3a, and Chd1 are members of proteins
associated with histone deacetylase activity. Notably, the expres-
sion of these genes in both Acute and Chronic Drinking groups
was decreased, although not statistically significantly. qPCR also
confirmed the relative changes in the same direction (Supple-
mentary Tables 1 and 2). To determine upstream regulators of
identified DEGs in current study, we next applied DEGs to the
GeneGo MetaCore online database and identified 4 and 17
candidate upstream regulatory transcription factors in Acute and
Chronic Drinking groups, respectively (Table 2). SRY-box transcrip-
tion factor 17 (Sox17) stood out in both Acute and Chronic
Drinking groups. Since Sox17 has been shown to regulate
oligodendrocyte progenitor cell expansion and differentiation,
this finding is consistent with our results from GO/KEGG pathway

analyses and cell type-specificity comparison (Fig. 2, Supplemen-
tary Fig. 4, and Supplementary Table 3). Together, these findings
suggest that voluntary alcohol consumption affects epigenetic
changes via histone deacetylation pathways, and
oligodendrocyte-related transcriptional factor, Sox17.

Validation of Sox17 regulation of alcohol drinking
To validate and further determine the role of Sox17 in escalated
alcohol drinking, we microinjected lentiviral vectors encoding
Sox17 shRNA into the amygdala of B6 female mice, thereby
silencing the expression of Sox17 within this region (Fig. 3A). Two
weeks after injections, animals were subjected to the EOD
drinking paradigm. We found that the level of alcohol intake in
Sox17 shRNA-injected animals (a daily average of 16.28 ± 1.47 g/
kg) were significantly lower than that of control vector-injected
mice (a daily average of 23.70 ± 3.36 g/kg), indicating that
downregulation of Sox17 in the amygdala resulted in reduction of
alcohol drinking (P < 0.0001) (Fig. 3B). The decrease in amygdala
Sox17 expression did not alter locomotion or anxiety-related
behavior (Fig. 3C). The findings suggest that voluntary alcohol
drinking triggers Sox17-related molecular cascades that may
include OPC expansion and differentiation in the amygdala and
consequently lead to an increase in alcohol intake.

GWAS catalog and DisGeNET
To determine if our DEGs (FDR p < 0.05) are associated with AUD,
we used an online GWAS catalog database (www.ebi.ac.uk/gwas).
We found that 5 of our DEGs, including ATPase plasma membrane
calcium transporting 1 (Atp2b1), heat shock protein family A
member 4 (Hspa4), strawberry notch homolog 1 (Sbno1), solute
carrier family member 7 (Slc4a7), and UBX domain protein 2b
(Ubxn2b), from the Chronic Drinking group have previously been
identified in GWAS of AUD. To further support our DEGs with
previously reported findings in AUD, we next took advantage of
the publicly available database, DisGeNET. Here we found that
nuclear factor kappa B subunit 1 (Nfkb1) and neurotensin (Nts)
from Acute Drinking group have been previously linked to AUD.
Similarly, besides the 5 DEGs identified from the GWAS catalog, we
found 5 more DEGs from our data set, including calcium/
calmodulin-dependent protein kinase IV (Camk4), energy home-
ostasis associated (Enho), Hdac2, LDL receptor-related protein 6
(Lrp6), Slc4a7, and SLIT and NTRK like family member 2 (Slitrk2),
which were previously linked to AUD in the literature.

DISCUSSION
The amygdala is highly sensitive to both chronic and acute alcohol
drinking and alcohol-induced neuronal cellular plasticity within
the amygdala circuits is well established. Since changes in
neuronal physiology and neurotransmission may result from gene
expression alterations, we here have characterized the transcrip-
tome level responses to acute and chronic intermittent ethanol
drinking. We subjected female B6 mice to a behaviorally well-
validated 2-bottle choice drinking procedure and collected RNA
samples from the amygdala. Using bioinformatics tools, we
identified sets of significant DEGs, distinct GO and KEGG
pathways, hub genes, and upstream transcriptional factors that
are sensitive to ethanol drinking. Our results demonstrate that
both acute and chronic ethanol drinking can impact similar
biological processes including translational machinery, epigenetic
modifications, synaptic plasticity, and neurological disorders. In
addition, the findings also provide evidence indicating that
alcohol drinking impacts on molecular and cellular alterations in
non-neuronal cell types, such as OPC and oligodendrocytes in the
amygdala [46].
Previous behavioral studies in both humans and animals

suggested that alcohol tolerance and dependence can develop
over several days or weeks, which seems to be a duration required
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Fig. 2 GO enrichment analysis of DEGs in response to Acute and Chronic alcohol drinking. The ordinate represents the GO terms, the
upper abscissa indicates the number of genes in the GO terms, and the lower abscissa indicates the level of significance of the enrichment
(gray bar, FDR= 0.01). A Genes were categorized with the Biological Process domain. B Genes were categorized with the Cellular Component
domain.
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to induce gene expression changes in response to alcohol
exposure. Although there is a significant difference in alcohol
intake between Acute and Chronic Drinking groups in our study,
we did not observe FDR-significant differences in DEGs and GO/
KEGG pathways between the Drinking groups. Rather a single
bout of voluntary ethanol consumption resulted in molecular
changes in the amygdala similar to those altered by repeated
alcohol drinking. These results suggest that alcohol can trigger
strikingly overlapping amygdala-specific gene expression changes
regardless of the number of drinking episodes. Furthermore, acute
alcohol drinking is sufficient to trigger critical molecular adapta-
tions, possibly leading to future behavioral changes with repeated
alcohol exposure. Notably, it has been reported that acute
behavioral responses to alcohol have predictive value regarding
risk for long-term alcohol drinking behavior in humans [47] and
animal models [48].
Many of the genes we identified were of great interest given

prior findings. Particularly, neurotensin (Nts) and its receptors have
been implicated as contributing to the behavioral effects of
alcohol in animal models. Chronic ethanol exposure increased Nts
expression in the dorsal striatum [49], whereas ethanol decreased
the expression of Nts receptors in both the nucleus accumbens
(NAcc) and midbrain [50]. Furthermore, recent work has demon-
strated that Nts-expressing neurons in the CeA contribute to the
voluntary consumption of alcohol [40]. These findings are
consistent with our results indicating an increase in Nts expression
in Acute Drinking group, as the micropunches included the CeA in
our samples. Interestingly, our recent studies demonstrated that
the Nts receptor 2 (Ntsr2) is highly expressed in the BLA Thy1+

neurons that strongly project to the NAcc [51]. Therefore, our
result provides an avenue of exploration at a circuit level into how
the amygdala subnuclei, CeA-Nts and BLA-Ntsr2, may interactively
mediate voluntary alcohol drinking behaviors.
Our study revealed many other well-known pathways affected

by alcohol drinking. Amongst these, first, translational machinery
including rRNA binding, ribosome, and ribosomal subunits seems
to be positively affected by alcohol drinking. Consistent with
previous studies in different brain areas [52], these results suggest
that alcohol exposure also similarly affects translation of proteins
in the amygdala, and leads to neuroadaptation via re-organization
of synaptic structures, synaptic proteins and neurotransmitter
receptors, such glutamate and GABA receptors [52]. Second, we
found several enrichment terms related to chromatin remodeling,
histone modification and DNA methylation in GO/KEGG analyses.
Similarly, we also identified hub genes, mostly involved in histone
deacetylation activity, including Hdac2. It was recently shown that
there is increased Hdac2 level and activity in the amygdala of P
rats, an alcohol-preferring rat line, and acute systemic injection of
ethanol decreased HDAC2 activity and subsequently reduced
voluntary ethanol intake [53]. These results suggest that alcohol
drinking affects gene expression by potentially regulating
epigenetic alterations, particularly histone modifications via
HDAC2. Third, we found that pathways related to neurodegen-
erative diseases, including Huntington disease and Parkinson
disease, are enriched in the KEGG analysis. Since the brain is a
major target for the actions of alcohol and heavy alcohol
consumption has long been associated with brain damage as a
risk factor [54], our study also confirms that alcohol consumption

Table 2. Candidate upstream transcription factors based on DEGs associated with the Acute and Chronic Drinking groups.

Drinking groups

Drinking
condition

Gene symbol Gene name Actual
targets

p-val z-score

Acute Taf3 TATA-Box Binding Protein Associated Factor 3 2 1.04E−04 16.02

c-Jun Jun Proto-Oncogene, AP-1 Transcription Factor Subunit 7 2.94E−04 5.76

c-Fos Fos Proto-Oncogene, AP-1 Transcription Factor Subunit 5 1.87E−04 5.27

Sox17 SRY (Sex Determining Region Y)-Box Transcription Factor 17 22 3.60E−04 3.63

Chronic Rbpj Recombination Signal Binding Protein for Immunoglobulin
Kappa J Region

58 2.27E−11 7.18

Sox17 SRY (Sex Determining Region Y)-Box Transcription Factor 17 69 4.86E−11 6.70

Foxp3 Forkhead Box P3 57 4.62E−08 5.69

Tal1 TAL BHLH Transcription Factor 1, Erythroid
Differentiation Factor

61 9.83E−08 5.45

Creb1 CAMP Responsive Element Binding Protein 1 44 1.29E−07 5.74

Ets1 ETS Proto-Oncogene 1, Transcription Factor 53 9.50E−07 5.09

c-Myc MYC Proto-Oncogene, BHLH Transcription Factor 37 6.78E−05 4.22

Runx1 Runt-Related Transcription Factor 1 46 1.17E−04 3.94

Gata-2 GATA Binding Protein 2 23 1.63E−04 4.20

E2f1 E2F Transcription Factor 1 37 1.79E−04 3.92

Zfx Zinc Finger Protein X-Linked 23 2.20E−04 4.10

Gabp GA Binding Protein Transcription Factor Subunit Alpha 35 3.97E−04 3.69

Cebpe CCAAT/Enhancer Binding Protein (C/EBP), Epsilon 4 6.07E−04 5.85

Yy1 YY1 Transcription Factor 13 7.79E−04 3.95

Ash2 ASH2 Like, Histone Lysine Methyltransferase Complex
Subunit

21 2.54E−03 3.21

Glis3 GLIS Family Zinc Finger 3 20 2.82E−03 3.19

Klf9 Kruppel Like Factor 9 3 3.47E−03 4.93

DEGs were used with GeneGo MetaCore to detect upstream transcription factors, which were ranked by z-score. 4 and 17 upstream transcription factors were
identified in the Acute and Chronic Drinking groups, respectively.
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triggers similar molecular pathological pathways involved in
neurodegenerative diseases. Fourth, one of interesting GO terms
in our analysis is “myelin sheath”, indicating the pathway involved
in myeline sheath formation and maintenance is affected by
alcohol drinking. Our results support hypothesis that alcohol
consumption leads to disruption in myelination-related gene
expression, as previous studies reporting the detrimental effects of
alcohol on white matter integrity and functions in animals and
humans [55–60]. Similarly, genomic studies of alcohol also have
found that functional enrichment of alcohol-sensitive myelination-
related genes in rodents, primates, and human postmortem
tissues [17, 21, 61–64]. However, our results contrast with those
reports of the downregulation of myelination-related genes and
proteins in cortical regions of chronic alcoholics. Instead, our
analysis showed that gene expression in this pathway was
increased in Acute and Chronic Drinking groups. A month-long
drinking paradigm in the current study focusing on the amygdala
may contribute to a difference in gene expression profile,
reflecting a potential molecular recovery mechanism activated
by myelination damages after alcohol drinking.
While co-expressed genes form functional networks, identifying

upstream regulators of these genes and networks can provide
insight into cellular function and lead to a potential therapeutic
intervention. In our study, we observed that many of the DEGs from
Acute and Chronic Drinking groups are regulated by Sox17, a
transcription factor that regulates OPC proliferation and differentia-
tion to oligodendrocytes via the Wnt/β-catenin signaling pathway
[65, 66]. As oligodendrocytes provide myelin sheaths in the central
nervous system, this finding is consistent with the results from our
GO/KEGG analysis that identified “myelin sheath” as a key term. In
addition, the downregulation of Sox17 in the amygdala prevented
an increase in alcohol uptake over time, implicating that Sox17
mediates neural mechanisms underlying the escalation of alcohol
drinking with the repeated alcohol access. To our knowledge, our

study is the first to investigate the effects of alcohol drinking on an
upstream regulator of OPCs and oligodendrocytes, which is an
understudied form of cellular plasticity that may mediate
behavioral outcomes such as alcohol drinking. Together these
data, along with the above myelin sheath findings in our pathway
analyses, provides strong evidence for a role of oligodendrocyte
alterations in the aftermath of alcohol consumption.
In summary, we identified alcohol-sensitive, amygdala-

associated candidate genes and pathways by genome-wide
transcriptomic analyses. Consistent with previous gene expres-
sion studies, we found that voluntary alcohol consumption,
regardless of the number of drinking episodes, results in similar
gene expression changes in ribosome-related / translational
pathways, myelination, chromatin-binding, and histone mod-
ification. These genes and pathways suggest convergence of
human GWAS and molecular studies with amygdala transcrip-
tion data from mouse drinking models. As the current study
suggests alcohol-induced cell type-specific changes, future
studies using advanced cell targeting techniques are warranted
to validate the roles of identified genes in neural adaptation
processes mediating the progression from acute to chronic
alcohol intake.
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