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Abstract 

Background: We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non‑clas‑
sical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well‑estab‑
lished genetic risk alleles on transcription at single‑cell resolution.

Methods: Single‑cell gene expression was quantified using qPCR in purified monocyte subpopulations 
 (CD14++CD16− CL and  CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the 
within‑person correlations observed, and eQTLs were compared between cell types and risk alleles.

Results: The SLE‑risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There 
were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differ‑
ences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated 
with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same 
transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression 
demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individu‑
als, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 
expression pattern in public data sets.

Conclusions: We document multiple SLE‑risk allele eQTLs in single monocytes which differ greatly between CL and 
NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE 
patient monocyte function.
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Introduction
Systemic lupus erythematosus (SLE) is a poorly under-
stood autoimmune syndrome driven by the interplay of 
genetic and environmental influences, which lead to a 
break in immunologic self-tolerance. Genetic studies in 
SLE have been successful in identifying more than 100 

SLE susceptibility loci [1, 2]. Most of the genetic poly-
morphisms associated with SLE are not coding-change 
variants [3, 4]. They are either located in non-coding 
regulatory regions near the 5′ and 3′ regions of genes, in 
DNAse hyper-sensitivity sites, or are in perfect LD with 
DNAse hypersensitivity sites. This suggests modulation 
of transcription as a likely mechanism by which many 
SLE-risk loci impact immune system biology [2], and 
data from many complex diseases support this idea [5]. 
Importantly, there is substantial variation in the pattern 
of DNAse hyper-sensitivity among different human cell 
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types, supporting the idea that polymorphisms can tune 
gene expression in a highly cell-specific manner [5]. Thus, 
examining multiple cell types will be critical in determin-
ing the function of SLE-risk loci, as it is likely that the 
regulatory influence of these polymorphisms vary across 
cell types.

Transcriptomic studies in SLE using whole blood, 
peripheral mononuclear cells, or whole tissue are con-
founded by variations in the numbers and types of cells 
found within different samples and between individuals. 
In such studies, the relative proportion of contributing 
cell subsets can influence gene expression profile based 
on the unique gene signature related to their functions 
[6, 7], making it more difficult to interpret the biological 
significance of the observed differential gene expression. 
For example, it is impossible to determine if the differ-
ence in gene expression is shared homogeneously in all 
cells, or if the observed difference in gene expression is 
primarily driven by divergent gene expression in one par-
ticular cell subset, or if the difference arises solely due 
to a difference in proportions of specific cell types [8]. 
Similarly, an impact of the risk locus on gene expression 
in a minor cell subset may not be observed within a bulk 
cell data set. The situation could be even more complex, 
as each of these possibilities could be present in vary-
ing proportional degrees across samples within a given 
study. While de-convolution methods can be used, it is 
easy to envision scenarios in which de-convolution would 
be of limited use (e.g., the same transcript is simultane-
ously up- and down-regulated in different cell types, to 
varying degrees) [9, 10]. An additional strength of single-
cell gene expression studies is that correlations between 
transcripts represent within-cell correlations, while co-
expression in mixed cell bulk samples could represent 
some within cell correlations, but also could be the result 
of complex relationships between cells of different types.

While most of the confirmed SLE-risk loci are located 
in or near genes with immune system function, for the 
vast majority, we do not understand their impact on cell 
biology and immune responses nor their influence on 
various immune cell subsets. For risk loci near genes of 
unknown molecular function, it is difficult to identify the 
relevant biological pathway and cell type(s) when consid-
ering functional follow-up experiments. This is a major 
challenge in SLE genetics as many risk loci have been 
definitively implicated in SLE pathogenesis, but their 
molecular function is poorly understood [2]. When con-
sidering using gene expression data in eQTL studies, the 
above advantages of single-cell gene expression data from 
purified cell populations are intriguing and would suggest 
that single-cell expression studies would more accurately 
indicate the biological impact of risk loci. Our group and 
others have previously studied gene expression in sorted 

immune cell populations as well as at single-cell level in 
SLE patients and found striking between-individual dif-
ferences in gene expression between immune cell sub-
sets and within the same immune cell types [1, 7, 9]. In 
this study, we use single-cell gene expression data from 
two important SLE monocyte subsets and perform a 
single-cell eQTL analysis. We selected seven SNPs from 
six established SLE risk loci and 90 target genes for this 
analysis. We observed many eQTLs that met statistical 
significance after adjusting for the within-individual cor-
relation by modeling the individual as a random effect in 
a linear model and applying multiple testing correction. 
These results demonstrate the efficiency of single-cell 
eQTL approach to effectively detect the biological impact 
of risk loci. The associated eQTL transcripts largely dif-
fered between the two closely related monocyte sub-
sets, making the case that risk locus function differently 
depending upon cell type. We also observed a great deal 
of diversity in the transcript lists associated with each 
risk SNP.

Methods
Patients and samples
Whole blood samples from 15 Female SLE patients ful-
filling the American College of Rheumatology criteria for 
the diagnosis of SLE [11, 12] and five age-sex matched 
healthy controls were procured from the Mayo Clinic, 
Rochester, MN. Exclusion criteria included pregnancy, 
active acute infection, chronic infection (e.g., hepatitis C, 
HIV, etc.), and current intravenous therapy (e.g., meth-
ylprednisolone or cyclophosphamide). The institutional 
review board approved the study and all patients pro-
vided informed consent. The patient data were used for 
all eQTL analyses, and the control data were only used in 
the comparison of IRF1 expression. The control set was 
too small to analyze separately for eQTLs, and combining 
patient and control cells together for eQTL analysis could 
result in confounding due to the expected differences in 
gene expression between patients and controls. Control 
data were only used in the IRF1 expression analysis.

Purification of classical  (CD14++CD16−) and non‑classical 
 (CD14dimCD16+) monocytes
As previously described [9],  CD14++CD16−classical 
(CL) monocytes and  CD14dimCD16+ non-classical 
(NCL) monocytes were isolated from peripheral blood 
and purified using magnetic separation. Briefly, CL 
monocytes were first purified by negative selection 
using a modified Human Pan-Monocyte Isolation pro-
tocol (Miltenyi) with addition of anti-CD16-biotin 
(Miltenyi) into the biotin-antibody cocktail. The purity 
was further increased using subsequent CD14 posi-
tive selection (Miltenyi). NCL monocytes were purified 



Page 3 of 10Ghodke‑Puranik et al. Arthritis Research & Therapy          (2021) 23:290  

similarly with addition of anti-CD14-biotin (Miltenyi) 
to the antibody cocktail for negative selection followed 
by CD16 microbeads (Miltenyi) for positive selection. 
Flow cytometry analysis showed that of the CL and 
NCL populations obtained, each contained > 95% of 
each desired cell type (Supplemental Fig. 1).

C1 single‑cell capture
Single-cells from each bulk monocyte subset were iso-
lated using Fluidigm C1 Single-Cell Auto Prep System. 
Purified CL monocytes were stained with Molecular 
Probes™ CellTracker™ Green CMFDA Dye (Life Tech-
nologies), while NCL monocytes were unstained before 
loading to C1 Single-Cell Auto Prep Array Integrated 
Fluidic Circuits (IFCs). CL and NCL monocytes were 
then sequentially loaded onto the C1 Integrated Fluidic 
Circuit (IFC). CL vs. NCL monocyte lineage of individ-
ual cells was determined by direct visualization using 
fluorescent microscopy, and at the same time, empty 
wells and wells that contained more than one cell were 
marked to exclude from later analysis. The IFCs were 
then examined using fluorescent microscopy, and the 
captured cells were identified as CL (stained) or NCL 
(not stained). Wells that contained more than one cell 
were also noted to exclude from later analysis. We cap-
tured 470 CL and 394 NCL cells from the SLE patients 
in total, averaging between 50 to 60 single cells per 
patient across both monocyte subsets, after excluding 
doublets and fragments. These results represent a 60% 
capture site efficiency.

Single cell PCR gene expression
A total of 90-target genes, relevant to monocyte func-
tion, that included major cytokines and pathway proteins 
involved in inflammation were selected for pre-amplifica-
tion in the IFCs using the Fluidigm C1 Single-Cell Auto 
Prep System according to the manufacturer’s protocol. 
qPCR-based gene expression assay of the target gene 
pre-amplified cDNAs were carried out using 96.96 IFCs 
on the BioMark HD System (Fluidigm) as described in 
the protocol. Raw data was analyzed using the Fluidigm 
Real-Time PCR Analysis software (v. 4.1.2) and quality 
check was performed by inspecting melt curves, amplifi-
cation curves. A failure score was calculated for each cell 
as described previously [9, 13]. Cells with failure score 
(total CT value) greater than two standard deviations 
above the mean were excluded from downstream analy-
sis. The limit of detection CT values was set at 28 [10]; 
CT values greater than or equal to 28 were considered 
non-detected and were assigned a value of zero for analy-
sis. Gene expression values were calculated by subtract-
ing the threshold cycle value for each gene for each cell 

from the number of cycles in the PCR reaction. In this 
way, higher numbers represent greater gene expression, 
and lower numbers indicate less expression.

Genotyping
Seven lupus risk single nucleotide polymorphisms 
(SNPs) in six gene loci, IRF5, IRF7, ITGAM, PTPN22, 
SPP1, and TNFAIP3 were genotyped for eQTL analysis. 
We selected well-established lupus risk polymorphisms 
from the literature which we thought may have function 
in monocytes [2]. The polymorphisms studied were as 
follows: IRF5 (rs10488631), IRF7 (rs1061502), ITGAM 
(rs1143679, rs1143689), PTPN22 (rs2476601), SPP1 
(rs9138), and TNFAIP3 (rs2230926). Genotyping was 
performed using PCR allelic discrimination assays on a 
BioMark HD System (Fluidigm). The observed genotype 
frequencies of the studied SNPs did not deviate signifi-
cantly from Hardy–Weinberg equilibrium.

Statistical analysis
For the initial univariate analysis, gene expression data 
was separated in to three genotype categories for each 
bi-allelic SNP for each patient (homozygous minor allele, 
heterozygous, and homozygous major allele). Data in CL 
and NCL populations were separately analyzed, using 
non-parametric analyses (Mann-Whitney U). Even 
when considering eQTL associations that surpassed a 
Bonferroni correction for the number of comparisons 
(P = 8 ×  10−5), this was found to be too permissive with 
respect to type I error (Supplemental Fig.  2) [14]. This 
was due to distributional properties of the data that dem-
onstrated patterns of normal expression mixed with vary-
ing degrees of dropout data and significant within-person 
correlation in transcript values. To deal with these prop-
erties, data was reanalyzed for eQTL associations uti-
lizing four separate approaches [15]. The first approach 
used a tweedie mixed-effects model [16] to simultane-
ously account for the dropout and the person-specific 
heterogeneity. Gene expression was modeled as the out-
come and genotypes were modeled as predictors along 
with a random effect for individual. The second approach 
used a logistic mixed-effects model [17], where all non-
zero gene expression values were assigned as ones and 
modeled as a binary outcome to compare the proportion 
of genes turned “on” or “off” for each SNP. Genes where 
the average proportion turned “on” exceeded 98% were 
dropped. The third approach also computed a mixed-
effects model with just the non-zero gene expression 
values, assuming an underlying Gaussian distribution. 
Lastly, the proportion of genes turned “on” or “off” was 
computed within each individual and a simple analysis of 
variance was computed where the proportion was mod-
eled as the outcome and the genotype as the predictor. 



Page 4 of 10Ghodke‑Puranik et al. Arthritis Research & Therapy          (2021) 23:290 

A Benjamini-Hochberg false discovery rate was used to 
control for multiple comparisons and results meeting an 
FDR < 0.1 were retained [18]. As shown in Table  1, the 
logistic and proportional models provided the strongest 
ability to detect eQTLs (12 and 9 eQTLs respectively), 
followed by Gaussian (3 eQTLs), and tweedie (1 eQTL) 
models. eQTL lists were compared among risk alleles 
and between cell types to understand the degree to which 
effects were shared between cells types and the degree to 
which SLE-risk loci coordinately regulated the same tran-
scripts. eQTLs were considered shared if they met the 
significance cutoff in both monocyte subsets and were in 
the same direction of association. These patterns of shar-
ing are represented using Venn diagrams.

Analyses to detect modules of gene co-expression in 
the single-cell data were completed in each cell type 
separately (CL and NCL). Using the intersection of 
genes (common across all individuals), we built a pair-
wise gene-by-gene correlation matrix for each indi-
vidual and each cell type. Each correlation matrix was 
averaged into a single correlation matrix to find a mean 
correlation across all individuals while removing the 
inter-individual differences. The mean correlation was 
then used to compute eigenvectors and eigenvalues and 
build a principal component analysis. From there, each 
individual cell was projected on to that principal com-
ponent space and observed for differences by individ-
ual. Gene sets were retained if the absolute value of the 
individual loadings associated with highly explanatory 
principal components were greater than 0.7.

Results
Unique eQTL associations between CL and NCL monocytes
Using the four different analysis methods to query the 
data resulted in a total of 25 eQTL associations meet-
ing a FDR < 0.1 (Table  1, Fig.  1). Interestingly, these 
largely differed between the two related monocyte 
subsets. There were 18 eQTLs exclusive to NCL cells, 
5 eQTLs exclusive to CL cells, and one shared eQTL 
(Fig. 1, p = 0.0007 for a difference between the observed 
degree of sharing and a model in which 50% of eQTLs 
are shared between cell types). The SLE-associated 
SNPs demonstrated more eQTLs in NCLs compared 
to CLs (p = 0.0004). For a given SNP, the eQTL associ-
ated transcripts largely differed between cell types, with 
only one transcript-eQTL shared between CL and NCL 
cells (SPP1 rs9138 with the IRF1 transcript). The great-
est number of eQTLs was observed with the SPP1 and 
TNFAIP3 loci (7 and 8 eQTLs respectively). We included 
two missense SNPs in the ITGAM locus that have been 
shown evidence for independent biological function 
[19], and these two SNPs in the same locus were associ-
ated with different transcripts. These data indicate that 

the same risk allele had a different biological impact 
between the two monocyte subsets. This is striking given 
that the two monocyte subsets would largely be more 
closely related, than to B cells or T cells. These data sug-
gest the importance of studying risk alleles within very 
specific cellular subsets to understand their biologi-
cal roles. The different analysis methods used to detect 
eQTLs performed differently in the single-cell data, with 
logistic and proportional models detecting the greatest 
number of eQTLs (Table 1).

Degree of eQTL transcript sharing between SLE‑risk alleles
Next, we assessed whether different SNPs modulated 
the same transcripts (transcript sharing), as this could 
indicate different risk alleles converging on similar 
biological pathways. There were no transcripts shared 
among SNPs in CL cells (Fig.  2). In NCLs, two tran-
scripts were common between two SNPs (TNFA, 
TYK2), and one transcript was common to three SNPs 

Table 1 List of significant eQTL associations detected by 
the various statistical methods in classical and non‑classical 
monocytes at < 0.1 FDR

Gene (SNP rsID) Associated 
transcript

Method Monocyte subset

ITGAM (rs1143679) TLR7 Logistic Classical

ITGAM (rs1143683) JAK1 Logistic Classical

TNFAIP3 (rs2230926) IRF8 Proportion Classical

SPP1 (rs9138) ARG1 Logistic Classical

SPP1 (rs9138) IRF1 Logistic Classical

SPP1 (rs9138) IRF4 Logistic Classical

IRF5 (rs10488631) IRF1 Logistic Non‑classical

IRF7 (rs1061502) IRF1 Logistic Non‑classical

ITGAM (rs1143679) ARG1 Gaussian Non‑classical

ITGAM (rs1143679) TCF4 Logistic Non‑classical

ITGAM (rs1143683) IL1B Gaussian Non‑classical

ITGAM (rs1143683) TNFA Gaussian Non‑classical

TNFAIP3 (rs2230926) CD274 Logistic Non‑classical

TNFAIP3 (rs2230926) FCER1G Proportion Non‑classical

TNFAIP3 (rs2230926) IL7R Proportion Non‑classical

TNFAIP3 (rs2230926) STAT1 Proportion Non‑classical

TNFAIP3 (rs2230926) STAT2 Tweedie Non‑classical

TNFAIP3 (rs2230926) TNFA Logistic Non‑classical

TNFAIP3 (rs2230926) TYK2 Proportion Non‑classical

PTPN22 (rs2476601) IL5 Logistic Non‑classical

SPP1 (rs9138) IFIT5 Proportion Non‑classical

SPP1 (rs9138) IL1A Proportion Non‑classical

SPP1 (rs9138) IRF1 Logistic Non‑classical

SPP1 (rs9138) TLR3 Proportion Non‑classical

SPP1 (rs9138) TYK2 Proportion Non‑classical
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(IRF1). Interestingly, in the NCL cells SNPs in IRFs 
(IRF5 and IRF7) are associated with IRF1 expression. 
It is also notable that IRF1 was the one eQTL that was 
shared between CL and NCL cells in the analyses above. 
Thus, while genetic variation in IRF1 has not been asso-
ciated with SLE, these analyses support the idea that 

IRF1 expression is modulated by SLE genetic risk fac-
tors in monocyte lineage cells.

On/off pattern of gene expression
Interestingly, the IRF1 transcript demonstrated a highly 
binary expressed/not expressed pattern for all cells 

Fig. 1 Venn diagram showing unique and shared eQTL associated transcripts between CL and NCL for each lupus risk SNP. Numbers indicate the 
number of transcripts associated with each SNP, with the numbers inside the overlap indicating transcript associations which are shared across the 
two monocyte subsets and those outside the overlap indicating unique SNP‑transcript associations for each monocyte subset. The orange circle 
represents CL monocytes and the green circle represents NCL monocytes. Each lupus risk SNP is represented with different color

Fig. 2 Comparison of eQTL lists for the different SLE‑risk SNPs in two monocyte subsets. Venn diagram showing unique and shared eQTL transcripts 
associated with each risk allele for A CL and B NCL monocytes. The circles indicated by each color to represent one lupus risk SNP. Numbers in each 
area of the diagram represent the number of transcripts significantly associated with that risk allele, either separately or overlapping between risk 
alleles.
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from a given individual, such that either all of the indi-
vidual’s cells did not express the gene or the majority 
of cells showed IRF1 expression (Fig. 3). This was true 
of both the CL and NCL monocytes from the same 
person. This pattern was restricted to patients and not 
observed in the controls in our study. We have seen this 
pattern in other single-cell qPCR studies of other dis-
eases [20]. For example in a study of rheumatoid arthri-
tis monocytes, we observed that JAK1 expression fit this 
pattern, in patients only and not in controls [20]. JAK1 
did not fit this pattern in the present study of lupus 
patients, suggesting that this pattern of gene expres-
sion may be specific to the disease state. We searched 
public databases for other precedents of this on/off pat-
tern of gene expression using Bio Turing browser ver-
sion 2.5.3 [21]. We found a similar pattern for IRF1 in 
monocytes from a single-cell RNA sequencing study 
examining patients with myeloma [22] (Supplemen-
tal Fig.  3). While our PCR data have a wider dynamic 
range of values than the public RNA-seq data, the on/
off pattern appears similar between these two studies. 
This suggests that examining gene expression patterns 
in an individual is important, as this type of pattern is 
likely to be lost when individuals are pooled for analy-
sis. The strength of the pattern in our data compared to 
RNA-seq data sets may indicate that these patterns are 
more efficiently detected in single cell qPCR data than 
in single cell RNA-seq data.

Modular co‑expression analysis of the single‑cell data
The principal component analyses revealed much higher 
overlap of cells when correcting for inter-individual dif-
ferences than not (Fig. 4). For classical cells, the first prin-
cipal component explained 39.5% of the variance and the 
second principal component explained only 3.05% of the 
variance. Similarly, in non-classical cells, the first princi-
pal component explained 35.6% of the variance and the 
second principal component explained only 3.49% of the 
variance (Fig. 4). Thirty-two genes were associated with 
lower principal component 1 scores across both of the 
cell types (|loadings|> 0.7) (Table 2). Sixteen genes were 
associated with lower principal component 1 scores in 
non-classical cells (Table  2). Of those, 15 were shared 
in both cell types and only one (IFNG) was unique to 
NCLs, demonstrating a core set of co-expressed genes 
that are in common across both cell types (Table  2). In 
the CL cells, there were 16 additional genes that were co-
expressed, supporting a larger co-expression network in 
this cell type.

Discussion
In this study, we document a number of eQTLs associ-
ated with common autoimmune risk alleles for SLE in 
human monocytes, at a single-cell resolution. We stud-
ied patients, which may have increased our ability to 
detect eQTLs associated with these alleles, as the other 
requisite genetic background for SLE is also present in 

Fig. 3 IRF1 expression in CL and NCL monocytes in each individual separately. Gene expression values for IRF1 are shown, with the cells from 
each individual in the study in a separate column. CL monocytes are shown in blue and NCLs in green, with each dot representing one cell. The 
genotypes under each column represent the SPP1 rs9138 genotype in each person
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these individuals. The degree of difference in eQTL lists 
between monocyte subsets was striking, as these two 
cell types are more closely related to each other than 
other common immune cell types such as T cells and 
B cells. These data suggest that highly cell-type specific 
patterns of eQTLs are present in immune cells. There-
fore, choosing the right cell types and including multi-
ple cell types will be critical when studying risk alleles 
in immune mediated diseases. Screening of single-cell 
eQTL data [23] across multiple cell types would be an 
important strategy to decide upon which cell type to 
study in functional experiments, and our data support 
the limitations of gene annotation and presumed func-
tions when considering the biological impact of the risk 
allele. One example of this would be the large number of 
trans associations we observe, which could not be pre-
dicted based upon the sequence location of the risk vari-
ant (e.g. SPP1(rs9138) associated with IRF1 and TYK2 
transcripts).

It is interesting that we observed more eQTLs in 
the NCLs as compared to the CLs, as the cell num-
bers were similar between the two cell subsets and this 
is not related to statistical power. It could suggest that 
these risk alleles mediate their risk of disease to a greater 
degree via the NCL lineage as compared to the CL lin-
eage. The structure of shared transcript modulation 

Fig. 4 Principal component analyses of classical and non‑classical cells. Each cell is a dot, and data are shown after adjusting for the inter‑individual 
differences by averaging gene‑gene correlation matrices across each individual and subsequently projecting cells onto to the principal component 
space. Cells are color‑coded and circled by 95% confidence ellipses by subject identifiers. Large overlap demonstrates the removal of the 
individual‑specific heterogeneity

Table 2 Co‑expression networks, genes associated with lower 
principal component 1 scores (|loadings|> 0.7). These gene sets 
represent a set of co‑expressed genes that explain the most 
variance in each dataset. A large portion of the genes are shared; 
however, classical cells demonstrate a much larger co‑expression 
network

Classical Shared Non‑classical

CCR6 CCR2 IFNG

ITGAE CCR5

CD36 IDO1

CD86 IFIH1

FCER1G IFIT3

GMCSF IL23A

IFIT2 STAT3

IFNB1 STAT5

IL15 TLR3

IL2 IL12B

LILRA4 TRAF6

PRDM1 FLT3

STAT6 CTLA4

TLR8 CXCR7

TICAM1 CD80

TYK2

VCAN
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shown in Fig.  2 provides a map of the interactions 
between risk alleles at the biological level, and these 
data suggest greater coordination between risk alleles in 
NCL monocytes at least with respect to the variants and 
transcripts that we studied. Interestingly, while the num-
ber of eQTLs observed in CL cells was fewer, the co-
expression network observed in this cell type contained 
a larger number of transcripts. This taken together with 
the analysis above would suggest that a fewer number of 
risk alleles are operative in CL cells but that these alleles 
result in a larger number of co-expressed transcripts. 
This finding should be tested in an RNA-seq experi-
ment, as this conclusion is limited by the fact that we 
tested a prescribed set of transcripts in this study. Our 
data also support the overall importance of the SPP1 and 
TNFAIP3 risk alleles with respect to gene transcription 
in both CL and NCL monocytes. These data support 
the idea that different risk alleles will have their greatest 
effects in specific cell types, which will not be predict-
able from the magnitude of the effect size in case-con-
trol genetic association. The SPP1 risk variant has been 
linked to innate immune system cytokine production in 
SLE previously [24], while TNFAIP3 variants have been 
associated with differential TNFAIP3 function in mono-
cyte lineage cells [25].

The on-off pattern of gene expression observed with 
IRF1 is striking, and in comparison with public RNA-
seq data sets it seems that the qPCR approach we have 
used illustrates this pattern more dramatically. This 
could be due to the more quantitative nature of PCR 
vs. shotgun sequencing. Biologically, this could relate 
to a strong transcriptional repressor, and it is interest-
ing that we have observed this phenomenon in disease 
but not in controls, and in multiple disease states and 
with different transcripts [20]. This could indicate that 
the on/off gene expression pattern is related to either 
medication or to the underlying disease process. In our 
study, the IRF1 transcript which was expressed in an 
on/off pattern was an eQTL. This could suggest genetic 
variation as a cause of the on/off pattern, although it 
is a trans-eQTL and thus would not represent a sim-
ple impact upon a cis-regulatory element. We have 
observed trans-eQTLs in this study despite measuring 
some of the transcripts for the annotated cis-gene vari-
ants being studied. We did not include each transcript 
in the region of the SNPs studied, and thus, we did not 
emphasize cis-eQTLs, but instead focused on mono-
cyte-relevant transcripts that result from pathway acti-
vation events in the cell.

There are some limitations of this study. We have 
studied limited number of target genes and well-
established SLE risk alleles; however, future stud-
ies are needed to include additional risk alleles and 

more diverse transcripts related to SLE pathogenesis. 
This will help in identifying additional eQTLs and in 
delineating the effect of risk variants in different cell 
types through cis or trans transcript regulation. Sec-
ond, it is will be interesting to follow up the surpris-
ing on/off gene expression pattern in other disease 
states, larger control samples, and across different 
cell types. We expect that this should be done using 
single cell qPCR along with single cell RNA-seq, and 
the qPCR method may be more sensitive to detect 
this pattern.

Conclusions
Studying single-cell eQTLs in SLE patient immune 
cells has allowed for novel insights which could not 
be achieved using previous mixed immune cell gene 
expression methods. These data support the impor-
tance of the SPP1 and TNFAIP3 risk variants and the 
IRF1 transcript in SLE patient monocyte function. 
This approach would be of great utility to detect dif-
ferential transcription related to SLE-risk loci across 
multiple primary human cell types. This approach 
addresses a major frontier in complex autoimmune 
disease genetics, allowing us to understand how the 
function of a given risk allele varies by cell type in 
humans.
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Bars show the median, error bars show the interquartile range. Data from 
public database as reported in Haradhvala, N.J., et al., Cancer Research, 
2019.
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