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Simple Summary: Immune control inhibitor drugs (anti-PD1/PD-L1/CTLA-4) (ICIs) are showing
efficacy in the treatment of lung cancer. Currently the only biomarker with clinical utility for ICIs,
such as the expression of PDL1, does not appear to be perfect or effective. Our working group is
conducting a pilot study in lung cancer patients receiving ICIs with the aim of analyze the factors that
affect the sensitivity of the immunotherapy in lung Cancer. Tumor Mutational Burden (TMB) and
the sequencing of the T Cell Receptor (TCR) repertoire in peripheral blood have been postulated as
predictive biomarkers of efficacy of immunotherapy. The review focusses on the predictive value of
TMB for clinical responses to ICIs and discusses its clinical need after a discussion of the limitations.
TCR CDR3 beta analysis and parameters such as clonality and TCR convergence may be good
alternatives. For the moment, the combination of biomarkers may be the optimal tool.

Abstract: Despite therapeutic advances, lung cancer (LC) is one of the leading causes of cancer
morbidity and mortality worldwide. Recently, the treatment of advanced LC has experienced
important changes in survival benefit due to immune checkpoint inhibitors (ICIs). However, overall
response rates (ORR) remain low in unselected patients and a large proportion of patients undergo
disease progression in the first weeks of treatment. Therefore, there is a need of biomarkers to identify
patients who will benefit from ICIs. The programmed cell death ligand 1 (PD-L1) expression has been
the first biomarker developed. However, its use as a robust predictive biomarker has been limited
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due to the variability of techniques used, with different antibodies and thresholds. In this context,
tumor mutational burden (TMB) has emerged as an additional powerful biomarker based on the
observation of successful response to ICIs in solid tumors with high TMB. TMB can be defined as
the total number of nonsynonymous mutations per DNA megabases being a mechanism generating
neoantigens conditioning the tumor immunogenicity and response to ICIs. However, the latest data
provide conflicting results regarding its role as a biomarker. Moreover, considering the results of the
recent data, the use of peripheral blood T cell receptor (TCR) repertoire could be a new predictive
biomarker. This review summarises recent findings describing the clinical utility of TMB and TCRβ
(TCRB) and concludes that immune, neontigen, and checkpoint targeted variables are required in
combination for accurately identifying patients who most likely will benefit of ICIs.

Keywords: lung cancer; ICIs (immune checkpoint inhibitors); biomarker; TMB (tumor mutational
burden); TCR (T cell receptor); TCRβ (TCRB); neoantigen

1. Introduction

Immunotherapy has become a powerful therapeutic weapon against cancer in recent years,
achieving long-lasting responses and significant survival benefits in multiple types of tumors.
Thus, anti-programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) antibody has
been approved for second-line or first-line treatment in melanoma, renal cell carcinoma, head and neck
squamous and gastroesophageal cancer [1].

In the setting of non-small cell lung cancer (NSCLC) immunotherapy has become a standard of
treatment for previously untreated advanced NSCLC without driven mutations. These new treatments
include the combination of immune checkpoint inhibitors (ICIs) with platinum-based chemotherapy
or ICIs alone [2].

Despite the current success of immunotherapy, not all patients respond similarly and of those
responding, serious toxic effects are sometimes observed. Therefore, concern arises on how to identify
biomarkers that allow us to recognize immunogenic tumors that will benefit most from ICIs.

Research in the field of biomarkers in immunotherapy aims to characterize the relationship
between tumor, immune system, microenvironment, and host.

PD-L1 expression as a predictive biomarker across different types of tumors has been evaluated
in some clinical trials but its use as a robust predictive biomarker has been confounded with a
number of biological and technological variables. Therefore, there is a need for biomarkers for better
stratification [2].

Neoantigens are antigens that arise from altered peptides formed as a result of tumor mutations
or encoded by viral proteins. The relevance of neoantigens in cancer treatment has been revealed with
the advent of immunotherapy, whose efficacy lies in the existence of such neoantigens potentially
recognised by host T cells [3]. Neoantigens are generated as a consequence of somatic mutations [4]
(most of them located in exons such a single nucleotide mutations), insertions, or deletions in the coding
regions of proteins, chromosomal translocations, post-translational modifications, and alternative
splicing [5]. First, the mutated sequence must be expressed by the tumor cell. Then it has to be
processed and presented by the patient’s major histocompatibility complex (MHC) molecules and
recognized by a T cell receptor (TCR). The probability of having neoantigen-specific T lymphocytes
correlates directly with the mutational load [6].

From the point of view of immunotherapy, patients with the highest number of clonal neoantigens
are the most likely to respond to treatment. Therefore, tumor neontigens constitute a predictive
biomarker model for the response to ICIs and tumor mutational burden (TMB) could be used to
indirectly assess the neontigens load [7].
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In addition to TMB and PD-L1, other biomarkers also seem to affect to response to immunotherapy
in cancer [8–10]. Gene expression signatures (IFN-γ signaling and activated T-cells associated with
improved OS with second-line atezolizumab in advanced NSCLC [11], tumor-specific genotypes (such
as genomic alterations in EGFR, ALK, KRAS, etc., and what is more, their interrelatedness with TMB)
have been correlated to immunotherapy response.

Other potential predictor of response is the density of tumor-infiltrating lymphocytes (TILs) in
the tumor microenvironment. This reflects a more inmune recognition of tumor cells and leads to
an inflamed tumor phenotype which is more sensitive to imnunotherapy. Differents studies have
observated high levels of TILs with better response to checkpoint blockade and improved survival
across differents types of tumors including NSCLC [9].

Serum-based markers are being investigated and although they need prospective validation,
they could be an attractive option especially when the tumor sample is insufficient for testing [9].
High neutrophilto-lymphocyte ratio (NLR) enhances angiogenesis and tumorigenesis and may be
a negative prognostic indicator of response to immunotherapy in patients with cancer including
metastatic NSCLC [12]. Other peripheral serum markers are the absolute eosinophil count, the absolute
monocyte account, and the platelet-to-lymphocyte count [1].

In the current article, the authors review the biomarker TMB as well as other emerging and
investigational markers that have potential to better predict responders to immunotherapy in
lung cancer.

2. TMB and Lung Cancer

2.1. What is TMB and How to Measure?

TMB can be defined as the total number of nonsynonymous mutations per megabase of genome
examined, being a mechanism generating neoantigens and conditioning the tumor immunogenicity.
The presence of non-synonymous somatic mutations can lead to modifications in the encoded proteins
that can be recognized by the immune system as non-self and become a neoantigen capable of activating
the antitumor immune response.

Consequently, tumors with high mutational load could be elegible to successful treatment with
ICIs [2]. However, of all the modified proteins, only a small fraction result in neontigens. It may be
the case that a tumor has low mutational load but that these mutations have resulted in neoantigens
capable of generating a strong antitumor T response.

The number of somatic mutations varies greatly between different tumors. NSCLC has one of the
highest mutation frequencies (0.1 to 100 mut/Mb) [13].

The main pathways contributing to mutation rate are DNA replication pathways and DNA
damage repair [14]. Mutations in DNA replication genes, such as POLD1 and POLE, are associated
with increased mutation frequency and high TMB [15]. Mutations in mismatch repair system genes
(MMR) results in microsatellite inestability (MSI) and high TMB. Pembrolizumab received accelerated
approval in the United States by the Food and Drug Administration (FDA) in May 2017 for the
treatment of adult and pediatric patients with unresectable or metastatic solid tumors dMMR that
progress to standard treatment and have no satisfactory results or alternative treatment options.
regardless of the histological subtype or origin of the primary tumor. It was based on data from the
KEYNOTE-164 and from the KEYNOTE-158 study. This marked the first approval of an oncology
therapy independent of tumor histology or anatomical location of origin, in which treatment is based
on a common tumor biomarker.

Recently, the FDA has accelerated the approval of pembrolizumab for the treatment of adult and
pediatric patients with unresectable or metastatic cancer with high TMB (≥10 mutations/megabase)
that have progressed prior treatment and who have no satisfactory alternative treatment options based
on a retrospective analysis of 10 cohorts of patients enrolled in KEYNOTE-158 trial [16]. This approval
strengthens the role of genomics in the treatment of cancer.
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2.2. Clinical Features of TMB

Different studies have investigated whether there is an association between TMB and clinical
characteristics in lung cancer (LC). TMB seems to be correlated with gender, being higher in men than
in women [17].

Based on the histology of the tumor, many studies conclude that squamous histology lung
carcinoma have a higher TMB than those with adenocarcinoma or small cell lung cancer (SCLC).
Degree of tumor differentiation and tumor stage have also been described as predictive factors of
TMB [18].

NSCLC genomic profile differs significantly between smoking and non-smoking patients. TMB
can be influenced by tobacco use due to the accumulation of somatic mutations caused by carcinogens
in tobacco smoke which would lead to a higher neoantigen load [19]. This would lead to the idea that
patients with tumors harboring smoking signature respond better to ICIs. Some patterns of mutational
changes found in smokers like dominant C > A mutations are associated with clinical benefit [20].
Deleterios mutations in POLD1, POLE, and MSH2 contribute to high TMB and they are more frequent
in responding smoking patients compared to non-responders [20].

Mutations in KRAS and STK11 [21] are related to smoking, while those of EGFR [22], METDex14,
and rearrangements of ALK, ROS1, RET, and NTRK [23] are associated with non-smokers. ALK,
ROS1, EGFR, BRAFV600E, and METDex14 mutations are associated with low TMB, while mutations
in KRAS/STK11, BRAFnon-V600E are associated with high TMB. This may explain the lower efficacy
of ICIs in non-smoking LC [24].

In addition, some specific alterations in patients with advanced NSCLC such as amplifications in
MDM2 and MDM4 have been associated with hyperprogression and alterations in B2M and JAK2
have been described as mediating acquired resistance mediated through defective interferon gamma
signaling [25].

2.3. Measurement of TMB in Tumor Tissue (tTMB)

Determination of TMB is possible thanks to the development of next generation sequencing
(NGS) technologies. TMB in tumors is usually measured with whole exome sequencing (WES) or
comprehensive genomic profiling (CGP).

WES is the gold standard method for assessing TMB. WES allows the detection of somatic
mutations presents within the entire exome (2% of the human genoma, i.e., 30 to 50 Mb of coding
sequences) at a lower cost than whole genoma sequencing [26].

Targeted gene panel sequencing is an alternative option to TMB estimation because of its reduced
costs and turnaround time required. This method allows an analysis of selected “driver” genes using
less amounts of DNA and improving mutation detection sensitivity [26].

There is a high correlation between TMB assessed by targeted gene panel with TMB analysis by
WES [25,27].

2.4. Blood-Based Tumor Mutation Burden (bTMB)

Although tumor tissue samples are considered the standard material for performing NGS analyzes,
up to 30% of patients with NSCLC do not have adequate tissue available at diagnosis. The use of
liquid biopsy containing circulating tumoral DNA (ctDNA) instead of tissue represents an attractive
alternative for these patients [4].

It offers some advantages due to its noninvasive nature, ability to capture tumor heterogeneity
and it allows monitoring treatment response and assessment of residual disease. Moreover, it is less
expensive, and it requires short processing time with low failure rate.

bTMB seems to be a good predictive biomarker of clinical benefit from ICIs, although the
correlation with tTMB determination is not clear yet [24,26]. bTMB does not include insertions and
deletions and there are some differences in sample characteristics such as the source of DNA, collection
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time, sample type, stage at diagnosis, tissue purity, the ctDNA, maximum somatic allele frequency
(MSAF) and the cell-free DNA (cfDNA) input mass.

Moreover the treatment with DNA damaging agents, such as chemotherapy and the different
cut-off to characterize bTMB are many factors that could explain the absence of a higher correlation
between these parameters [27].

3. TMB, From Great Expectation

3.1. Studies as Predictive Factor (Table)

To date, the only FDA-approved predictive biomarkers to ICIs in NSCLC is PD-L1 expression [28].
However, many clinical trials show correlation between high TMB and greater response to ICIs

across a wide array of tumor histologies [29]. The most robust responses to ICIs have been seen in
microsatellite instability (MSI) colorectal cancer, melanoma and NSCLC, which are both tumors with
high TMB [30].

In Table 1 we summarize the main studies on TMB analysis as a biomarker of response to
ICIs [25,31–39].
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Table 1. Studies on tumor mutational burden (TMB) analysis as a biomarker of response to immune checkpoint inhibitors (ICIs).

Drug Trial Study Type/Phase Line of Therapy Pts, n Patient Population Tmb Method &
Cutoff

Clinical Outcomes Author/Year

Pembrolizumab Retrospective First line, second
or higher

16 of POPLAR trial;
18 of OAK study Advanced NSCLC WES: high≥ 178

mutations

TMB was correlated with
better ORR (63% vs. 0%,
p = 0.03), PFS (14.5 vs. 3.7

m, p = 0.01) and DCB.

Rizvi NA 2015 [31]

CHECKMATE-026
Nivolumab

(NCT02041533)

Exploratory
retrospective

analysis of phase III
study

First line 312
Stage IV or recurrent
NSCLC with PD-L1

≥1%

WES: highTMB ≥243;
low TMB <100

mutations

High TMB pts: PFS 9.7 vs.
5.8 m (HR 0.62; 95% CI,
0.38 to 1.00) and ORR
(46.8% vs. 28.3%) in

nivolumab group
compared to

chemotherapy.

Carbone D,2017 [33]

CHECKMATE-012
Nivolumab&
ipilimumab

(NCT01454102)

Phase I First line 75 Advanced NSCLC

WES: high TMB >
median, 158

mutations; low TMB
≤median

ORR, DCB, PFS were
superior in pts with high
TMB vs. low TMB (ORR
51% vs. 13%, p = 0.0005;
DCB 65% vs. 34%, p =

0.011; PFS HR 0.41).

Hellmann MD 2018
[34]

CHECKMATE-227
Nivolumab +
ipilimumab

(NCT02477826)

Phase III First line 299 Stage IV or recurrent
NSCLC

FoundationOne CDx
assay; high TMB: ≥10

mut/MbV

PFS was longer among
pts with high TMB

(mPFS: 7.2 vs. 5.5 months,
HR 0.58, p < 0.001) in

nivolumab + ipilimumab
group compared to

chemotherapy

Hellman MD 2018
[35]

CHECKMATE-568
Nivolumab +
ipilimumab

(NCT02659059)

Phase II First line 288 Stage IV NSCLC
FoundationOne CDx
assay; high TMB: ≥10

mut/Mb

ORR was higher (>40%)
in high TMB

Ramalingam SS 2018
[32]

CHECKMATE-032
Nivolumab ±
ipilimumab

(NCT01928394)

Exploratory Second-line or
higher 211 Advanced SCLC

WES: TMB was
grouped by tertiles:

low, 0 to <143;
medium, 143 to 247;

high, ≥248 mutations

ORR: 46.2% vs.16%;
1-year PFS: 30% vs. 6.2%

1-year OS: 62.4% vs.
23.4% was higher in pts
with TMB high vs TMB

low

Hellmann MD 2018
[36]

PD-1 or PD-L1
inhibitors Retrospective First line, second

or higher 240 Advanced NSCLC

MSK-IMPACT TMB
was grouped by
percentiles: high

TMB >50%

More disease control
(complete/partial

response vs
stable/progression

disease) and longer PFS
for patients with high

TMB >50%

Rizvi H, 2018 [25]
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Table 1. Cont.

Drug Trial Study Type/Phase Line of Therapy Pts, n Patient Population Tmb Method &
Cutoff

Clinical Outcomes Author/Year

POPLAR & OAK
Atezolizumab Retrospective Second-line or

higher

211 (discovery cohort
with 16 p) in

POPLAR trial, 583
(validating cohort
with 18 p) in OAK

study

Advanced NSCLC
Foundation One;

bTMB: High bTMB
≥16; low TMB ≤16.

High bTMB (≥16
mut/Mb) was associated
with improved PFS, ORR
and duration of response.

Gandara DR, 2018
[37]

LACE-BIO-2
Adjuvant Cisplatin

(NCT01294280)
Retrospective Adjuvant

chemotherapy >900 Early-stage NSCLC

Targeted NGS panel
using Illumina HiSeq

2000. TMB was
categorized into
tertiles (low, ≤4
mutations/Mb;

intermediate, >4 and
≤8 mutations/Mb;

high, >8
mutations/Mb)

High TMB (>8 mut/Mb)
was prognostic for

favorable OS, PFS, LCSS
in patients with resected

NSCLC. LCSS benefit
with adjuvant

chemotherapy was more
pronounced in low TMBs

(≤4 mut/Mb).

Devarakonda S, 2018
[38]

Neoadjuvant
nivolumab Exploratory Neoadjuvant PD-1

Blockade
22 (21 were eligible

for inclusion)

Surgically resectable
early (stage I, II, or

IIIA) NSCLC.

WES: highTMB: 311
± 55 media vs low
TMB:74 ± 60 mean

In pts with high TMB
(sequence alterations;

mean, 311 ± 55 vs. 74 ±
60, p = 0.01) a major

pathological response
was observed.

Forde PM, 2018 [39]

B-F1RST
Atezolizumab

(NCT02848651)
Phase II First line

152 (119 were
included in the

biomarker evaluable
population)

Locally advanced or
metastatic NSCLC

Foundation Medicine
panel; bTMB: high
bTMB ≥ 16, versus

low bTMB ≤ 16

It was observed a
relationship between

increasing bTMB score
and improved clinical

outcomes. ORR and PFS
were superior in pts with
high bTMB vs low bTMB:
ORR 28.6% vs. 4.4%; PFS

4.6 months vs. 3.7
months, HR 0.66 (90% CI

0.42–1.02).

Velcheti V, 2018 [40]
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3.2. Strengths

There are several data supporting the use of TMB as a biomarker for ICI efficacy:
TMB is an effective and independent predictive biomarker of PD-L1 IHC expression in

tumors [41–43]. However a greater benefit has been observed with ICIs in patients with high
expression of TMB and PD-L1, which suggests that a composite of both may be most helpful in
identifying with precision patients most likely to benefit to ICIs [44,45]. This finding is supported by
the hypothesis that patients with high PDL1 expression and high TMB are predicted to contain higher
frequencies of primed antitumor T cells which are unfunctional due to PD1-mediated inhibition.

TMB can be efficiently assessed using targeted sequencing panels such as the Memorial
Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) and
FoundationOne CDx™ (Foundation Medicine, Cambridge, USA) which have been developed and
approved by the FDA [46,47]. These platforms have been shown strong correlation with WES and offer
the advantage of being able to determine the TMB at the same time as druggable mutations [25,48].

bTMB can replace the tTMB as a predictor of benefit to immunotherapy. In the randomized
POPLAR and OAK clinical trials, a correlation between bTMB and tTMB was observed [37].

The clinical validation of bTMB was reported in a phase III clinical trial, BFAST (Blood-First Assay
Screening Trial), evaluating the efficacy of multiple targeted therapies for patients with advanced
NSCLC. A positive correlation between tTMB and bTMB scores was observed [37]. The interim results
for the phase II B-F1RST study, analyzing bTMB for stratification of atezolizumab in first line therapy
NSCLC; bTMB correlated well with treatment response [40].

A high TMB may be a useful biomarker for assessing patient’s risk of inmune-related adverse
events (irAES) during anti-PD-1 therapy.

ICIs enhances inmune responses which can cause tumor regression and irAEs. It is not clear
why immune side effects occur in some patients but not in others, or why similar treatment can
cause different toxicity in different patients. In addition, different types of irAEs could indicate an
immunotherapeutic response in different tumor types.

In LC, early development of immune toxicity and low-grade toxicity were correlated with a better
response to immunotherapy and a survival benefit as well as endocrine toxicity [49–52] Regarding
skin toxicity, the data are controversial. Since skin irAEs include various types of skin disorders,
the association of each skin irAE with outcome may vary [53].

It has been proposed that the association between an improved response to anti-PD-1 therapy and
irAES are linked via an underlying neoantigenic potential derived from a high TMB [54]. Last studies
suggest a positive correlation between the reporting odds ratios (RORs) of presenting an irAE during
anti-PD-1 therapy and the corresponding TMB across multiple cancer types [55]. In this way, cancers
with a high TMB, such as melanoma and NSCLC, are associated with a higher irAE RORs during
anti-PD-1 therapy than cancers with a low TMB.

In addition to TMB, other biomarkers such as T cell diversity, cytokines, inflammatory factors,
and gut microbiome may be useful biomarkers for assessing patients’ risk of irAEs during anti-PD-1
therapy [1].

4. To Important Doubts

4.1. Limitations

Despite the promising results indicated above, several evidences highlight the potential limitations
of using TMB as a predictive biomarker:

Technical limitations regarding TMB analysis: Long turnaround time: tissue TMB analysis
takes 2–3 weeks and storage time: the mean mutation number decreased as sample storage time
increased. In contrast to the assessment of PD-L1 expression; TMB analysis requires a significant
amount of tissue [56]. Moreover, tumor tissue biopsies used for TMB analysis are often fixed with
formaldehyde which can induce crosslinks that are a main source of sequencing artifacts [26].
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Absence of standardization of TMB. The established cut-off values differ according to the type
of tumor studied, controlled sequencing technique, region, and size sequenced as well as the type of
mutation included in the TMB analysis.

One WES study defined the cut-off point that combined maximal sensitivity (100%) with maximal
specificity (67%) at 178 non-synonymous mutations in advanced NSCLC patients [31]. Using sequencing
panels, the cut-off points are set to values of 7 to 10 mut/Mpb for LC [35].

TMB does not seem to correlate properly and linearly with the neontigen load. Although there
is a correlation between TMB and neoantigen load [31] a large number of mutations does not always
translate into greater neoantigens generation [42]. Thus, there are patients with high TMB who does
not respond to ICIs and others with low TMB who have more durable responses. Therefore, additional
factors to TMB may contribute to response to ICIs such as intratumor heterogeneity, gene expression
signature, hydrophobicity, or tumor microenvironment [43–45].

Moreover, patients with fewer but more relevant mutations, such as alterations in the MMR
pathway and homologous recombination pathway (HR), might respond better to ICIs than patients
who have a higher TMB but with fewer mutations in certain crucial loci [57]. It should be noted
that mutated proteins should produce adequate peptides containing the neoantigen epitopes to be
presented by MHC-I and MHC-II which is required to activate CD4+T cells and subsequently CD8+T
cells. Moreover, it should be taken into account that some MHC haplotypes might present better
neoantigen peptides to cells than others and thus, patients expressing those haplotypes could respond
better to ICIs.

In addition, Merkel-cell carcinoma and some virus-induced tumors suggest that the presentation
of viral antigens on certain tumor types may confer an increased response rate to ICIs [58].

Another limitation of TMB is that it is unable to identify immunogenic tumors sensitive to
immunotherapy that have neoantigens other than those derived from non-synonymous mutations [58].

4.2. Studies as Negative Predictive Factor

Despite the strong rational of TMB, the latest evidence suggests that the predictive value of TMB
as a biomarker of response to ICIs may have limited clinical utility.

Several trials, including KEYNOTE-010 and KEYNOTE-042, have retrospectively demonstrated
that TMB could be useful as predictive marker of response to ICIs but it was not a useful
tool for predicting response to chemotherapy [48,49]. The same results have been observed in
KEYNOTE-021/189 and 407 trials in which no statistically significant association was determined
between tTMB and efficacy of pembrolizumab plus chemotherapy or chemotherapy alone as first-line
treatment for NSCLC. Taking into account the results of these studies, TMB does not seem to identify
responders from non-responders either for the combination treatment or chemotherapy alone.

One of the hypothesis that could explain these results obtained in the previously mentioned
studies is the obliteration of the predictive ability of TMB in the context of superimposed cytotoxic
effect of the chemotherapy [8].

In addition, in the CHECKMATE-026 study, no differences in OS were found in patients stratified
according to the TMB [33].

The data from the final analysis of the CHECKMATE-227 met its primary endpoint of OS in
patients with PD-L1 ≥ 1% treated with Nivolumab + Ipilimumab. Based on these results, the European
Society for Medical Oncology clinical practice guidelines have proposed the use of TMB to select
patients with NSCLC for first-line nivolumab and ipilimumab [8]. However, no consistent correlation
was observed between survival outcomes with ICIs vs chemotherapy and PD-L1 or TMB alone or
in combination.

Similar to PD-L1 expression, TMB is an imperfect biomarker requiring refinement and future
studies are warrented to improve its value.

In Table 2 we summarize the main studies on TMB analysis as a negative biomarker of response
to ICIs [33,58–63].
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Table 2. Studies on TMB analysis as a negative biomarker of response to ICIs.

Drug Trial Study Type Pts, n Patient Population Purpose of Study Tmb Method &
Cutoff

Clinical Outcomes Conclusion

KEYNOTE-010
(NCT01905657)

Exploratory
retrospective
analysis of a
randomised

controlled trial
phase II/III

253 (24% from the all
sample)

Previously treated or
untreated advanced

NSCLC PD-L1(+)
with tumour

proportion score
(TPS)≥ 1% having

evaluable Ttmb

Association between
tTMB and clinical

benefit with
pembrolizumab

monotherapy

tTMB determined by
WES of tumour and

matched normal
DNA Cutpoint of 175
mutations per exome

tTMB ≥ 175: OS 14.1 m
vs. 7.6 m (CI, 0.38–0.83);
PFS 4.2 m vs. 2.4 m (CI,

0.40–0.87); ORR 23.5% vs.
9.8% with

pembrolizumab and
chemotherapy

respectively

tTMB was associated
with OS, PFS and

ORR for the
pembrolizumab arms

but tTMB was not
associated with

outcomes for
chemotherapy

[59,60].KEYNOTE-042
(NCT02220894)

Exploratory
retrospective
analysis of a
randomised

controlled trial
phase III

793 (62% from the all
sample)

tTMB ≥ 175: OS 21.9 m
vs. 11.6 m (CI, 0.48–0.80);
PFS 6.3 m vs. 6.5 m (CI,

0.59–0.95); ORR 34.4% vs.
30.9% with

pembrolizumab and
chemotherapy

respectively

KEYNOTE-021
(NCT02039674)

Exploratory
analysis of a
randomised

controlled trial
phase I/II study

267 (48% of patients
in cohorts C

and G)
Stage IIIb/IV

non-squamous
NSCLC

Association of tTMB
with outcomes for
pembrolizumab +
chemotherapy and
for chemotherapy

tTMB determined by
WES of tumour and

matched normal
DNA Cutpoint of 175
mutations per exome

In cohort G, ORR was
higher with

pembrolizumab +
chemotherapy vs

chemotherapy in the 31
patients with tTMB ≥175

mutations per exome
(71.4% vs. 30%)

No significant
association was

determined between
tTMB and efficacy of

pembrolizumab +
chemotherapy or

chemotherapy alone.
TMB does not seem

to identify
responders from non
responders either for

the combination
treatment or

chemotherapy alone.
[60–63].

KEYNOTE-189
(NCT02578680)

Exploratory
analysis of a
randomised

controlled trial
phase III

616 (48% from the all
sample)

tTMB ≥ 175: OS was
improved with

pembrolizumab +
chemotherapy over

chemotherapy (HR 0.64;
CI 0.38-1.07), PFS (HR

0.32; CI 0.21-0´51)

KEYNOTE-407
(NCT02775435)

Exploratory
analysis of a
randomised

controlled phase III
study

559 (56% from the all
sample)

Stage IV squamous
NSCLC

tTMB ≥ 175: OS was
improved with

pembrolizumab +
chemotherapy over

chemotherapy (HR 0.74;
CI 0.50-1.08), PFS (HR

0.57; CI 0.41-0.81)
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Table 2. Cont.

Drug Trial Study Type Pts, n Patient Population Purpose of Study Tmb Method &
Cutoff

Clinical Outcomes Conclusion

CHECKMATE-026
(NCT02041533)

Exploratory
analysis of

randomised phase
III study

312 (58% of the
patients who had

undergone
randomization)

Stage IV or recurrent
(PD-L1)–positive

NSCLC

Assess the effect of
the TMB on

outcomes with
nivolumab vs.

docetaxel

TMB determined in
tumor and blood
samples by WES

0to100 (low burden)
100to242 (medium) ≥

243 (high)

tTMB ≥ 243: ORR was
higher in the nivolumab

group than in the
chemotherapy (47% vs.

28%), and PFS was
longer (median, 9.7 vs.

5.8 months; HR 0.62; 95%
CI, 0.38 to 1.00).

No significant
difference was
observed in OS

between the
nivolumab and
chemotherapy

groups regardless of
TMB, according to

findings published in
the New England

Journal of Medicine
[33].

CHECKMATE-227
(NCT02477826)

Exploratory
analysis of

randomised phase
III study

679 (58.2% from the
all sample)

Stage IV or recurrent
NSCLC

Evaluate TMB as a
potential predictive

biomarker of efficacy
of nivolumab,
nivolumab +
ipilimumab,
nivolumab +

platinum-doublet
chemotherapy and of

platinum-doublet.

TMB determined by
WES Cutpoint of 10

mutations per
megabase

Similar degree of OS
benefit in nivolumab +

ipilimumab, regardless of
TMB (≥10 vs. <10

mutations per megabase,
respectively) OS benefit

for nivolumab plus
ipilimumab vs

chemotherapy regardless
of TMB or PD-L1

A similar degree of
OS benefit was found

for nivolumab and
ipilimumab

regardless of TMB
according to findings
published in the New

England Journal of
Medicine

Combination of
PD-L1 and TMB did

not reveal a
subgroup with an

increased benefit for
nivo + ipi vs

chemotherapy [64].
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5. Is the TMB Dead?

TMB is not ready for routine use in clinical practice and TMB must still be validated. The predictive
role of TMB is enhanced when combined with the expression of PD-L1. Both biomarkers appear to be
complementary. TMB is able to identify a subgroup of patients PD-L1 non-expressers or low expressers
that benefit more from ICI treatment [8].

New biomarkers are being assessed as candidate for ICIs efficacy in NSCLC. Among these
biomarkers are those related to the tumor microenvironment such as tumor infiltrative lymphocytes
(TILs) [28] or interferon signaling, CD8 + PD − 1 + Tcells expressing CD28 [65] and gut microbiome in
the feces [66].

The benefit of adding TMB analysis to the previous parameters is controversial. No statistically
significant association between TMB and CD8 lymphocytes measured by IHC has been demonstrated
in patients with LC treated with pembrolizumab [67] and association between TMB and T-cell inflamed
gene expression profile in patients treated after PD-1 axis blockade is controversial [68].

The combination of multiple biomarkers may be the optimal tool to predict ICIs efficacy in NSCL
patients as well as the arrival of new biomarkers such as T-cell clonality and restricted TCR-repertoire
in the blood and tumor tissue [69].

6. New Emerging Biomarkers: TCRB T Cell Receptor Beta (TCRβ)

6.1. What is TCRB and How to Measure

TCR are antigen specific receptors which are essential to immune response and are present on the
cell surface of T lymphocytes. The clonotypic TCR is a complex formed by a heterodimer (αβ or γδ)
joined by disulfide bonds responsible for antigen recognition in the context of MHC and a series of
invariant chains: CD3 (γ, δy ε) y CD247 (ζ). Complementarity-determining regions (CDRs) are part of
the variable chains in TCR and they are crucial to the diversity of antigen specificities generated by
lymphocytes. Among those, the CDR3 shows the greatest variability and is coded by the combination
between segments of the VJ regions.

TCR participates in the positive and negative selection of the T repertoire during thymic maturation.
Subsequently, on the periphery, it is responsible for the recognition of antigens, and triggers the
expansion and differentiation of T cell clones.

Unlike TMB, TCR convergence detects T cell responses to any antigen, including neoantigens
beyond those arising from non-synonymous mutations as aberrant post-translational modifications,
ectopic gene expression, splicing defects, autoantigens, and virus-derived antigens. In addition, TCR
convergence avoids probabilistic models for prediction of immunogenicity; is sequencing efficient,
typically requiring less than 2M reads per sample; and may be measured from the abundant genetic
material within the buffy coat fraction of centrifuged peripheral blood to enable liquid biopsy
applications [70,71].

Recents studies have identified that sequencing by NGS the complementary-determining region 3
(CDR3) from rearranged TCR variable beta (Vβ) (TCRB) chain can be used to evaluate and measure
the clonality and diversity of T cells in both peripheral blood and tumor sample [72].

6.2. Studies as Predictive Factor

Motivated by the deficiencies of existing non-invasive biomarkers, the use of peripheral blood
TCRB repertoire sequencing has emerged as a new predictive biomarker of response to ICIs.

Focusing on the results of the recent studies, it has been postulated that changes in the repertoire
of T cells in peripheral blood after ICIs could be a biomarker of response to this treatment [73]. It has
been observed that increasing TCR diversity after ipililumab treatment was associated with better
outcomes in melanoma patients [74,75]. In fact, studies are currently underway evaluating whether
changes in the diversity of TCR in peripheral blood could be correlated with better responses to ICIs.
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TCR evenness and TCR convergence could be predictive markers of response to ICIs. TCR evenness
is a measure of the similarity of clone frequencies in a TCR repertoire and this term is equivalent to
“clonality”. A mature T cell has a unique genetic sequence and different clones with the same TCR will
proliferate for a response. TCR convergence is defined as the process whereby antigen-driven selection
enriches for T cell receptors having a different genetic sequence but the same resulting amino acid
sequence due to codon degeneracy and a shared antigen specificity. TCR convergence can arise in
response to a broad range of tumor associated antigens, suggesting that elevated TCR convergence
could define the tumor infiltrating T cell repertoire being a feature of the tumour microenvironment
as seen in melanoma and NSCLC [76]. This concept has been proposed as an indicator of tumor
immunogenicity and thus its sensitivity to ICIs [70,72,75,77].

Reduced T cell evenness and elevated TCR convergence evaluated by The Oncomine TCRB-SR
assay which amplifies the CDR3 region of the TCRB chain were identifying as features of the
pretreatment NSCLC tumor microenvironment of responders to anti-PD-1 blockade [72,75]. Another
analysis of baseline peripheral blood TCRB from individuals receiving CTLA-4 blockade also indicated
that convergence and evenness values independently predicted response to immunotherapy and the
combination of these features with established biomarkers such as PD-L1 expression derived from
transcriptional profiling of the tumor microenvironment improved the accuracy of the response [71,75].

6.3. Strengths

TCR-based features could be a better biomarker to immunotherapy treatment than TMB and
PD-L1 IHC staining including those cancers in which TMB does not predict ICIs response [71,72]. Thus,
it has been seen that convergence values could discriminate between responders and non-responders
to treatment with ICIs with significant accuracy, compared to the historical performance of TMB as a
biomarker [70].

TCR can be used as a useful tool to establish the development and prognosis in LC patients by
dynamically detecting the TCR repertoire during treatment. It has been observed that TCR repertoire
differs between healthy controls and LC patients in terms of diversity, CDR3 clonotype, V/J segment
usage, and sequence and a high baseline diversity was correlated with better immune status and
clinical benefit [78]. This fact is important, because considering that baseline TCR repertoire correlates
with certain clinical characteristics, we could identify a subpopulation of patients who would benefit
more from ICIs.

6.4. Limitations

Care must be taken with the rate of false positives in the detection of TCR convergence, either due to
the clustering of functionally different clones, or the presence of artificial clones derived from residual
substitution errors [70]. For all these reasons, it is necessary to sequencing platforms that minimize the
false positive rate in the detection of convergent TCRs.

Different platforms such as Ion Torrent and Illumina have been used so far to analyze the TCR
convergence through the TCRB repertoire sequencing. This attempt has been limited by substitution
sequencing errors which can create artefacts resembling TCR convergence. In this context, it has been
compared Ion Torrent to Illumina assays with consistent data as measurements of TCR evenness,
diversity, and clonal overlap. However, it seems that Ion Torrent may be more suitable to the
measurement of TCR convergence than Illumina [70,71].

Future studies will be necessary to clarify the prognostic and predictive value of TCRB convergence
as an immune repertoire biomarker.

7. Correlation TMB-TCRB

TMB and TCR diversity have been suggested as predictive biomarkers in cancer immunotherapy
but it is not clear how TMB or clinical factors correlate with TCR clonality.
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Nowadays, there are no published data on the predictive role of TCR clonality and diversity and
the correlation with other biomarkers, such as PD-L1 and TMB.

Recently, the possible association between these two biomarkers has been investigated. In total,
43 NSCLC patients and 18 SCLC patients with no TKI-related driver gene mutations were enrolled in
this study [79]. TMB was determined with LC tissue by WES and TCR sequencing was performed
with peripheral blood samples. It was observed that chemotherapy treatment could decrease TMB and
patients with decreased TMB after the first-line chemotherapy could benefit less from immunotherapy.
A significant decrease in TMB from mean value of 3.67 to 1.95 was observed after chemotherapy in
NSCLC patients (p =0.05).

The number of TCR clones was not correlated with TMB, gender, age, metastasis, LC subtype or
therapeutic response (p > 0.05). However, TCR diversity was higher in patients with a smoking history
than those with no smoking history (p = 0.01) [79,80].

8. Conclusions

LC is today one of the leading causes of morbidity and mortality worldwide. Therapeutic
management of metastatic LC is a clinical challenge, therefore the identification of biomarkers that
allow us to select which patients will benefit most from treatment with ICIs is key to clinical decision
making and personalized therapeutic approach. TMB has emerged recently as a new predictive
biomarker for ICIs response in NSCLC, either alone or in combination with PD-L1 expression levels,
might separate responders from nonresponders to ICIs. However, this biomarker needs to be validated
for routine clinical use and certain doubts arise taking into account the latest studies that show
conflicting results on its usefulness. For these reasons, nowadays TMB appears not to be ready for
routine use in clinical practice. In this setting, TCR-based features as TCR convergence and evenness
has emerged as a novel prognostic and predictive biomarker to response to ICIs. Nevertheless,
a combination of biomarkers may be the optimal tool to predict ICIs efficacy in NSCL patients.

The search and application of biological markers that offer reliable information is essential for the
development of precision medicine. Therefore, future studies will be necessary to develop a better
understanding of molecular LC biology.

Our working group is conducting a pilot study in this direction in LC patients receiving ICIs with
the aim of identifying molecular biomarkers that help us predict the efficacy of immunotherapy and
establish the most appropriate treatment for our patients.
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