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Abstract The mechanisms of variation, selection and

inheritance, on which evolution by natural selection

depends, are not fixed over evolutionary time. Current evo-

lutionary biology is increasingly focussed on understanding

how the evolution of developmental organisations modifies

the distribution of phenotypic variation, the evolution of

ecological relationships modifies the selective environment,

and the evolution of reproductive relationships modifies the

heritability of the evolutionary unit. The major transitions in

evolution, in particular, involve radical changes in devel-

opmental, ecological and reproductive organisations that

instantiate variation, selection and inheritance at a higher

level of biological organisation. However, current evolu-

tionary theory is poorly equipped to describe how these

organisations change over evolutionary time and especially

how that results in adaptive complexes at successive scales

of organisation (the key problem is that evolution is self-

referential, i.e. the products of evolution change the param-

eters of the evolutionary process). Here we first reinterpret

the central open questions in these domains from a per-

spective that emphasises the common underlying themes.

We then synthesise the findings from a developing body of

work that is building a new theoretical approach to these

questions by converting well-understood theory and results

from models of cognitive learning. Specifically, connec-

tionist models of memory and learning demonstrate how

simple incremental mechanisms, adjusting the relationships

between individually-simple components, can produce

organisations that exhibit complex system-level behaviours

and improve the adaptive capabilities of the system. We use

the term ‘‘evolutionary connectionism’’ to recognise that, by

functionally equivalent processes, natural selection acting on

the relationships within and between evolutionary entities

can result in organisations that produce complex system-

level behaviours in evolutionary systems and modify the

adaptive capabilities of natural selection over time. We

review the evidence supporting the functional equivalences

between the domains of learning and of evolution, and dis-

cuss the potential for this to resolve conceptual problems in

our understanding of the evolution of developmental, eco-

logical and reproductive organisations and, in particular, the

major evolutionary transitions.
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The Evolution of Developmental, Ecological
and Reproductive Organisations

The Problem: Variation, Selection and Heredity are

Modified by Organisations that are Themselves

Evolved

Evolution by natural selection aims to explain biological

adaptations—such as how the giraffe came to have a long
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neck. For some purposes it is sufficient to assume that there

is, for example, variability in neck length, that long necks

confer differential survival or reproductive benefit, and that

neck length is heritable. However, research in the rapidly-

expanding fields of evolutionary developmental biology

(evo-devo), evolutionary ecology (evo-eco) and the evo-

lutionary transitions in individuality (for which we propose

the term ‘‘evo-ego’’, Watson and Szathmáry 2015) recog-

nises that for some purposes this is only part of the

explanation. That is, evolutionary outcomes are signifi-

cantly dependent on how developmental, ecological and

reproductive organisations constrain or facilitate the vari-

ability of phenotypes, the organisation of their selective

environment and the heritability of the relevant evolu-

tionary units, respectively. For example, how is it that

developmental constraints allow multiple phenotypic traits

to change simultaneously whilst maintaining suitable func-

tional integration between them and avoiding deleterious

side-effects on other traits? What is it about the organisa-

tion of an ecological community that causes some eco-

logical relationships to remain stable over long periods of

selection and applies a strong selective pressure for chan-

ges in other ecological relationships (e.g. between a par-

ticular herbivore and a particular resource)? How is it that

reproductive constraints (e.g. reproduction through a sin-

gle-celled population bottle-neck) come to define a multi-

cellular organism like a giraffe as a Darwinian unit in the

first place—suppressing fitness differences between the

cells or genes within an individual (so they do not compete

with each other for representation in offspring individuals)

but enabling the inheritance of fitness differences between

individuals (allowing them to compete for representation in

the population)? Answering these questions requires a

move to a different level of explanation—one that attempts

to explain why variation, selection and inheritance have the

forms that they do, rather than taking them as fixed axioms

of the adaptive process.

These parameters are not simply exogenous contextual

details to the processes of evolution. Each of these

organisations (developmental, ecological and reproductive

interactions) is itself a product of evolution or is modified

by the products of evolution (Wagner and Altenberg 1996;

Odling-Smee et al. 2003, Okasha 2006; Laland et al. 2011,

2015). The phenotypic variation exhibited by a genetic

lineage is modified by the evolution of developmental

interactions (Brakefield 2006; Kirchner and Gerhart 1998;

Wagner and Altenberg 1996; Toussaint and von Seelen

2007), the selection it experiences is modified by the

evolution of ecological interactions (Post and Palkovacs

2009; Laland and Sterelny 2006; Laland et al. 1999; 2011;

Odling-Smee et al. 2003, 2013), and even the identity of

the evolutionary unit changes as a result of the evolution of

new reproductive strategies and new mechanisms of

inheritance (Jablonka and Szathmáry 1995; Szathmáry and

Demeter 1987; Okasha 2006; Sigmund and Szathmáry

1998; Maynard Smith and Szathmáry 1995). Accordingly,

each of the major components of the Darwinian machine

(namely, variation, selection and inheritance) (Lewontin

1970) are themselves subject to evolutionary change

(Watson and Szathmáry 2015). The ambitious aim of an

extended evolutionary synthesis (Pigliucci and Muller

2010; Laland et al. 2015) can thus be seen as the aim to

endogenise these organisations into evolutionary theory

(Okasha 2006, p. 220)—explaining both how evolutionary

processes shape these organisations (evo ? devo/eco/ego)

and, in the reverse direction, how these organisations affect

evolutionary outcomes (evo / devo/eco/ego). This is not

easy to do (Pigliucci 2007; Lawton 1999; Laland et al.

2011, 2015; Okasha 2006).

In evolutionary developmental biology (evo-devo)

(Brakefield 2006; Carroll 2008; Wagner and Laubichler

2004; Wagner et al. 2007; Wagner 2013; Hoekstra and

Coyne 2007) it is recognised that the organisation of devel-

opmental biases and constraints controls the distribution of

phenotypic variation that is produced under genetic (or

environmental) variation and can thereby control the possi-

ble paths of evolutionary trajectories through phenotype

space (Arnold et al. 2001; Jones et al. 2007; Schluter 1996;

Toussaint and von Seelen 2007;Gerhart andKirschner 2007;

Wagner 2014) (evo / devo). For example, some physio-

logical changes in limb morphology, wing patterns or gene-

regulatory circuits may be readily produced and selected

whereas others may not (Wagner 2014; Brakefield 2006).

The structure of this developmental organisation is itself

subject to change over evolutionary time, e.g. via the evo-

lution of gene-regulatory interactions or morphological

architectures (Riedl 1977;Draghi andWagner 2009;Wagner

and Altenberg 1996; Crombach and Hogeweg 2008;

Amundson 2005; Pavličev and Cheverud 2015) (evo ?
devo). This bi-directional interaction means that evolution

could modify developmental organisation in a way that

facilitates or frustrates future evolution—hence the evolu-

tion of evolvability, i.e. evolved changes that affect the future

ability of a population or lineage to evolve (Wagner and

Altenberg 1996; Kirchner and Gerhart 1998; Chicurel 2001;

Partridge and Barton 2000; Hendrikse et al. 2007). Work on

this topic shows that the evolution of gene-regulatory inter-

actions or phenotypic correlations can enhance phenotypic

robustness (Wagner 2008, 2013), accelerate adaptation

under directional selection (Pavlicev et al. 2011), or evolve

to mimic the structure of the selective environment (Watson

et al. 2014; Riedl 1977), such as modularity (Lipson et al.

2002; Watson et al. 2014; Clune et al. 2013; Kashtan et al.

2007, 2009; Parter et al. 2008). But the general relationship

between the evolution of individual developmental interac-

tions and developmental organisations, and in particular the
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evolution of structures that facilitate evolvability, remains

poorly understood and conceptually problematic (Pigliucci

2007; Chicurel 2001; Partridge and Barton 2000; Snie-

gowski and Murphy 2006; Hendrikse et al. 2007). In par-

ticular, the idea that natural selection might change the

variability on which it depends introduces a self-referential

element that is particularly difficult to characterise with

conventional theory.

In evolutionary ecology (evo-eco) (Matthews et al. 2011;

Post and Palkovacs 2009; Schoener 2011; Müller 2007), the

details of the relationships in an ecological community have

a significant effect on the selective pressures acting on

component species (evo / eco). For example, the preva-

lence of a particular resource or competitor may be strongly

influenced by the existing ecological relationships in the

community, and may also dominate the selective pressures

on an evolving population within that community. The

structure of these ecological organisations is also itself

modified by the changing nature of ecological relationships,

due to the evolution and coevolution of the component

species in interaction with one another (e.g. changes in

individual characters that modify the overlap of resource

utilisation profiles, or by traits thatmodify the energy, time or

resources invested in exploiting one ecological relationship

rather than another) (evo ? eco)—see niche construction

and environment engineering (Odling-Smee et al. 2003;

Laland et al. 1999; Wright and Jones 2006; Post and Palko-

vacs 2009). The organisation of ecological relationships

(both trophic and non-trophic) can affect the stability, resi-

lience and homeostatic dynamics of ecological communities

and complex ecological functions (Jax 2010; Lenton 2004;

Holling 1973; Folke 2006; Gallopı́n 2006). Some argue that

the reciprocal causation involved in evo-ecological interac-

tions (i.e. evolution occurs in an ecological niche and the

ecological niche is itself a product of evolutionary processes;

Watson and Ebner 2014; Post and Palkovacs 2009) consti-

tutes a significant departure from conventional evolutionary

models (Laland et al. 2011; Mesoudi et al. 2013). But the

general relationship between the evolution of individual

ecological relationships and community organisation, and in

particular the evolution of ecological feedbacks that facili-

tate self-regulation or homeostasis, remains poorly under-

stood and conceptually problematic (Lawton 1999; Cropp

andGabric 2002; Okasha 2005; Lenton and vanOijen 2002).

In particular, the idea that natural selection might change the

selection pressures that act on itself introduces a self-refer-

ential element that is difficult to characterise with conven-

tional theory.

In the major evolutionary transitions (evo-ego) (Maynard

Smith and Szathmáry 1995, Godfrey-Smith 2009; Michod

1999, 2007; Bourke 2011; Buss 1987; Okasha 2006; Bou-

chard and Huneman 2013), evolution has repeatedly rein-

vented itself—creating new evolutionary units at successive

scales of biological organisation, e.g. from self-replicating

molecules, to chromosomes, to simple cells, to multi-or-

ganelle eukaryote cells, to multicellular organisms, to

eusocial groups. These are not just changes in the charac-

teristics of an existing evolutionary entity, but the result of

changes to the reproductive relationships between evolu-

tionary entities such that ‘‘entities that were capable of

independent replication before the transition can replicate

only as part of a larger whole after the transition’’ (Maynard

Smith and Szathmáry 1995). These changes, i.e. changes that

prevent independent replication, act to suppress fitness dif-

ferences between individuals at one level of organisation and

may provide opportunities for natural selection to create

heritable fitness differences at a higher-level of organisation

(Godfrey-Smith 2009; Okasha 2006; Michod and Roze

2001; Michod and Herron 2006; Ryan et al. 2015). This may

involve reproductive organisations that synchronise the

transmission of information across generations (e.g. vertical

transmission of symbionts, Margulis and Fester 1991;

compartmentalisation of replicators, Sigmund and Sza-

thmáry 1998; Szathmáry and Demeter 1987; or linkage of

replicating molecules into chromosomes, Maynard Smith

and Szathmáry 1993) or restrict the channels of communi-

cation (e.g., bottle-necked life-cycle, germ-soma separation;

Godfrey-Smith 2009; Buss 1987). Such features change the

scale at which heritable variation in reproductive success is

manifest, thus resulting in the evolution of new levels of

Darwinian individuality (Maynard Smith and Szathmáry

1995; Jablonka 1994; Clarke 2010; Okasha 2006; Godfrey-

Smith 2009; Wilson 1989; Bouchard and Huneman 2013)

(hence, ‘‘evo-ego’’). Note that the evolutionary unit can be

defined by the level (or levels) of organisation where varia-

tion in reproductive success is heritable (evo / ego)

(Clarke 2010; Godfrey-Smith 2009), and the level of

organisation that exhibits this can be modified by the prod-

ucts of the evolutionary process (evo ? ego). Work to

understand these evolutionary transitions in individuality is

motivating a new research programme within evolutionary

biology (Calcott and Sterelny 2011; Okasha 2006, Bouchard

and Huneman 2013) that encompasses concepts such as the

evolution of individuality, social group transformation, de-

Darwinisation (of individuals) and Darwinisation (of

groups) and export of fitness (from lower to higher units)

(Buss 1987; Bourke 2011; Godfrey-Smith 2009; Okasha

2006;Michod 1999). But at present the organising principles

involved in the evolution of reproductive dependencies, and

in particular the evolution of new levels of evolutionary

individuality, remain poorly understood and conceptually

challenging (Okasha 2006; Godfrey-Smith 2009). In par-

ticular, the idea that natural selection might redefine the

evolutionary unit, i.e. the reproductive heritability on which

it depends, introduces a self-referential element that is dif-

ficult to characterise with conventional theory.
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Each of these areas shares the common underlying

conceptual problem caused by bi-directional interactions or

reciprocal causation (Levins and Lewontin 1987; Post and

Palkovacs 2009; Laland et al. 2011, 2015), i.e. evolution

modifies organisations (often naturally described as net-

works) and these organisations modify the process of

evolution. The notion that evolutionary processes can

thereby change their own parameters is the root cause of

theoretical and conceptual roadblocks in each field (Wat-

son and Szathmáry 2015).

In particular, although it is clear that evolution can

modify the parameters of variation, selection and inheri-

tance, and this might facilitate evolvability, it is not at all

clear that these organisations can be adaptations for

increased evolvability. In the absence of a higher-level

selective process that might favour evolutionary processes

that are successful in the long term, it seems equally likely

that such organisations might constrain or frustrate subse-

quent adaptation. For example, researchers in evo-devo

struggle to agree on whether the long term evolvability of a

population can systematically improve as a consequence of

natural selection acting on developmental organisations

(Pigliucci 2008; Sniegowski and Murphy 2006; Chicurel

2001; Partridge and Barton 2000; Pavlicev et al. 2011; Earl

and Deem 2004). Evo-eco recognises the pressing need to

predict how ecological resilience and ecosystem functions

change over time (Holling 1973; Gallopı́n 2006; Jax 2010).

Although evolution might change community organisation

in a way that increases the resilience or self-regulation of

the ecosystem (Cropp and Gabric 2002), when there is no

selection at the ecosystem level it seems equally likely to

become more susceptible to stresses and perturbations over

evolutionary time, possibly resulting in catastrophic col-

lapse in the long term (Holling and Gunderson 2002;

Montoya et al. 2006; Schoener 2011). Work in evo-ego

seeks to understand whether evolutionary transitions in

individuality result from systematic adaptive pressures

toward the creation of higher-level biological organisations

or whether they are merely a collection of independent

accidents (Maynard Smith and Szathmáry 1995; Okasha

2006). It might be the case that the reproductive depen-

dencies evolved at one level of organisation create higher-

level organisations that are better-able to respond to

selective pressures relevant at the higher level of organi-

sation, but alternatively it might be the case that they

encapsulate maladaptive relationships that oppose an

effective response to higher-level selection.

Such problems motivate the growing recognition that

the Darwinian machine needs an overhaul: That self-ref-

erential evolutionary mechanisms (where the products of

evolution alter the processes of evolution) create serious

problems for existing theory (Laland et al. 2011), and that a

new and expanded theoretical framework is needed

(Pigliucci and Muller 2010; Laland et al. 2015) that inte-

grates ‘‘eco-evo-devo’’ processes (Blute 2008) (and we

would add ‘‘ego’’ to this list also).

The same underlying problem of reciprocal causation is

manifested differently in each domain. Whilst it is clear

that the products of the Darwinian machine can modify the

parameters of its own operation, it is not clear in what way

it changes itself and, in particular, whether it is possible

that the Darwinian machine changes systematically ‘for the

better’, i.e. in a way that facilitates rather than frustrates

subsequent adaptation. This problem arises in domain-

specific versions:

(a) Evo-devo—implications for modifying variability,

and the evolution of long-term evolvability:

Can development be organised to facilitate future

adaptation? That is, can evolution ‘predict’ or

‘anticipate’ what developmental organisations will

enable adaptive variation in new environments that it

has not yet been exposed to? Conversely, if all it

does is find organisations that are fit over the set of

past environments, then that seems to be conven-

tional evolution, not the evolution of evolvability.

(b) Evo-eco—implications for modifying the selective

context, and the evolution of ecosystem organisa-

tion:

Can an ecosystem be organised ‘for’ anything if it is

not an evolutionary unit? That is, how can natural

selection at the level of individuals within multiple

species result in ecological organisations that are

self-supporting at the system level (homeostasis), or

indeed, result in any kind of ‘ecosystem evolution’

that is more than the sum of the evolution of the

parts? (Levin 2011; Leigh and Vermeij 2002; Lenton

2004). It is clear that by evolving its ecological

relationships a species may modify the ecological

dynamics of the community and hence it’s ecolog-

ical context and hence the selection it experiences

over subsequent generations (i.e. niche construction,

Odling-Smee et al. 2003, 2013). But it is not clear

that it can do this in a way which is systematically

beneficial to itself, except in the case where such

benefits fall differentially on the individual bearing

the niche constructing trait (which implies it can be

treated as an extended phenotype of the individual).

For example, an individual character that reduces

competition for resources with another species offers

no differential advantage to the trait bearer if all

members of its species benefit from such reduced

competition (Wilson 1980). Thus we may expect that

the network of ecological relationships that evolve

may alter ecological dynamics and attractors, but not

necessarily in a manner that creates adaptive benefits
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to the species, let alone the community as a whole.

To clarify, we use the term ‘ecosystem evolution’

to refer to the ecosystem-level consequences of

natural selection acting on individuals within com-

ponent species (Levin 2011, 2014), e.g., evolution-

ary change in the inter-specific relationships of an

ecological community arising from individual-level

selection. We do not suggest that ecosystems or

ecological communities are units of selection (which

would require a population of multiple ecosystems

with heritable characteristics). Nonetheless, we ask

whether there exist conditions where individual

selection has emergent yet predictable consequences

for the organisation and efficiency of the system as a

whole (Levin 2011). Such questions are related to

questions regarding collective welfare in economic

systems under the assumption of individual utility-

maximising agents (Levin 2014), and the reciprocal

interaction of social behaviour with co-constructed

social structures, e.g. institutions, a.k.a. the agency-

structure debate, (Bator 1957, Ritzer and Goodman

2004).

(c) Evo-ego—implications for modifying heritability,

and the evolution of new evolutionary units:

Can evolution at one level of organisation favour the

creation of heritable evolutionary units that are

adaptive at a higher-level of organisation? That is,

can the evolution of reproductive organisations find

new heritable units that are suitable for responding to

selection at the higher level of organisation before

that level of organisation exists? (Trestman 2013).

Like the previous question, this is related to the

formation of social structures that change individual

incentives. But the outcome in this case is even more

radical—not merely the evolution of interaction

structures that incentivise cooperation in individuals,

but the evolution of reproductive dependencies that

create a new evolutionary unit, subsuming the Dar-

winian individuality of the original evolutionary

units. Moreover, not only do we ask whether indi-

vidual selection can create new evolutionary units,

but whether the new units it creates are effective at

facilitating adaptation at a higher level of organisa-

tion—or conversely, whether they frustrate further

adaptation.

In each case, the conventional answer seems to be—it

cannot. It is not possible for evolution by natural selection

to produce adaptations for an environment it has not yet

encountered, to produce organisation at the system level

without selection at the system level, or to create new units

that are adaptive for a level of selection that does not yet

exist.

Well-Understood Solutions in Learning Systems

We present the case that all of these behaviours that seem

impossible for evolutionary systems are possible, and that

necessary and sufficient conditions can be characterised.

We make this argument by recognising that analogous

behaviours are possible, and are well-understood, in

another domain—and because the underlying principles are

mathematically equivalent, specific results and insights

from one domain can be transferred to the other (Watson

and Szathmáry 2015). This is a domain where the idea of a

system that changes itself over time is not controversial—

namely, learning systems.

A learning system is a system that improves its perfor-

mance at some task with experience (Mitchell 1997). A

simple kind of learning (often likened to natural selection)

is reinforcement learning. This utilises a reward function to

reinforce good behaviour or good outputs (or punish bad

outputs) when they occur. An analogy between this type of

learning and evolution by natural selection is common and

intuitive (Maynard Smith 1986; Frank 1996; Skinner 1953;

Bateson 1979) and mathematical isomorphisms exists

between formal models of selection and formal models of

learning (Harper 2009; Shalizi 2009; Frank 2009; Valiant

2013; Chastain et al. 2014).

It is common to think of learning systems as sophisti-

cated machines (or intelligent organisms) with goal-di-

rected intentions designed for the purpose of producing

smart behaviours—which would make their abilities irrel-

evant to understanding evolutionary processes. But, in fact,

all of the phenomena relevant to our evolutionary questions

can be produced by intention-less algorithms with simple

incremental improvement mechanisms. However, note that

in a learning system the object of this incremental

improvement process is different from a conventional

optimisation process. Whereas a simple processes of opti-

misation (or incremental improvement) is usually applied

to a solution or output directly, a learning process opti-

mises a model of good solutions or outputs or an indirect

representation of solutions. Evolutionarily, this is like the

difference between adapting the parameters of a phenotype

directly (e.g. the traits of a phenotype) vs adapting the

parameters of a developmental process that produces fit

phenotypes (this is a distinction which is lost when we

assume a one-to-one mapping between genotype and phe-

notype). The learning process optimises the fit of the model

to the observations (or minimises the discrepancy between

the model and the observations) by incrementally adjusting

the parameters of the model. The significance of this is that

the model can then be used to recognise or generate new

examples that have structural similarities with those that

have been rewarded in the past but are not identical to

them, and relatedly, examples that are far apart in ‘solution
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space’ can be placed next to each in ‘model space’ (Watson

and Szathmáry 2015).

In advanced learning methods a model can be compli-

cated and mechanisms for approximating the parameters of

the model from observations can be quite sophisticated.

But quite often the model can be simple; for example, a

correlation model is a representation of how features in

good solutions ‘go together’ or correlate. In practise, this

often means making connections of some sort between

different elements of a solution (causing their useage in

solutions to become correlated). Correlation learning can

be implemented via a very simple learning principle that

adjusts the connections of such an organisation incremen-

tally (Hebb 1949; Ackley et al. 1985). Mechanisms suffi-

cient to learn a single correlation (between a pair of

variables) by reinforcement can be trivial, i.e. just change a

connection a small amount and see if it improves the out-

put. This does not require sophisticated data structures,

mathematical or statistical analysis, or complex computa-

tional machinery. Given variation in the connections of a

network (that affects correlations between problem vari-

ables), it is simply an incremental improvement process

applied to those connections. This is a crucial step-up from

an incremental improvement process acting on the solution

variables directly, however. Rather than merely finding

good outputs, a learning process finds the structure

underlying good outputs. It is this which enables new

phenomenology compared to a simple optimisation pro-

cess; For example, the ability to generate new patterns or

behaviours that are different from the ones it was trained on

but exhibiting the same underlying structure.

The consequences of correlation learning in larger sys-

tems can be surprisingly powerful. Under the right condi-

tions, correlation learning is sufficient for the behaviours

that seemed impossible for evolutionary systems (a, b and c

above):

(a) Learning systems can perform well at novel tasks,

i.e. tasks they have not previously been trained on.

(b) Learning systems can exhibit non-trivial collective

behaviours without system-level feedback on

performance.

(c) Learning systems can find new representations of a

problem, that facilitate task learning at a higher level

of organisation, before those higher levels of organ-

isation exist.

These behaviours, described below, are uncontroversial

and well-understood in learning systems, but knowledge

about the conditions for and capabilities of such phenom-

ena has not been previously transferred into evolutionary

theory. Our long-term aim is to develop a unified predictive

theory for these evolutionary questions by exploiting the

existing concepts and extensive existing results from

learning systems. It is the aim of the current paper to

reinterpret the key open questions in these different bio-

logical domains from this unifying perspective, to describe

how learning theory connects with these biological ques-

tions, and to review and synthesise our work thus far. In

particular, we draw these works together to address their

inter-related roles in major evolutionary transitions.

Toward Unifying Principles: Connectionism
and Evolution

Developmental, ecological and reproductive organisations

are structures that determine which things ‘go together’ and

which things are independent. Specifically, the organisa-

tion of developmental interactions governs whether it is

possible for multiple coordinated changes to occur in a way

that preserves their functional dependencies without caus-

ing multiple unwanted side-effects on other aspects of the

phenotype. Ecological interactions specify how a change in

the density of one species modifies the selective pressures

acting on other species and thus govern which species are

mutually exclusive and which can coexist, for example.

Reproductive organisations govern whether fitness differ-

ences among the components within evolutionary units are

suppressed and whether fitness differences between dif-

ferent evolutionary units can be inherited. Understanding

the evolution of developmental, ecological and reproduc-

tive organisations thus requires that we understand how

evolution alters which things vary together, which things

are selected together and which things are inherited toge-

ther, respectively.

Connections and Correlations in Biological

Networks

It is common to describe developmental and ecological

interactions as networks (e.g. a gene-regulation network or

food web/community matrix, respectively). These net-

works describe who interacts with whom, in what way and

how much (i.e. how one gene-expression level affects

changes in the expression of other genes, or how the den-

sity of one species affects the population growth of another

species). Whilst it is not as common to describe repro-

ductive dependencies as networks, these relationships also

have the basic property of controlling how the inheritance

of one evolutionary unit is, or is not, independent of the

inheritance of another evolutionary unit. It is therefore

useful to characterise all three (developmental, ecological

and reproductive) organisations as networks. We can then

ask how the structure of that network (topological changes

including the strength and sign of connections, in some
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cases) change over evolutionary time, and how those

structural changes then modify evolutionary processes.

When the structure of a network affects the dynamics

that occur on it, and the dynamics that occur on the net-

work affect changes to network structure, this is known as

an adaptive network (Gross and Sayama 2009), e.g. where

agents on a network can both choose behavioural strategies

that are suitable for the current organisation, and can also

choose to re-wire connections on the network to suit the

current behaviours (Jackson and Watts 2002; Pacheco et al.

2006; Traulsen et al. 2008; Van Segbroeck et al. 2010). We

argue that developmental, ecological and reproductive

organisations (like other complex adaptive systems, Farmer

1990) exhibit this two-way property.

More specifically, we investigate the hypothesis that the

evolution of developmental, ecological and reproductive

organisations are all subject to the same underlying

organisational principle, a simple principle of positive

feedback between the topology of an interaction network

and the behaviours that the network structure governs. That

is, a connection between two components or nodes in this

network causes them to exhibit correlated behaviour, and

when nodes have correlated behaviours this causes natural

selection to create or strengthen the connection between

them. In short, entities that co-occur together ‘wire’ toge-

ther (and entities that wire together co-occur together). For

example, (as expanded below) genes that are selected

together are wired together via the evolution of gene-reg-

ulatory interactions that cause them to co-vary (be co-ex-

pressed) in future, species that co-occur in high-density are

wired together by the evolution of ecological relationships

that cause them to be co-selected in future, and evolu-

tionary units that reproduce together are wired together by

changes to reproductive relationships that cause them to be

co-inherited in future. Empirical observations are consis-

tent with this simple positive feedback principle and in this

paper we present theoretical support for each of these

cases:

(a) Evo-devo: The more often that two genes are selected

together (at the same time/in the same environment)

the more selective advantage there is to strengthening

developmental interactions between them. This

organisational change causes their expression in the

phenotype to be correlated in future (e.g. via an

increase in the gene-regulatory connection between

them; Wagner et al. 2007; Pavlicev et al. 2011;

Watson et al. 2014; Kashtan et al. 2009). See also, for

example, the principle of ‘coevolution of coexpressed

traits’ and conversely ‘the rule of independent selec-

tion’ (West-Eberhard 2003).

(b) Evo-eco: The more often that two species popula-

tions grow to high-density together (at the same

time/in the same environment) the more selective

advantage there is for individual traits that

strengthen ecological interactions between them.

These interactions change in a way that causes their

population growth to be more correlated in future,

e.g. via reductions to competitive interactions

between them (Lewis 2009; Power et al. 2015).

For example, this type of feedback is part of the

backstory involved in ‘invasional meltdown’ (Gal-

lardo and Aldridge 2015; Simberloff and Von-Holle

1999) where species that have been in prolonged

contact with one another in one environment facil-

itate one-another’s invasion into another environ-

ment because they ‘‘have had a long evolutionary

time to develop a cosy relationship with each other’’

(Gallardo and Aldridge 2015). This might involve

character displacement that reduces niche overlap

when species are driven into contact (Brown and

Wilson 1956; Dayan and Simberloff 2005).

(c) Evo-ego: The more often two evolutionary units

reproduce together (at the same time/in the same

environment) the more selective advantage there is

to individual traits that strengthen reproductive

dependencies between them. Such reproductive

interactions (controlled by individual selection in

either participant) cause their reproduction to be

more strongly correlated or centralised in future (e.g.

via evolution of co-dispersal behaviours or vertical

inheritance) (Watson et al. 2009b, 2011b, submit-

ted). For example, the ‘free-living’ ancestors of

eukaryote organelles initially evolved close symbi-

otic relationships with the host cell (they were still

separate evolutionary units at this stage, but repro-

ducing together), and latterly became reproductively

centralised and synchronised (Margulis 1981, 1993).

The consequence of this positive feedback is captured

by a principle of correlation becomes causation. That is,

variables (phenotypic characters, species populations,

evolutionary units) whose behaviours originally co-varied

because of a correlated external stimulus (or by accident, or

because of selection acting at a lower level) come to have

behaviours that co-vary because of their internal interaction

structures (i.e., developmental interactions, ecological

partnerships or reproductive dependencies). In the devel-

opmental domain, Riedl describes this observation as the

evolution of developmental architectures that ‘‘mimic’’ the

functional constraints on phenotypes (Riedl 1977; Wagner

and Laubichler 2004). See also the conversion of alternate

‘‘ecosystem states’’ (configurations that are forced by

changes to environmental conditions) into alternate

‘‘community states’’ (configurations that are intrinsic

attractors of the ecological population dynamics) (Beisner
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et al. 2003; Power et al. 2015), and the concept of sym-

biogenesis in the evo-ego domain (Margulis 1981, 1993;

Maynard Smith and Szathmáry 1995).

Although this positive feedback between topology and

behaviour (organisation and evolution) is simple when

considering individual connections between a pair of

entities, the consequences of this principle for the dynamics

of larger systems is much more interesting but not imme-

diately obvious. However, connectionist models of learning

and memory have characterised the capabilities and limi-

tations of learning models based on this type of feedback in

great detail. Such connectionist models can thus be used to

recognise common principles across multiple domains

(Farmer 1990). We show how this can be used to advance

our understanding of this feedback principle in evolution-

ary systems—hence, evolutionary connectionism. More-

over, we argue that the different consequences of this

feedback in evolutionary systems (affecting developmen-

tal, ecological and reproductive networks) have specific

analogues in different applications of correlation learning

(namely, reinforcement correlation learning, unsupervised

correlation learning and deep correlation learning, respec-

tively) that help us to understand how natural selection

changes the processes of variation, selection and inheri-

tance, respectively, in evolutionary systems.

Connectionism in Cognitive Science

Connectionism is an approach to cognitive modelling that

attempts to explain the cleverness of cognitive processes not

by ascribing sophistication to the individual component parts

(such as individual neurons) but to the organisation of the

connections between them (Garson 2015). Artificial neural

network models provide a mechanistic basis to this idea

(Hinton et al. 1986; Rumelhart et al. 1986). The field of

artificial neural networks has been extraordinarily successful

in providing a substantially different way of conceptualising

the possible machineries of memory, learning, perception

and problem solving as decentralised and distributed pro-

cesses (Clark 1995; Hinton et al. 1986). They have also been,

and continue to be, extremely successful in providing prac-

tical machine learning methods for classification, pattern

recognition, clustering, data compression and optimisation

in innumerable application domains (Rumelhart et al. 1986;

Hinton and Sejnowski 1999; O’Reilly and Munakata 2000;

Hinton 2007), thus demonstrating that such distributed and

decentralised mechanisms can exhibit computationally

powerful collective behaviours.

The kind of neural networks that are relevant here are

very simple and very well-studied. Such a network is

characterised by a number of nodes, in a network of con-

nections, where the activation of each node is a non-linear

weighted sum of the input activations it receives from other

nodes (note that in gene networks, the expression potential

of a gene is generally modelled as a non-linear weighted

sum of expression potentials of other genes, and in eco-

logical networks the rate of growth of a species is often

modelled as a non-linear weighted sum of other species

densities; Watson et al. 2014; Power et al. 2015). The

Hopfield network, in particular, has been used as a model

for dynamical systems and emergent collective behaviours

in many different domains (Hopfield 1982). This is a net-

work where every node is potentially connected to every

other node bi-directionally. Neural network models are

useful to us in this context because they show that -

(1) Many interesting and non-trivial collective beha-

viours can arise from a network of individually

simple components if the connections between them

are appropriately organised.

(2) Organisations sufficient to produce such behaviours

can arise from very simple learning mechanisms that

modify connections incrementally.

These learning mechanisms gradually modify the

organisation of the system by incrementally adjusting the

strength of connections in the network. Modifying con-

nection strengths in this manner has the effect of altering

the correlation between the activation of one node and the

activation of another. A positive connection produces

positive correlation in the activation of the nodes it con-

nects; conversely a negative connection means that when

one is activated the activation of the other is suppressed.

Adjusting connections in this manner is therefore a type of

correlation learning (Hinton and Sejnowski 1999). This

type of learning is just a way of implementing the very

general idea of associative learning which has influenced

cognitive modelling for centuries (Kallich 1945), i.e.

learning which objects or ideas go together, or learning

which stimuli go together with which outcomes, or beha-

viours with rewards.

In practice, neural network learning methods often cal-

culate the appropriate change for each connection based on

the observed error, i.e. the difference between desired and

actual outputs—see, e.g. the Delta Rule and Back-Pro-

pogation algorithms (Rumelhart et al. 1986). Such super-

vised learning assumes that information is provided about

what the correct output is during training. But this is not

necessary. Correlations can also be learned via reinforce-

ment learning without a priori knowledge about what the

correct output is. This can be as simple as modifying

connections at random and retaining modifications that

improve the output. Whether it is by trial and error (rein-

forcement learning) or by such supervised learning calcu-

lations, the direction of change that provides improvements

is the same (at least in the limit where changes affect one

connection at a time). Accordingly, an equivalence with the
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action of natural selection can be verified (Valiant 2013;

Watson et al. 2010a). In addition to improving the output of

the system immediately, the consequence of such learned

connections on the future behaviour of the system is to

make those combinations of outputs that were rewarded in

the past more likely to occur again in future (i.e. positive

feedback on correlations). The subsequent behaviour of the

system is thus partly determined by the current inputs at

that point time, but partly determined by the past experi-

ence of the system recorded, in a distributed manner, in the

network of relatively slow-changing interactions.

In contrast to supervised and reinforcement learning,

some learning mechanisms are unsupervised which means

they do not use a task-based performance metric at all

(Hinton and Sejnowski 1999). One very well-known

example of this employs a type of Hebbian learning (Hebb

1949), often paraphrased as ‘neurons that fire together wire

together’—meaning that the synaptic connection between

two neurons is strengthened when the neurons are both

stimulated at the same time (e.g. by the same input or

stimulus). Under Hebbian learning, the direction of change

in the connection is determined by the current output of the

system (e.g. whether the two neurons are currently firing)

not by a task-specific performance metric. This type of

unsupervised learning mechanism is equivalent to rein-

forcement learning that favours amplification (increase in

magnitude) of the current outputs regardless of what they

are (i.e. their signs). Because this amplification is enacted

through changes to connections rather than independent

variables, it has the consequence of reinforcing combina-

tions of values in the current output. This causes those

combinations of outputs to become more stable and resi-

lient to perturbation. That is, if one or a small number of

the system variables are changed, the weighted connections

from other variables that have not changed will force it to

change back (or will reduce the external input necessary to

change it back). For a given distribution of initial condi-

tions, this means that that particular combination of values

is more likely to re-occur (in dynamical systems terms, the

initial conditions that lead to a particular attractor state is

the ‘basin of attraction’ for that pattern, and the effect of

this type of learning is to increase the size of this attractor

basin, i.e. to increase the number of initial conditions that

lead to that attractor). Thus, whereas reinforcement learn-

ing strengthens correlations that are good (making changes

that improve rewards and make good combinations of

outputs more likely to occur in future), unsupervised

learning merely strengthens correlations that are frequent

(making changes that amplify or stabilise the current output

and make those combinations of outputs more likely to

occur again in future).

Hebbian learning is a fully distributed learning mecha-

nism (i.e. the change in a connection is a function only of the

activation in the two nodes it connects) and the change is not

a function of system-level performance or any other system-

level quantity. This type of learning nonetheless has pre-

dictable consequences for the behaviour of the network as a

whole. In particular, it effectively ‘internalises’ correlations

that are frequent in the input, i.e. two neurons that originally

fired together because they frequently responded to the same

external inputs, subsequently fire together because of the

synaptic connection that has been strengthened between

them. This causes the internal structure of the learning sys-

tem tomimic or ‘mirror’ the structure of patterns observed in

the input/external environment (i.e. learning which features

of the input co-vary and which are independent), and the

activation dynamics of the system to recreate patterns of

activation that are ‘familiar’ given its past experience. This is

called an associative memory (Hopfield 1982) which has

many interesting properties: the ability to store and recall

multiple activity patterns, to recall patterns of activation

from partial stimuli, to cluster data points into intrinsically

similar groups, to classify novel patterns into such cate-

gories, to repair corrupted patterns (toward the nearest

training pattern), to generate generalised patterns based on

structural similarity, perform dimensional reduction/data

compression, and to produce idealised exemplars of class

from noisy or corrupted training samples (Hopfield 1982;

Hinton and Sejnowski 1999). All of these functions are

consequences of the simple incremental changes to con-

nections that reinforce frequent correlations.

Correlation learning is thus based on the same positive

feedback between topology and behaviour that we

observed in the other biological networks. That is, neurons

whose behaviours originally co-varied because they were

rewarded at the same time, or co-varied because of a

common external stimulus, come to have behaviours that

co-vary because of their internal interaction structures (i.e.,

synaptic connections). In the context of connectionist

models of learning, it is clear that there are many inter-

esting and well-understood consequences for the subse-

quent behaviour of the system that follow directly from this

basic principle. Crucially, these consequences follow

inevitably from this basic principle and are not special to

neural networks; any network that exhibits this same

principle at the level of individual connections, will also

exhibit the same system-level behaviours. In other words,

the learning algorithm that is implemented in artificial

neural networks is substrate independent and will thus be

instantiated in any network that has the same kind of

positive feedback.

‘‘Evolutionary Connectionism’’

We introduce the term ‘‘evolutionary connectionism’’ to

recognise that, by processes that are functionally equivalent
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to connectionist models of memory and learning, natural

selection acting on the relationships within and between

evolutionary entities can result in organisations that pro-

duce complex system-level behaviours in evolutionary

systems and improve the adaptive capabilities of natural

selection over time. The basis of evolutionary connec-

tionism is that the simple principle of positive feedback on

the organisation of a system, well-understood in the context

of neural network models, is also common to the evolution

of developmental, ecological and reproductive organisa-

tions. This has the potential to unlock a well-established

field of research, with specific conceptual and mechanistic

models and results, which can be utilised to understand the

evolution of biological organisations under natural selec-

tion (Farmer 1990). In particular, this framework helps us

to make sense of the bi-directional feedback between

evolutionary processes and structural organisations, and

also to understand how the consequent changes to the

organisation of the parts modifies the collective behaviour

and optimisation of the whole. Hence it provides a theo-

retical framework where we can begin to understand how it

is possible for the Darwinian machine to change its own

operational mechanisms over time, and how this can

improve its ability to produce adaptive change by inter-

nalising and exploiting past experience.

It is not too difficult to see that, given heritable variation

in interactions and selection, evolving systems will exhibit

changes to connections analogous to correlation learning

by reinforcement (Watson et al. 2010a; Valiant 2013;

Watson and Szathmáry 2015). The evolutionary conditions

that correspond to reinforcement learning are simply those

that reward changes to interactions that improve fitness

(e.g. changes to a gene network that increase fitness by

changing the gene expression pattern/phenotype that the

network produces, Watson et al. 2014).

If the current output of the network is already the

desired output of the network, or even the locally optimal

output, then the distinction between reinforcement learning

and unsupervised learning is moot (i.e. reinforcing the

current behaviour and reinforcing the good behaviour is the

same). Unsupervised correlation learning is a suit-

able model for evolutionary change in such cases. For

example: (1) When selection favours increased robustness.

Although there may be other quite different phenotypes

that are higher in fitness to the current phenotype, local

selective gradients may nonetheless favour changes to

network structure that amplify the current phenotype or

reduce phenotypic variability. If this is enacted by chang-

ing correlations (i.e. reinforcing the co-occurrence of fea-

tures that already co-occur) and not merely by removing

variability from individual features, this is equivalent to

unsupervised correlation learning. Selection for robustness

is another way of saying that the current output is the

desired output, but in a locally optimal sense (i.e. all small

variations are inferior). (2) The effect of individual-level

selection acting on interactions between different evolu-

tionary units within collectives (e.g. individuals within an

ecological community). Because individuals adopt beha-

viours that (locally) maximise individual fitness, individual

selection favours variations that enable them to retain their

current behaviour (or do more of the same behaviour). This

is not, in general, good for the fitness of the collective (the

sum of individual fitnesses); whenever individual beha-

viours are subject to a social dilemma, the behaviours

adopted under individual selection do not maximise col-

lective fitness. Nonetheless, in reinforcing the current

behaviour of each individual the configuration of the col-

lective is made more stable or robust. If these changes are

enacted by altering the coordination of social behaviours

with other individuals, and not merely by altering indi-

vidual behaviours, this is equivalent to unsupervised cor-

relation learning at the system level; i.e. reinforcement

learning at the individual level can produce unsupervised

learning at the system level (Power et al. 2015; Watson

et al. 2010a). This is yet another way of saying that the

current behaviour is the desired behaviour—but here the

point is that the current behaviour of the system is the

locally desirable behaviour for individuals even if it is not

‘the desirable behaviour’ for collective fitness. In sum, both

reinforcement correlation learning and unsupervised cor-

relation learning mechanisms can occur in evolutionary

systems; unsupervised correlation learning results from

selection for robustness at the system level or from selec-

tion acting at a lower level (maximising the utility of the

components rather than the collective).

It is not a coincidence that learning systems and

evolving systems exhibit the same organisation principles.

The reason that connections are changed by reinforcement

(or unsupervised) learning in the direction that they are is

because that is the direction that improves the output of the

system (or amplifies the current output). And the reason

that natural selection evolves changes to connections in the

same direction is because that is likewise the direction that

improves the output of the system (or retains its current

fitness levels). It is simply the result of selection for good

or non-worse patterns of correlation. By adopting structural

configurations that mimic the selective environments they

have experienced, or by canalising their current response to

it, they can increase fitness or prevent it from being

decreased. The consequence of these selected changes is

that evolving systems internalise information about the

environment (e.g. what combinations of phenotypic fea-

tures are fit, or what combinations of species can coexist

given the prevailing abiotic conditions).

In fact, this kind of change is so basic and natural that it

occurs spontaneously in any dynamical system built from a
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network of malleable interactions—in this sense, neural

and evolutionary organisations are both examples of the

same underlying principles. For example, even a purely

physical system of particles and springs, where the springs,

as well as being elastic, are also slightly plastic (e.g.

weaken with stress), will exhibit this type of positive

feedback (we assume that the spring constants change

slowly compared to changes in the particle states that they

control). This does not require natural selection; rather,

spring-changes merely minimise energy (i.e. adopt a con-

figuration that causes them to do less work, a.k.a. wearing

out or deforming under forcing) given the structure of the

perturbations exerted on them by the environment. We

argue that organisations evolving under natural selection

necessarily follow the same basic principle. Each adopts an

organisation that reflects the structure of the environment

that they are exposed to because organisations that do not

will be changed by the action of the environment (Ashby

1956, 1960; Godfrey-Smith 1994; Gell-Mann 1994).

Whereas the consequences of this type of feedback in

developmental, ecological and reproductive organisations

is very poorly understood, the consequence of this type of

feedback in neural networks has been thoroughly charac-

terised by decades of research. This enables us to under-

stand how the action of this feedback on individual

connections modifies the organisation and dynamical

behaviour of the system as a whole—in particular, its

problem solving or optimisation capabilities.

Learning How to Adapt

A learning system improves its performance at some

behaviour (e.g. classification, clustering, foraging) by

incrementally optimising the parameters of that behaviour.

Although the behaviour being improved is not usually an

optimisation process, it can be. Our recent work shows how

a learning system can learn how to optimise more effi-

ciently and effectively over time by beneficially biasing the

parameters of the optimisation process (Watson et al.

2010b, 2011a, b). For an optimisation process based on

trial and error (formally, ‘generate’ and ‘test’, Watson et al.

2011b), there are logically two different ways in which the

trajectory of the search process through solution space can

be biased: (a) by changing the test function or selection

function, i.e. the way new solutions are evaluated or their

apparent value, or (b) by changing the way new solutions

are generated. Intuitively, changing the apparent value of a

solution (e.g. by artificially increasing the value of certain

combinations of variables that are ‘familiar’ given past

experience), may enable an optimisation process to escape

a local peak in a reward function by raising the value of

some points and/or lowering others. Whereas, changing the

way solutions are generated (e.g. by re-using a particular

combination of variables, i.e. a module, and substituting it

for another) may enable an optimisation process to escape a

local peak in a reward function by creating directed

‘jumps’ in solution space (Watson et al. 2011b).

Learning How to Adapt by Changing the Selection

Function

This approach can be demonstrated by combining two

previously unrelated behaviours, each independently well-

understood in the Hopfield network but not previously

brought together (Watson et al. 2009a, 2010b):

(i) The connections of a (non-learning) network can be

defined to represent the constraints of a constraint

optimisation problem, and running the network

with this interaction structure causes it to find

activation patterns that are locally optimal solutions

to that problem (Hopfield and Tank 1985, 1986).

(ii) A learning network shows an ability to form a

generalised memory of past experience by inter-

nalising correlation structures observed/experi-

enced in that environment (Hopfield 1982,

Fontanari 1990).

Combining these two behaviours in the same network

(but on different timescales) defines an interesting new

kind of dynamical system. This combines fast state

dynamics (with occasional perturbations) and relatively

slow changes to connections. Initially the behaviour of the

activation dynamics merely finds locally optimal solutions

to the problem, as in (i). But at the same time the network

is learning. It is not learning a predefined set of patterns as

in (ii), however. Rather it is mimicking the patterns of

activation that are found at locally optimal configurations.

We call this a self-modelling system (Watson et al. 2010b)

because the changes to its connections effectively form an

associative memory of its own behaviour. This bidirec-

tional feedback between the behaviour of the system and

the organisation of the system means that as the organi-

sation of the network begins to change, it changes how the

system behaves, and hence changes the solutions that it

finds. Specifically, we show that this causes the system to

find better solutions more reliably over time, and can

enable it to find high-quality solutions that would otherwise

be, not just found less frequently, but highly unlikely to be

found at all (Watson et al. 2010b). In some cases, unsu-

pervised correlation learning (or equivalently, reinforce-

ment learning applied at the component level), is sufficient

to attain these behaviours.

The explanation of why a self-modelling system finds

better solutions over time has three parts (Watson et al.

2009b, 2010b, 2011a). First, in systems involvingmany low-

order (e.g. pairwise) constraints, the size of dynamical
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attractors (if there are multiple attractors) is positively cor-

relatedwith their depth (i.e. low energy attractor states can be

reached from more initial conditions than higher energy

attractor states). For this not to be the case the slope of the

energy landscape would have to be arbitrarily steep, and this

cannot be the case when the energy function is built from the

sum ofmany low-order, e.g. pairwise, interaction terms each

of limitedmagnitude. Second, the positive feedback between

the activation dynamics on the network and changes to the

topology of the network means that configurations that are

most frequently observed are most frequently reinforced.

Given the first point, this increases the likelihood that the

system finds good configurations that it has found in the past,

and decreases the likelihood that it will find inferior solutions

over time. Third, andmore interestingly, correlation learning

forms a generalised associative memory of a set of patterns

(Fontanari 1990) and not just a ‘rote’ memory. This means

that if there is an underlying structural regularity common to

easy-to-find locally optimal solutions that can be represented

in a correlation model, then the structure that the network

learns will reflect the correlation structure of those patterns

and not the patterns per se. The network is therefore able to

favour novel patterns with this underlying regularity and is

not merely limited to favouring the specific patterns it has

already discovered. Thus, by mimicking the correlation

patterns observed in the problem the system can generalise

over a distribution of easy-to-find locally optimal solutions

to enlarge the basin of attraction for exceptionally high-

quality solutions even before such solutions have been vis-

ited for the first time (Watson et al. 2010b). In terms of

adaptive systems more generally, these conditions create a

link between simple habituation behaviours (that canalise

the current system state or make it more robust) and adap-

tation that generates and exploits novel configurations that

may be superior to any previously experienced past state. In

evolutionary terms, this is the link between robustness and

evolvability.

Computationally, this is a simple form of model-build-

ing optimisation (Pelikan et al. 1999; Hauschild and Peli-

kan 2011). These are techniques that learn a model of the

problem structure and then use this structure to find better

solutions to the problem. But in this case, this occurs

without using specialised machine learning mechanisms. It

uses only very simple positive feedback principles, based

on incremental changes to connections that are generic

across a broad range of adaptive networks (Watson et al.

2010b, 2011a; Mills 2010).

Learning How to Adapt by Changing the Generate

Function (‘Deep Optimisation’)

Although the optimisation capabilities of self-modelling

dynamical systems are demonstrably superior to those of

non-learning networks, the capabilities of non-hierarchical

systems are limited. Specifically, if a problem has struc-

tural regularities that cannot be represented in pairwise

correlations, incremental modification of pairwise con-

nections will not be able to capture or exploit this regu-

larity. However, deep or multi-layered networks (Hinton

2007; Rumelhart et al. 1986) can represent higher-order

structural regularities that cannot be represented in single-

level networks.

The problem-solving principles underlying deep learn-

ing are related to problem decomposition and ‘chunking’

(Mills 2010; Mills et al. 2014; Watson 2006), i.e. breaking

a complex or high-dimensional problem down into more

manageable sub-problems and then assembling together

the solutions to these sub-problems in different ways to

solve larger problems, and so on. The tricky thing is how to

do this ‘bottom-up’ i.e. without a teacher, providing

knowledge of how to decompose the problem, to guide the

learner through the necessary steps. In neural networks, this

type of hierarchical learning is recently referred to as ‘deep

learning’ (Hinton 2007; Hinton et al. 2006; Hinton and

Salakhutdinov 2006), but the ambition to build deep

learning models has been around a long time, e.g. by

building networks with many layers; each layer taking

inputs from the previous layer, transforming it into a new

representation, and passing that on the next layer

(Rumelhart et al. 1986). In these cases the overall learning

task is often supervised (i.e. a performance metric on the

output layer is used). However, the trouble with conven-

tional approaches is that assessing the error on the output of

the network massively underdetermines the changes that

are required on intermediate layers (a.k.a. hidden layers) of

the network (Rumelhart et al. 1986; Hinton 2007). That is,

there are many different possible intermediate representa-

tions that can give the same outputs for a given input (but

only some of these will generalise well). Moreover, it is not

clear how to devise an appropriate supervised learning

function that operates directly on the intermediate layers

(that is, an intermediate representation that is ‘correct’ for

one output layer may be useless for a different output

layer). An exciting new development in neural network

research, Deep belief networks (Hinton et al. 2006; Hinton

2007), has revived interest in deep learning by providing a

new approach to this problem. This technique uses unsu-

pervised learning to build intermediate levels of represen-

tation one at a time, and ‘freezes’ what has been learned in

each layer of connections before the next level of organi-

sation is added on top. This exploits the ability of unsu-

pervised learning to find representations that mimic the

intrinsic structure of the problem (without feedback on

performance) to reduce the dimensionality of the problem

before higher-level layers are constructed. This low-di-

mensional representation can make task-learning at the
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next level easier, and thus provides good generalisation for

supervised learning at a higher-level of the network even

though that level of the network didn’t exist at the time the

lower layer was learned. In this manner, a combination of

unsupervised and supervised learning is far more compu-

tationally efficient than either alone.

Using these deep learning ideas to improve an optimi-

sation process leads to what we might term deep optimi-

sation (closely related to multi-scale search, Mills et al.

2014). The idea here is a process that first uses a simple

hill-climbing optimisation process to find local optima,

then learns and exploits low-order regularities over a dis-

tribution of these optima to find better optima, then learns

higher-level regularities from a distribution of these optima

to improve optimisation further, and so on. We have

demonstrated that this type of learning can efficiently solve

optimisation problems that are provably difficult for single-

scale search (Mills 2010; Mills et al. 2014). This technique

exploits the multi-scale aspect of an individual-based evo-

ego model (Watson et al. 2009b, Watson et al., submitted)

and implements it in a machine learning method (without

the need for an individual-based simulation model). Rela-

ted but more sophisticated principles are involved in

grammar-based optimisation methods. Here a schema

grammar, representing the hierarchical correlations

observed in a distribution of above-average solutions, is

learned and exploited to re-scale the search process at a

higher level of organisation (Cox 2012; Cox and Watson

2014).

A deep optimisation approach can also be implemented

in a fully distributed neural network model using only local

learning mechanisms. This is an extension of the self-

modelling dynamical system above and learns connections

in exactly the same way, i.e. by reinforcing connections

that are frequently observed at local optima. The difference

is in what the connections mean—their causal role in the

dynamics of the system behaviour. In the simpler self-

modelling system, changes to connections have the effect

of altering the fitness function of the optimiser, or equiv-

alently, the energy function of the dynamical system—

making familiar configurations lower energy (i.e. more

likely to be retained). In the ‘deep’ version of the self-

modelling dynamical system (a.k.a. ‘‘rHN-g’’, Watson

et al. 2011b), changes to connections do not alter the

energy function but they alter the way movements in

configuration space are sampled. Specifically, the learned

links are used to create clusters of state variables that vary

in a coordinated fashion. These higher-level units, or

modules, change subsets of variables simultaneously, and

these multiple state changes will either all be kept or all

rejected, as a unit, depending on the change in energy/fit-

ness that they confer. This enables directed jumps in con-

figuration space—changes to many variables that may be

beneficial in combination even if each individual variable-

change involved is individually deleterious. Higher-level,

clusters of clusters can be created recursively or hierar-

chically in the same way. This has been shown to solve

modular constraint problems that cannot be solved by self-

modelling networks that do not have the ability to do this

recursive encapsulation (Mills 2010; Mills et al. 2014;

Watson et al. 2011b). These optimisation techniques pro-

vide a solution to the problem of inventing a representation

that makes a problem easy to solve by recoding the original

high-dimensional problem into a lower-dimensional rep-

resentation of the problem space (Watson et al. 2011b).

The positive feedback principle is still apparent in the way

connections are learned and used; i.e. variables whose

values are frequently correlated become ‘wired’ together in

such a way that, after they have been connected, they

cannot vary independently—they are transformed into a

new emergent or higher-level state variable.

Importantly, the reason that a new connection is made is

not, and cannot be, because this connection will, at some

point in the future, provide jumps in configuration space

that are adaptive; a benefit that has not yet happened cannot

be the reason the connection was made. The connections

that are made simply canalise the co-occurrence of vari-

ables that already co-occur (and are therefore close to

neutral at the time they are made). Over a distribution of

local optima, the connections that are most robust (most

often neutral) are retained by the learning algorithm and

those that are less robust (occasionally deleterious) are

removed. This deep optimisation technique thus exploits

the unsupervised correlation learning principle of deep

learning: connections that canalise existing correlations

reduce the dimensionality of the problem space in a way

that is effective in enabling adaptive jumps in configuration

space (or movements in a higher-level representation of the

problem), even though those higher-level jumps have not

yet occurred.

Together these works show that learning can improve

optimisation. This can be achieved by using learning to

bias selection, i.e. altering the effective energy function (or

the fitness function) that controls the dynamics of the

system. Or it can be achieved by using learning to bias the

movements that are sampled in configuration space, e.g. by

exploiting modularity or, in particular, by collapsing sub-

sets of variables into higher-level emergent variables

(Watson et al. 2011b). The deep optimisation provided by

changing the generate function has optimisation capabili-

ties that cannot be exhibited by changing the selection

function. Next we argue that these different types of con-

nectionist learning are implemented in the evolution of

different types of biological organisations, and that they

have analogous consequences for the adaptive capabilities

of evolution by natural selection.
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Evolutionary Connectionism and the Level

of Evolutionary Unit

We argue that specific but different types of correlation

learning are directly relevant to understanding the evolution

of developmental and ecological organisations, and to

understanding how they work together with the evolution of

reproductive organisations in the evolutionary transitions.

The evolution of developmental and ecological organi-

sations are very different from each other because of the

level of organisation that constitutes the evolutionary unit

in these two cases. Developmental networks, controlling

the combinations of features that co-occur in phenotypes,

are selected as a single evolutionary unit; selection applies

at the level of the whole network and changes in the

organisation of the network can be selected because of the

differences they confer on the phenotypes that are pro-

duced. This is the analogue of reinforcement correlation

learning. In contrast, ecological networks are not evolu-

tionary units, and when we talk about the evolution of the

ecological network we just mean the changes, caused by

evolution, that occur as a consequence of natural selection

acting on the composition of each species within the eco-

logical community individually not as a composite unit (in

short, no group selection here). Because selection occurs at

the individual level and not the system level, this is the

analogue of unsupervised correlation learning—selection

does not act to increase collective fitness (in general) but in

acting to increase individual fitness (by changing commu-

nity interaction terms) it can have the (side-)effect of sta-

bilising the current ecological composition or increasing

ecological robustness. Interestingly, the observation that

selection for robustness at the system level also follows

unsupervised learning principles seems to imply an

underlying equivalence between selection for robustness at

the system level and selection that acts on components

below the system level—e.g. selection that favours mod-

ularity or features that are independently beneficial is

closely related to selection that favours robustness at the

system level. But importantly, system robustness produced

by changes to interactions does not simply remove vari-

ability, but shapes or directs variability at the system

level—in the same way that unsupervised correlation

learning mimics correlations in the input.

Our work described below suggests that the evolution of

developmental and ecological interactions are both analo-

gous to self-modelling systems that alter the selection

function—but whereas changing ecological interactions

explicitly alters selection on evolutionary units by altering

the relationships they have with other units (ecological

relationships between species in the community), changing

developmental interactions alters ‘selection’ on compo-

nents that are internal to the evolutionary unit (e.g. on

gene-expression potentials within the organism). The latter

has the effect of biasing the phenotypic variation that is

produced at the system level, i.e. by changing the co-oc-

currence of traits in the phenotype.

The evolution of reproductive relationships is not cap-

tured by any one level of evolutionary unit—neither the

system as awhole nor the individual components. Rather, the

evolution of reproductive relationships is precisely con-

cerned with changes in the evolutionary unit—changes that

convert multiple evolutionary units at one level of organi-

sation into a new evolutionary unit at a higher level of

organisation. These changes must be driven by the lower

level evolutionary unit—the higher level unit cannot be

driving the evolutionary process before it exists (Ryan et al.

2015). We argue that this is analogous to the incremental

addition of new layers of organisation in deep learning

(combining unsupervised and supervised correlation learn-

ingmechanisms applied at successive scales of organisation)

or to the rescaling of the optimisation process as per the

distributed deep optimisation models. This biases the com-

binations of particles that are created in a more radical

(multi-scale) manner than the evolution of developmental

interactions (Watson et al. 2011b). Specifically, whereas

developmental organisations bias phenotypic variability (by

recreating specific phenotypic patterns through the organi-

sation of internal selection or context-sensitive differential

growth between components) (Laland et al. 2014), repro-

ductive organisations can bias genetic variability (by

enabling the combination of genetic differences in a col-

lective to be inherited to descendent collectives as a unit and

supressing internal differential selection between them).

Accordingly, although evo-devo, evo-eco and evo-ego

domains each have their own special characteristics, there

are methodological reasons to study them as a set:

(1) They have common underlying principles that can be

captured by adaptive networks. In particular, a

positive feedback between topology and behaviour

(i.e. correlated behaviours result in the evolution of

stronger network interactions which in turn produce

more strongly correlated behaviours, and so on).

(2) Learning theory offers detailed knowledge about the

consequences of this type of positive feedback in

networks, namely correlation learning—offering

unifying principles for studying the evolution of

these three classes of biological networks.

(3) Learning theory also offers well-studied variants of

correlation learning (reinforcement correlation learn-

ing, unsupervised correlation learning and deep

correlation learning) that apply to developmental,

ecological and reproductive organisations, respec-

tively—offering principles that help us understand

the algorithmic distinctions between the three cases.
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Studying them as a set is also motivated by their com-

plementary roles in the major evolutionary transitions:

(4) Taken together, developmental, ecological and

reproductive organisations cover the evolution of

the necessary and sufficient components of the

Darwinian machine, namely, variation, selection

and inheritance, respectively.

(5) The three organisations are complementary in the

level of evolutionary unit they address: evolution of

a network as a single evolutionary unit (evo-devo),

evolution of multiple evolutionary units within a

network (evo-eco), and evolution that changes the

evolutionary units (subsets of nodes become single

nodes) (evo-ego).

(6) Together they control how information about the

selective environment (e.g. what things ‘go

together’) is broken-up into smaller pieces (evolu-

tion of developmental modularity or ecological

independence/community structure) and put together

into larger systems (evolution of developmental and

ecological dependencies), and ultimately re-scaled to

enable evolutionary adaptation to be reinstantiated at

a higher level of biological organisation (via evolu-

tionary transitions).

A summary of the unifying themes and their relation to

principles of connectionist learning is given in Table 1.

In the following sections we briefly discuss how our

work using this framework is beginning to answer the

motivating questions in evo-devo and evo-eco. We then

discuss our preliminary work on the evolution of new

evolutionary units and major transitions in more detail.

Developmental Organisation and Evolvability

Rupert Riedl, one of the founding pioneers of the field we

now know as evo-devo, suggested that body plans and

developmental constraints evolve to mimic the structure of

the constraints imposed on the phenotype by the environ-

ment (Riedl 1977; Wagner and Laubichler 2004). Only

recently has theoretical work caught-up with this intuitive

idea. Toussaint and von Seelen (2007) show that natural

selection necessarily favours phenotypic variation distri-

butions that are structurally similar to the pattern of

selection. Pavlicev et al. (2011) analyse the population

genetics of selection on an allele controlling the correlation

of two phenotypic traits. They show that it evolves under

natural selection to align phenotypic variation with the

direction of selection, such that if two traits are selected

together positive developmental correlations evolve, and if

one is selected for when the other is selected against neg-

ative developmental correlations evolve. This is

functionally equivalent to reinforcement correlation learn-

ing. In larger systems we see the same pattern occurring in

work where developmental interactions evolve modularity

that to mimics the modular structure of variation in a

selective environment (Lipson et al. 2002; Watson et al.

2014; Kashtan et al. 2009).

Building on these observations, our work shows that the

regulatory interactions of gene-regulation networks evolve

under natural selection in exactly the same manner as

correlation learning modifies the synaptic connections of a

neural network (Watson et al. 2014). This enables us to

show that gene-regulation networks can exhibit a ‘‘devel-

opmental memory’’ able to store and recall multiple phe-

notypes that have been selected for in the past, exactly like

the associative memory of a Hopfield network. Using

knowledge of how correlation learning can generalise over

a set of training patterns, we also showed that gene-net-

works can produce novel phenotypes that have not been

selected for in the past but have common structural regu-

larities (e.g. new combinations of phenotypic modules).

This provides a more formal basis with which to under-

stand Parter et al.’s results (2008) showing that genotype-

phenotype maps can generalise from past environments to

facilitate evolvability in novel environments.

The analogy between generalisation in learning systems

and evolvability in novel environments has considerable

technical depth. For example, generalisation in learning

systems is not mysterious, and accordingly, the evolution

of evolvability that facilitates long-term adaptation in

previously unseen environments is possible (Watson et al.

2010a; Kounios et al., in prep.). But neither is generalisa-

tion for granted in learning systems, and learning theory

can help us understand the capabilities and limitations of

such generalisation and evolvability in evolved systems. In

particular, in learning systems, overfitting occurs when

improved performance on the training set decreases gen-

eralisation on the test set. This is the analogue of past

selection that fails to facilitate future evolvability. How-

ever, conditions that alleviate overfitting and improve

generalisation in machine learning, such as the application

of a parsimony pressure that favours simple models, also

confer better generalisation in evolved G-P maps (e.g.

applied via a cost of connections; Clune et al. 2013)

(Kouvaris et al. 2015).

Organisation in Ecological Communities Without
Selection at the Community Level

Evolutionary processes exhibit different outcomes in

structured populations than they do in freely-mixed popu-

lations. Often, this is modelled with games played on
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networks (Jackson and Zenou 2014). Recently there has

been a rapid expansion of work investigating what happens

when agents on a network have behaviours that can alter

the topology of the network (Pacheco et al. 2006; Traulsen

et al. 2008; Van Segbroeck et al. 2010; Santos et al. 2006),

i.e. adaptive networks (Gross and Sayama 2009). Different

scenarios involve different assumptions about exactly how

agents modify their connections to others, but most cases

are consistent with the assumption that they change con-

nections to maximise their individual utility (e.g., leaving

connections unchanged when they are winning, and re-

wiring connections when they are losing; Nowak and

Sigmund 1993; Santos et al. 2006).

Usually these models are intended to represent the

interaction structure of a single population where nodes

represent individuals and edges represent fitness-affecting

interactions between individuals. If instead, we utilise a

network model to represent ecological interactions, then

nodes represent different species and edges represent eco-

logical fitness interactions between species. When the

network represents a single population, the reproduction of

an individual at one node may replace the individual of a

connected node (because they are members of the same

species). But in an ecological network this is not the case;

reproduction of individuals simply modifies the strategy of

the species at that node (and/or the connections the species

has with others). We have shown that a games-on-networks

model of this type behaves exactly like unsupervised cor-

relation learning (Davies et al. 2011; Watson et al. 2010a).

Moreover, since the total community welfare of a social

Table 1 Outline of a connectionist theoretical framework for the evolution of developmental, ecological and reproductive organisations

CComponent of
tthe Darwinian

MMachine

DDomain

a) varia�on b) selec�on c) inheritance

eevo--ddeevo
evolutionary 

developmental biology

eevo--eecco
evolutionary

ecology

eevo--eego
evolutionary 

transitions in individuality

eevo �� oorg

Evolution of developmental 
constraints and biases/ 

morphological architecture ��
organisation of phenotypic 

variability

Evolution of individual traits 
affecting ecological relationships 

with other species �� the 
organisation of ecological 

selective pressures

Evolution of reproductive 
dependencies between 

evolutionary entities (e.g. vertical 
transmission of symbionts) �� the 

heritability of collectives

UUnit scale/
SSelection level

Interactions within a single 
evolutionary unit 

(selection at system level) 

Interactions between multiple 
popns. of evolutionary units
(no selection at system level) 

Interactions change the scale of 
evolutionary unit

(selection moves from particles 
to collectives)

UUnifying principle
((correlation
llearning))

Genes that are selected 
together wire together

(e.g. by evolution of gene-
regulatory/developmental

interactions)

Species that are selected 
together wire together

(e.g. by evolution of ecological 
dependencies)

Units that are selected together 
wire together

(e.g., by evolution of reproductive 
co-dependencies, co-dispersal of 

symbiotic partners)

AAnalogous
llearning theory

ccorrelation learning

i.e. reinforce correlations that 
are good

uunnsupervised
ccorrelation learning

i.e. reinforce correlations that 
are frequent

ddeeep ((multi--sscale)
ccorrelation llearning

i.e. unsupervised learning at one 
scale reduces dimensionality of 

reinforcement learning at the next

ffeedback
((selection)

llevel

Performance feedback at 
system level 

(but credit assignment 
problem on particles)

Performance feedback at 
component level 

(but unsupervised at
system level)

Level of feedback changes 
through successive scales of 

organisation

The simple principle of positive feedback between behaviour on a network and changes in network topology, known as correlation learning in

neural networks, aka. ‘‘Neurons that fire together wire together’’, is analogous to the evolution of developmental, ecological and reproductive

organisations
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attractor is correlated with the basin size of the attractor,

the changes to connections produced under an individual

utility-maximisation principle have the emergent effect of

increasing global community welfare (collective fitness)

without selection at the system level (Davies et al. 2011;

Watson et al. 2010a)—as per a self-modelling dynamical

system.

We can also model the evolution of ecological organi-

sations in a more conventional Lotka-Volterra system

where a community matrix represents the network of

ecological interactions (Poderoso and Fontanari 2007;

Wilson 1992). We then let individuals within each species

carry traits that can modify their ecological interactions

with others under individual selection (i.e., in whatever

manner increases their representation within their own

species). This work shows that interactions evolve

according to the principles of unsupervised correlation

learning. This is consistent with character displacement

(Brown and Wilson 1956; Dayan and Simberloff 2005)

which alleviates competitive interactions or reinforces

mutualistic interactions in proportion to the contact a pair

of species has experienced. Accordingly, an ecosystem can

form a distributed associative memory of past environ-

mental conditions, storing and recalling multiple commu-

nity composition patterns in the resultant population

dynamics, despite the fact that there is no selection for such

behaviour at the system level (Power et al. 2015). This

suggests a significant expansion for the role of ecological

memory observed in natural ecosystems (Thompson et al.

2001) and provides the possibility of being able to char-

acterise the conditions under which eco-evo dynamics lead

to self-regulation/homeostasis rather than self-destruction

(Lenton 2004; Lenton and van Oijen 2002).

The evolution of New Evolutionary Units

Conventionally, it is assumed that the products of the

Darwinian machine do not alter how the machine operates,

i.e. that fixed mechanisms of variation and selection are

applied to a fixed reproductive unit. Above we have dis-

cussed how changes to developmental organisation and

ecological organisation can alter variation and selection.

But in an evolutionary transition, all three of these com-

ponent mechanisms (i.e., variation, selection and inheri-

tance) are transformed or re-created at a higher level of

organisation. This results in a Darwinian machine that

operates via heritable variation in reproductive success at a

higher level of biological organisation. There are many

complex issues involved, and the details are different in

different types of transition. Nonetheless, we discuss how

the basic positive feedback principle applies in this context,

i.e. evolutionary units that reproduce together (at the same

time or under the same conditions) become ‘wired’ toge-

ther into a new evolutionary unit, and how connectionist

learning principles help us understand the consequence of

this feedback in larger systems.

First, we discuss the evolutionary challenges involved in

different types of transition and, in particular, collectives

containing particles of complementary functional types.

We explain why coordinating these complementary func-

tional types is fundamental to creating fitness differences

that belong to the collective. Second, we discuss our work

thus far in the evolution of pairwise relationships, and

third, our preliminary work on the evolution of new

reproductive units in larger networks.

The Evolutionary Challenges in Egalitarian

and Fraternal Transitions

Types of Transitions

Evolutionary transitions can be classified into two types

(Queller 1997):

• Fraternal transitions, e.g., the transition to multi-

cellularity, involve controlled aggregations of related

individuals (‘like kinds’). Their origination is motivated

primarily by economies of scale. This involves the

evolution of traits that modify relatedness by evolving

parameters of population structure that control the

amount of mixing (such as initial group size/life cycle

bottleneck size, germline segregation, dispersal param-

eters/time in groups) (Jackson and Watson 2013;

Powers et al. 2011; Ryan et al. 2015; Johnson and

Gaines 1990) and hence the likelihood of meeting

others like oneself (assortment).

• Egalitarian transitions, e.g., the symbiotic origin of

eukaryote organelles (Margulis and Fester 1991; Mar-

gulis 1993) and the origin of chromosomes (Maynard

Smith and Szathmáry 1993), involve the union of

previously unrelated lineages (‘unlike kinds’). Their

origination is motivated primarily by the provision of

complementary functions (Bouchard and Huneman

2013). This involves the evolution of reproductive

mechanisms that change the co-dispersal of lineages

(e.g. changing from horizontal to vertical transmission

of symbionts), linking lineages that were previously

inherited independently such that they are subsequently

inherited together.

These differences suggest that these types of transition

do not share common mechanisms or motives (Queller

1997). However, both types of transition, when considered

more fully, involve both a change in the level of the evo-

lutionary unit (from particles to collectives) and the orig-

ination of heterogeneous functional roles, but in different
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orders (Fig. 1). In egalitarian transitions, evolutionary

entities differentiate functional roles first (e.g. via specia-

tion) and then form a new evolutionary unit, whereas in

fraternal transitions, entities change the scale of the evo-

lutionary unit first and then differentiate in their functional

roles. Both types of transition thereby result in higher-level

groups with internally differentiated roles, and organisa-

tional changes controlling the diversification of roles and

changes in the level of selection are involved in both types

of transition. In egalitarian transitions this diversification of

roles and the coexistence of complementary types (occur-

ring before the transition) involves changes in relationships

that are ecological—i.e. between multiple existing evolu-

tionary units. In fraternal transitions the diversification of

roles (occurring after the transition in the evolutionary unit)

involves changes in relationships that are developmental—

i.e. within a single unit of selection. The evolution of

organisational networks is central in both cases, however.

An important difference between fraternal and egalitarian

transitions is that in the differentiate-first egalitarian case

the differentiation of roles can be controlled by the original

inheritance mechanism (e.g. mitochondria are different

from the nucleus because they have their own genetic

lineages), whereas in the differentiate-second fraternal

case, the differentiation of roles must be controlled by a

new inheritance system (e.g. liver cells are different from

skin cells because of their epigenetic states) (Jablonka

1994; Jablonka and Lamb 2006).

The observation that all transitions involve both changes

in the level of evolutionary unit and diversification of roles

is logical given what is required to instantiate the Dar-

winian machine at a higher-level of organisation, in par-

ticular, the suppression of fitness differences at one level of

organisation and the creation of heritable variability that

confers fitness differences at another (Clarke 2010, Ryan,

in prep.). Much work on the evolution of individuality

focusses on factors that suppress fitness differences

between particles within a collective in order to prevent

particle competition within groups from subverting group

heritability (Okasha 2006; Bourke 2011). For example, the

origin of multicellularity (in most cases) involves the

evolution of a population bottleneck and sequestration of

the germ line that creates high-relatedness among particles

within a collective and facilitates high frequencies of

cooperative particles (Godfrey-Smith 2009; Buss 1987;

Okasha 2006). But this is only one aspect of a transition. It

Fig. 1 Two dimensions of change in evolutionary transitions.

Fraternal transitions (e.g. to multicellularity) involve first a change

in the level of selection, then diversification of functional roles within

this new unit (1 ? 2a ? 3). Egalitarian transitions (e.g. to eukaryote

cells with organelles) involve first a diversification of functional roles

between multiple units then a change in the level of selection

(1 ? 2b ? 3). Whereas conventional views of the transitions focus

on changes in the level of selection (vertical axis), this view

emphasises how the evolution of developmental and ecological

relationships (horizontal axis) creates organisations that govern the

complex phenotype of the new unit/collective. This coordination of

diverse functional roles between particles within a collective is

essential to create fitness differences between collectives whilst

simultaneously eliminating or suppressing fitness differences between

particles
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is also necessary that these cooperative particles have the

capability to take on heterogeneous roles in the group

phenotype (Jablonka 1994; Jablonka and Lamb 2006),

enabling fitness advantages to arise from the coordination

of those roles (e.g. via division of labour). In multicellular

organisms this is facilitated by epigenetic differentiation

that enables cells to adopt heterogeneous phenotypes

despite being genetically homogeneous (Jablonka 1994;

Jablonka and Lamb 2006). This separation of genotype

from phenotype (i.e. requiring a plastic developmental

process) is necessary to create a situation where fitness

variance within collectives can be suppressed without also

eliminating fitness variance between collectives (Tudge

et al. 2013; Jablonka and Lamb 2006). That is, for there to

be selection at a higher level there must be fitness differ-

ences between collectives, yet collectives must contain

particles that all have the same replication rate (to prevent

individual selection from undermining the collective). If

collectives only contain one type of particle (i.e. fraternal),

then this removes within-collective variation but also

makes it more difficult after the transition for descendent

collectives to be different from each other (unless particles

have coordinated plastic phenotypes). Conversely, if col-

lectives contain more than one type of particle (i.e. egali-

tarian), then descendent collectives can be different

because of the particular combinations or arrangement of

particles they contain but selection on within-collective

variation must be controlled (e.g. by ‘policing’ mitochon-

drial replication).

Fitness Differences that Belong to the Collective

In order to identify natural selection at a new level of

organisation we want to distinguish it from changes that are

driven by natural selection at the existing (lower) level of

organisation (Okasha 2006). Only if collective interests and

particle interests act in opposition to one another could an

adaptation be observed at the collective level that could not

be explained as the result of adaptation at the particle level.

However, at the same time, it seems counter intuitive to

assert that particles belonging to fit collectives must be

individually unfit. Indeed, we might expect that the fitness

of a particle might be directly derived by its membership in

a fit collective—implying that particle fitness is propor-

tional to collective fitness, and collective fitness is a linear

sum of particle fitness. There are conflicting ideas here that

need to be disentangled. Let us first make the issues more

concrete with an example.

Consider an example where particles attain fitness

benefits by having phenotypes that are coordinated with

the phenotypes of others (complementary roles), rather

than benefits that arise from their intrinsic individual

characteristics. For example, suppose that a proto-

multicellular organism must be both motile (in order to

gather resources to survive) and fecund, and that individual

cells cannot be in the motile state and in the reproductive

state simultaneously (Solari et al. 2006). Both roles might

be provided initially in a single-celled organism via phe-

notypic plasticity and a lifecycle that moves reversibly

between one state and the other. But if two cells work

together to allow specialisation in these roles, there are

efficiencies to be gained in, for example, the time and

energy required to switch between phenotypic states.

Clearly, the fitness of an immotile reproductive cell or a

non-reproductive motile cell alone may be zero. But the

fitness of cells that belong to a collective (of two) with

complementary roles is non-zero (for the non-reproductive

cell, it is its inclusive fitness that is relevant; Ryan, in

prep.). Accordingly, their individual fitness in this case is

not depressed in order to serve the fitness of the collective;

quite the opposite, they are fit because they belong to a fit

collective (Ryan, in prep.). Yet, if collective and individual

fitnesses are in alignment, this seems to undermine the

significance of adaptation at the collective level (Okasha

2006).

Okasha (2006) points to the resolution. Specifically,

even if collective fitness is a linear sum of particle fitnesses,

collective fitness can nonetheless be a non-linear function

of particle phenotypes. In the previous example, the

reproductive cell state is a phenotype that has a fitness that

can be very high or very low depending on whether the

other cell in the partnership adopts the motile cell state or

reproductive cell state, respectively. The cell phenotypes

thus have a highly non-linear relationship to collective

fitness, but individual fitness (fitness of the particle, not

fitness of the particle-phenotype) may nonetheless be pro-

portional to collective fitness. Thus when particles have

diverse, potentially synergistic, functional roles, good

coordination between them can create fitness benefits at the

collective level that cannot be accounted for by phenotypes

that confer fitness differences at the individual level. It is

thus the coordination ability itself that is both fit for the

particle and fit for the collective, whereas neither of the two

cell-phenotypes are individually fit (more exactly, fitness

differences between these particle phenotypes do not

explain the fitness differences that can arise between col-

lectives). Accordingly, the ability to coordinate particle

phenotypes with one another is not just a useful ‘add-on’ in

evolutionary transitions, but actually essential in creating

fitness differences that belong to the collective and not to

the lower level of biological organisation. Accordingly, the

evolution of individual particle phenotypes is inadequate to

explain collective-level adaptations, and it is in exactly this

case where a connectionist approach, i.e. addressing the

evolution of relationships that coordinate particle pheno-

types, comes into its own. In egalitarian transitions this
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requires coordinating the reproduction and inheritance of

diverse types within collectives. In fraternal transitions this

requires particles that are plastic; capable of producing

more than one phenotype, i.e. a context-sensitive devel-

opmental process, possibly including parental effects

(Tudge et al., submitted, Tudge et al. 2013).

Minimal Formal Models of ‘Coordinated Functional

Roles’

Collective fitness thus requires the presence of more than

one mutually-exclusive particle phenotypes that are com-

plementary or synergistic (e.g. specialisation in surviv-

ability and fecundity). Let us denote these particle

phenotypes as 0 and 1, such that collective phenotypes may

be 00, 01, 10, or 11 (01 and 10 may have the same fitness).

For each of these particles, neither the 0 phenotype nor the

1 phenotype is successful on its own, nor is it any more fit

than the other phenotype on average over the possible

contexts provided by the other particle. Nonetheless, by

evolving to coordinate particle phenotypes (or anti-coor-

dinate them) a collective containing complementary parti-

cles may be fitter than other collectives. This will thereby

confer a fitness benefit to the particles it contains even

though these fitness benefits cannot be attributed to either

particle phenotype. In machine learning, a function with

this property is called a non-linearly separable function—

and is a well-known touchstone in neural learning test

cases. The non-linearly separable functions for two Boo-

lean variables are logical XOR (inequality, 01 or 10) and

IFF (equality, 00 and 11). Other functions do not have this

property. For example, under logical AND (11), a 0 phe-

notype is never superior to a 1 phenotype, but a 1 pheno-

type is superior to a 0 phenotype in some contexts (i.e.

contexts where the other particle is a 1); accordingly,

particle-level selection alone can produce the 11 collective.

Interestingly, when groups are built of individuals from

two different species (i.e. egalitarian transitions), XOR and

IFF are logically isomorphic because the labelling of each

variable (0 or 1) is arbitrary and independent of the other.

But when groups are built of two instantiations of the same

individual (i.e. fraternal transition) IFF is trivially easy to

satisfy and XOR is not. For equality (IFF), duplication of

an individual of either type that passes through a single-cell

bottleneck, or some other mechanism that enforces genetic

assortment, is sufficient. But inequality (XOR) is not so

simple in fraternal groups. Which is just to say that groups

of heterogeneous phenotypes cannot be built from homo-

geneous genotypes unless there is also some mechanism of

context-sensitive differentiation (e.g. plasticity).

These distinctions can also be formalised in game the-

oretic terms. In conventional social dilemmas, such as the

Prisoner’s Dilemma, the Snowdrift game or the Stag Hunt,

the social composition that maximises community welfare

is 100 % cooperation (a homogeneous collective). In

contrast, in division of labour games, the community

welfare of a group is maximised by a particular combina-

tion of multiple strategies (Tudge et al. 2013; Tudge et al.,

submitted). This kind of social dilemma cannot be solved

by genetic assortment alone (i.e. homogenous groups);

some form of developmental process, through which par-

ticles may coordinate with one another to adopt comple-

mentary roles (West-Eberhard 2003; Jablonka 1994), is

required to solve this type of dilemma (Tudge et al.,

submitted).

How Evolution Changes the Evolutionary Unit

Given this view of the evolutionary challenges involved in

an evolutionary transition, next we want to understand the

conditions under which natural selection acting on the

existing, i.e. lower, evolutionary units will meet these

challenges. First we address how the action of natural

selection modifies the evolutionary unit in dilemmas that

can be resolved by positive assortment or homogeneous

groups (e.g. the first stage of a fraternal transition). Then

we address a minimal case of heterogeneous groups, i.e.

two-player division of labour games, given particles with

plastic phenotypes, as per a fraternal transition with mini-

mal diversification of roles. This describes our work on

social niche construction. For homogeneous groups, scal-

ing-up to larger collectives is unproblematic. In contrast,

for groups with multiple heterogeneous functional roles, it

becomes necessary to describe the evolution of reproduc-

tive relationships in a network. Our models thus far address

how natural selection modifies the evolutionary unit in

networks of genetically heterogeneous components, i.e.

egalitarian transitions. This work illustrates how the posi-

tive feedback principle, in common with the feedback in

developmental and ecological networks, also applies to the

evolution of reproductive relationships.

Social Niche Construction

Social evolution theory explains the evolution of cooper-

ation by showing that strategy assortment makes coopera-

tors fitter than defectors even when the reverse is true in a

well-mixed population (Frank 1998; Bourke 2011). Social

assortment (where similar phenotypes meet one another

with higher probability than would be expected from their

global frequency) and relatedness (where similar genotypes

meet one another with higher probability than would be

expected from their global frequency; Michod and

Hamilton 1980) are exogenous parameters to this type of

explanation (Ryan et al. 2015). In natural populations,

however, there are many ways in which individual
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characters affect strategy assortment (e.g. seed dispersal

radii, quorum sensing dispersal behaviours, habitat pref-

erences, context-sensitive phenotypes) (Powers et al.

2011). We seek to endogenise parameters affecting popu-

lation structures and genetic assortment into evolutionary

explanations; to thereby explain the evolution of coopera-

tion at a deeper level. For example, instead of concluding

that cooperation prevails because genotypes are positively

assorted, we ask why population structures that provide

such genetic assortment evolved—and in particular, whe-

ther these structures evolved precisely because they

enabled greater cooperation.

Social niche construction (Powers 2010) thus studies the

concurrent evolution of social behaviours with behaviours

that modify the social niche, e.g. via traits that modify

population structure (Powers et al. 2011; Powers 2010;

Ryan et al. 2015). This work shows various conditions

under which group structure that supports cooperation can

evolve under individual natural selection (Szathmáry

2011). In game theoretic terms, one way to formalise this

feedback is with the concept of a meta-game, i.e. where

individuals have traits that modify the game they are

playing, in addition to social strategies (Jackson and

Watson 2013; Jackson and Watson, submitted; Jackson

2011; Doncaster et al. 2013). This work enables us to

characterise the conditions under which individual natural

selection can transform social interactions to remove a

social dilemma (moving the effective game from a Pris-

oner’s Dilemma to a Harmony Game, for example) and

enabling cooperation to prevail (Jackson and Watson,

submitted). This is a simple example of a feedback

between a social structure and a social behaviour, echoing

the other examples of feedback between an evolutionary

process and the parameters of that process we have dis-

cussed. We find that natural selection can, via social niche

construction, increase the level of cooperation in a popu-

lation (e.g. by evolving group size in the direction that

favours cooperation).

However, this does not necessarily demonstrate a new

evolutionary unit that exhibits heritable variation at the

collective level. This depends on whether we are modelling

a type-1 or type-2 group selection process (Okasha 2006;

Wilson 1989). In type-1 group selection, individual fitness

is affected by a group context but groups do not have

heritable lineages. Here reproduction of groups may be via

an aggregation and dispersal process, where individuals

reproduce via a migrant pool (Maynard Smith 1964). In

type-2 group selection models, groups do have herita-

ble lineages and fitness is thus meaningful at the group

level. Here, group reproduction may be via a group-fis-

sioning process or propagule reproduction such as in the

stochastic corrector model (Szathmáry and Demeter 1987).

In both cases, social niche construction can change the

balance of particle-level and group-level selection by, for

example, modifying the initial size of groups (Powers et al.

2011), or the initial size of group propagules (Ryan et al.

2015, Ryan, in prep.). But the latter is particularly relevant

to the evolution of individuality at a new level of organi-

sation because only in this case do collectives have lin-

eages and heritable properties (Ryan et al. 2015; Ryan, in

prep.). In this case (unlike the migrant pool model) it is

possible to show that collectives exhibit heritable variation

in reproductive success and that this increases over evo-

lutionary time via social niche construction.

Those works have addressed conventional social

dilemmas that are resolved by positive assortment (genetic

and phenotypic). Other work is investigating social niche

construction in models that address division of labour

games and fraternal transitions. These models ask when

individual natural selection (on the original evolutionary

units) will utilise phenotypic plasticity, and when it will

utilise context sensitive plasticity (e.g. parental effects), on

the assumption that these characteristics are controlled by

particle genotypes. We find that positive genetic assortment

alone does not resolve such dilemmas, but positive genetic

assortment is necessary to enable the evolution of nega-

tively-assorted phenotypes via plasticity. This is because

this scenario creates a new (conventional) social dilemma

on genotypes between ‘co-operators’ that have the ability

to coordinate phenotypes correctly, and defectors that do

not. Purging such defectors is a proviso for the evolution of

negative phenotypic assortment, i.e., the expression of

complementary functional roles via phenotypic plasticity

(Tudge et al. 2013; Tudge et al., submitted). Accordingly,

positive genetic assortment creates a situation where an

allele that produces coordinated phenotypic differentiation

is then favoured and can thereby maximise collective fit-

ness (Tudge et al., submitted).

Encapsulating pairs of particle-phenotypes into a new

evolutionary unit causes them to be reproduced as an

indivisible pair (i.e. one particle-phenotype cannot repro-

duce without the other if particle reproduction is appro-

priately policed or if the two particle phenotypes share the

same genotype). Like the connections in the deep optimi-

sation model, this changes the way combinations of parti-

cles are substituted under selection. For example, suppose a

11 pair (e.g. cooperative pair) has higher collective fitness

than a 00 pair (e.g. defect pair). Before a transition, a 11

pair cannot competitively exclude a 00 pair because when

particles reproduce as individuals, 01 pairs will also be

created and individual selection favours 0 in this case. Put

differently, before the transition the pair is not the relevant

evolutionary unit. But after the transition, 11 can compet-

itively exclude 00 when reproducing as a unit because it

has higher collective fitness. Thus by eliminating fitness

differences within groups, the remaining effect of selection
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derives entirely from between-group selection, i.e. the

relevant evolutionary unit is now the pair. Putting together

the ideas of social niche construction with a minimal

demonstration of the between-group selection it enables,

we show that individual selection creates groups that

facilitate higher-level adaptation (Snowdon et al. 2011).

This is analogous to the jumps in configuration space that

are facilitated by the new units in deep optimisation.

These works (and others, Ghang and Nowak 2014;

Szathmáry 2011) indicate that it is possible to endogenise

the evolution of reproductive organisations into evolu-

tionary theory (Ryan et al. 2015). We find that when nat-

ural selection is given the chance to do so, at least in small

systems (e.g. a single pairwise relationship between two

particles), it favours reproductive organisations that follow

correlation learning principles—either reinforcing positive

correlations or negative correlations, depending on what

the social game requires. The new evolutionary units thus

created can change evolutionary outcomes by creating

selection that operates at the collective level rather than the

particle level.

Scaling-up From Pairwise Relationships to Networks

In dilemmas that are solved by positive assortment, it is

easy to imagine that economies of scale provide even

greater benefits to larger collectives (greater than size two).

But scaling-up from pairwise relationships to large num-

bers of particles is more challenging when it involves

complementary functional roles. Intuitively, homogeneity

scales easily, but heterogeneity does not—there are many

ways to be different and organising these differences is, for

example, what makes multi-cellular organisms interest-

ingly different from simple colonies of cells.

In large heterogeneous systems, the relevant question

changes from ‘how do individuals create reproductive

structures that change the level of selection?’ (e.g. by social

niche construction) to ‘given that individuals can create

reproductive structures that change the level of selection,

which individuals do so and with whom?’ Here our work

focusses on egalitarian transitions where genetically

diverse particles are placed together into a new reproduc-

tive unit. This work seeks to identify conditions where

particle-level natural selection is successful in creating new

evolutionary units that are fit given that there is variation in

the membership of such units. The evolution of such units

or partnerships enables individual natural selection to

control which individuals reproduce independently and

which are ‘in the same boat’, i.e. which individuals have

shared reproductive fate/create a single vertical lineage. A

particle that forms such a reproductive partnership must

forgo within-collective fitness differences but may gain

fitness differences at the collective level through the

combinations of multiple diverse types that are enabled by

these units.

Our early work in this area used a simple approach. It

created higher-level evolutionary units at random and let

natural selection retain those that were adaptive (Watson

2006; Watson and Pollack 2002). The symbiotic evolu-

tionary adaptation model could correctly identify which

composite units corresponded to sub-problems in a com-

binatorial optimisation problem (Watson 2006). However,

this approach did not scale well. In short, there are too

many possible partnerships to try and there are many

partnerships that are far from optimal but fitter than not

having a partnership at all. This makes it very difficult for

selection to find partnerships that enable effective adapta-

tion at higher levels of organisation. This is analogous to

the problem of how supervised learning under-determines

intermediate representations in deep correlation learning—

there are many intermediate representations that locally

improve the output but are not optimal for the higher-level

task.

In hindsight, we were missing a trick; this work over-

looked the value of unsupervised correlation learning in

reducing the dimensionality of the search space before new

units are created. More recent work rectifies this by

exploiting principles of unsupervised learning introduced

into the new approaches to deep learning. This uses indi-

vidual-based simulations where, as before, individuals have

traits that define symbiotic partnerships controlling who

they co-disperse with during reproduction, thus creating

new heritable units. But this is now combined with eco-

logical dynamics (particle level selection) such that selec-

tion for new evolutionary units occurs mostly at local

ecological equilibria. Under these conditions, new evolu-

tionary units that join two species together must be at least

as good as the combinations of species that already co-

occur under individual selection at ecological equilibria—

otherwise individuals that are not partnered will be fitter.

By occasionally perturbing the ecological dynamics, we

cause the system to visit many different ecological equi-

libria, and under these conditions, only partnerships that

are robust over the distribution of ecological equilibria

visited will survive selection. Accordingly, the partnerships

that are favoured by selection are those that evolve to

canalise the combinations of species that already co-occur

most frequently under particle-level selection. This

implements the unsupervised correlation learning principle,

i.e. evolutionary units that reproduce together (at the same

ecological equilibria) become ‘wired’ together into new

evolutionary units. This greatly reduces the number of

partnerships that are favoured under individual selection,

and these more stringent selective conditions prove to be

extremely effective in focussing selection onto partnerships

that are adaptive (Watson et al. 2009a, b; Watson et al.,
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submitted). The partnerships that evolve under these con-

ditions subsequently enable groups of species to invade

ecological equilibria as a unit, allowing the ecological

dynamics to jump out of local equilibria and thereby find

new ecological equilibria of higher collective fitness.

Again, this is analogous to the jumps in configuration

space that are facilitated by the new units in deep optimi-

sation. In the size-two collectives of the previous section,

the computational optimisation capabilities of forming new

units are not significant; assuming that there is herita-

ble variability in the membership of egalitarian groups,

forming groups at random would be sufficient to find

groups that maximise collective welfare. In these larger

systems, this is not the case. Forming large collectives at

random is not sufficient to find collectives with high col-

lective welfare. Moreover, incrementally modifying the

membership of groups is not sufficient to find collectives

with high collective welfare even when selection is

enforced at the collective level (Watson et al., in prep.,

Watson et al. 2009a, b). In other words, finding fit col-

lectives is a computationally difficult problem that cannot

be solved by selection at the particle level nor by simply

enforcing selection at the global level. However, under the

selective conditions described, implementing deep opti-

misation with unsupervised learning principles, natural

selection picks out particular subsets of species that have

synergistic fitness interactions to form new units. This

enables these intermediate-sized units to invade as a unit

and competitively exclude other subsets of species (even if

those species are not favoured under individual selection).

This enables the evolving ecosystem to rescale the evolu-

tionary process, and thereby find larger collectives with

especially high collective fitness, and so on. This multi-

scale process enables natural selection to find solutions that

cannot be found by single-level evolutionary processes at

either the individual or global level (Watson et al. 2009a,

b).

How Does Lower-Level Selection ‘Anticipate’ Which

Partnerships Will Facilitate Upper-Level Adaptation?

The reason that these partnerships evolve is not, and cannot

be, because they will enable effective adaptation in future.

These partnerships evolve because they are the partner-

ships that exhibit the immediate fitness benefits of robust-

ness. Specifically, partnerships between particles that

already frequently co-occur under particle-level selection

are close to neutral with respect to their effect on collective

fitness (i.e. they are partnerships between types that already

co-occur). Nonetheless, it is exactly these partnerships that

later enable selection at the collective level to escape local

optima and discover higher fitness solutions. We can

understand why this is the case by analogy with deep

learning and deep optimisation: partnerships that amplify

existing correlations reduce the dimensionality of the

search space in a non-arbitrary way. The evolution of

reproductive correlations under individual selection, shown

in these models, has the effect of canalising combinations

of particles that commonly co-occur at social equilibria.

This occurs without any information about what combi-

nations of particles will be adaptive at the higher level of

selection that is thus created. By mimicking the structure of

co-occurrence produced at ecological equilibria in this

way, the evolution of new reproductive relationships is

analogous to the use of unsupervised learning to reduce the

dimensionality of a data set in deep optimisation. Optimi-

sation algorithms inspired by this multi-scale process

resulted in the technique of multi-scale search (Mills et al.

2014) which is able to solve formally difficult optimisation

problems that provably cannot be solved by conventional

(i.e. single scale) evolutionary models.

Taken together these models suggest that ‘deep evolu-

tion’, involving transitions through multiple scales of bio-

logical organisation, implements a sort of multi-scale

correlation learning machine, or deep optimisation, that is

quite different from the conventional micro-evolutionary

(i.e. hill-climbing) model of evolutionary adaptation

(Watson 2012).

Integration

Our work illustrates several different but complementary

processes by which the Darwinian Machine changes as a

result of its own products. The evolution of developmental

networks modifies the distribution of phenotypic variants

that selection can act on, and the evolution of ecological

networks modifies the selection acting on those variants.

The major evolutionary transitions involve more radical

transformations in the underlying processes of the Dar-

winian Machine. We have illustrated several of the com-

ponents that are involved in a mechanistic account of such

transitions in separate models. Our models of social niche

construction consider small collectives (pairwise games)

and larger homogeneous collectives. Our work on large

heterogeneous collectives thus far address complementary

research questions by assuming that social niche con-

struction capable of instantiating higher-level evolutionary

units of genetically heterogeneous units is provided. A

more integrated model should bring these works together.

Our models also do not yet attempt to address fraternal

transitions in large collectives of many functional roles.

Further, it would be desirable to present a model where

particles have the evolutionary option to employ mecha-

nisms that either create egalitarian or fraternal transitions

(or potentially a mixture of the two). This would enable us
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to examine the conditions under which natural selection

takes different routes through the space described in Fig. 1.

From greater perspective, although the work on the

evolution of developmental and ecological organisations

has theoretical and conceptual unifying themes, we do not

yet have a model that integrates changes in developmental,

ecological and reproductive organisations freely in the

same model. This would be ambitious, of course, but we

believe that this is necessary to properly understand the

interaction of developmental and ecological organisations

in the major transitions (Fig. 1). In an egalitarian transition,

the relationships between the diverse components are

originally ecological relationships, i.e. between multiple

species. After the transition, these ecological relationships

are encapsulated within a new single unit (O’Toole et al.

2000; Bouchard and Huneman 2013), but the original

functional roles and particle-level selection dynamics are

retained within the new unit, at least initially. In a fraternal

transition, e.g. the transition to multicellularity, the tran-

sition to a new unit occurs before functional roles diversify.

Thus the functional relationships between these different

types are ‘developmental’ from the outset, i.e. within a

single evolutionary unit. However, such transitions create a

new ‘internal selection’ ecology implemented in a new

inheritance system, e.g., during ontogenesis, different cell

types grow into tissues through (context sensitive) repli-

cation of epigenetic states (Jablonka 1994; Laland et al.

2014; Huang et al. 2005). The population dynamics of

these cell populations is affected by inter-cellular interac-

tions and competition for resources within the embryo that

determine which types grow where, when and how much

(Buss 1987). Accordingly, either changes in ecological

organisations (capable of controlling inter-specific depen-

dencies to enable co-existence of complementary func-

tions), or changes in developmental organisations (capable

of controlling phenotypic plasticity to coordinate differ-

ential growth of particle phenotypes with one another), are

necessary components of evolutionary transitions. An

integrated model of these dynamics, enabling the bottom-

up evolution of new evolutionary units through successive

scales of organisation, remains as the ambitious aim of this

research programme.

Conclusions

Connectionism recognises that the cleverness of cognition

does not derive from the cleverness of the individual neural

parts but from the organisation of the relationships between

them. We have introduced the term evolutionary connec-

tionism to recognise that, in the same way, evolutionary

innovation need not originate from the adaptation of the

evolutionary parts per se but from the evolution of the

relationships between them. We have argued that this is

much more than a superficial analogy between learning and

evolution. Specific, but simple, organisational principles

are common to correlation learning systems and the evo-

lution of organisations. Selection for correlations that

improve fitness at the system level (the evolution of

developmental organisation) is equivalent to reinforcement

correlation learning mechanisms. And when selection for

correlations that improve fitness at the component level

(the evolution of ecological organisations) act to stabilise

the system state this is equivalent to unsupervised corre-

lation learning at the system level. In an evolutionary

transition, where the level of selection changes from one

scale of organisation to another higher level of organisa-

tion, the ecological attractors reinforced by unsupervised

learning are converted into developmental attractors of the

new unit. Then, by evolving new interactions with other

units at this higher level, they may enact an unsupervised

correlation learning process at the next level of organisa-

tion, and so on. This deep evolution process shares algo-

rithmic properties with deep correlation learning, and

optimisation techniques based on these principles (multi-

scale search, deep optimisation) have adaptive capabilities

that are in a provably different class from conventional

single-scale microevolution.

These connections with learning theory suggest that the

special problems of each biological domain have solutions.

Specifically, they suggest that;

(a) In evo-devo, it is not impossible for short-term

selection to discover developmental organisations

that facilitate future evolution. This can occur in the

same way, and with the same limitations, as the

ability of correlation learning to generalise from past

data to perform well on previously unseen data. This

requires the ability to form a model of the data (e.g. a

correlation model) that captures structural regulari-

ties that are invariant over time, even if superficial

structures are novel. This provides a formal basis for

the evolution of evolvability.

(b) In evo-eco, it is not impossible for a community to

be organised to reflect the structural properties of its

environment (e.g. the structure of abiotic, constraints

and resources in which the ecological community

resides) without selection at the community level.

This can occur in the same way, and with the same

limitations, as the process by which unsupervised

correlation learning learns the structure of a data set

without performance feedback. Such an organisation

arises as a consequence of selection at the level of

individuals within component species, and facilitates

system stability and robustness to perturbations (if

the perturbations have similar structure to those
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experienced in the past) even though there is no

notion of Darwinian fitness at the system level. This

provides a formal basis for the evolution of com-

munity organisation without community selection.

(c) In evo-ego, it is not impossible for natural selection

to favour reproductive organisations that facilitate

higher-level adaptation before evolutionary units at

that higher level exist. This can occur in the same

way, and with the same limitations, as the way in

which unsupervised learning can reduce the dimen-

sionality of a problem in deep learning even though

it has no performance metric that knows what the

new representation might be used for at the next

level of organisation. This implies that the evolu-

tionary transitions may not be simply a collection of

extraordinary accidents (even though each has its

own unique features) but the result of systematic

adaptive processes.

Although we argue that it is not impossible for biolog-

ical systems to exhibit such behaviours, clearly they do not

always do so. Our aim in making these connections with

learning theory is so that we have potential to identify the

conditions when biological systems will produce these

behaviours and when they will not (Watson and Szathmáry,

2015). For example, the transfer of learning theory to evo-

devo suggests that the evolution of evolvability will be

sensitive to the match between the deep structural regu-

larities of the environment and the intrinsic inductive bia-

ses of developmental processes (i.e. the kind of regularities

that are easy to ‘learn’ in that ‘model space’), and to the

costs and benefits of ‘overfitting’ the environment (Kou-

nios et al., in prep., Kouvaris et al. 2015). The transfer of

learning theory to evo-eco suggests that the evolution of

community organisation will be sensitive to the presence of

ecological constraints that cause species to coevolve

dependencies with one another rather than simply evolve

toward independence (Power et al. 2015). And the transfer

of learning theory to evo-ego suggests that the evolution of

new evolutionary units will exhibit limitations analogous to

those of deep learning.

Together the evolution of developmental, ecological and

reproductive organisations modifies the mechanisms of

variation, selection and inheritance that drive evolution by

natural selection. The evolutionary connectionism frame-

work sheds light on how the Darwinian Machine can

thereby be rescaled from one level of biological organisa-

tion to another. The results thus far demonstrate that con-

nectionist learning principles provide a productive

methodological approach to important biological questions

and offer numerous new insights that expand our under-

standing of evolutionary processes (Watson and Szathmáry

2015). Regardless of how the exact alignment between the

evolutionary and learning models discussed in this paper

develops with future research, the algorithmic territory

covered by learning algorithms is, we argue, the right

conceptual territory for developing our understanding of

how evolutionary processes change over evolutionary time

(Watson and Szathmáry 2015).
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