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Abstract

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports 

executive functioning, such as inhibitory control, which is crucial to all cognitive functions. 

However, the spatio-temporal sequence of processing underlying successful inhibition and how 

it changes with age is understudied. Thus, we capitalized on the temporal precision of event-

related potentials (ERPs) to assess the functional lateralization of N200 (conflict monitoring) and 

P300 (inhibitory performance evaluation) in young and healthy older adults during comparably 

performed successful stop-signal inhibition. We additionally used temporal principal components 

analysis (PCA) to further interrogate the continuous spatio-temporal dynamics underlying N200 

and P300 activation for each group. Young adults demonstrated left hemisphere-dominant N200, 

while older adults demonstrated overall larger amplitudes and right hemisphere dominance. N200 

activation was explained by a single PCA factor in both age groups, but with a more anterior scalp 

distribution in older adults. The P300 amplitudes were larger in the right hemisphere in young, but 

bilateral in old, with old larger than young in the left hemisphere. P300 was also explained by a 

single factor in young adults but by two factors in older adults, including distinct parieto-occipital 

and anterior activation. These findings highlight the differential functional asymmetries of 

conflict monitoring (N200) and inhibitory evaluation and adaptation (P300) processes and further 

illuminate unique age-related spatio-temporal recruitment patterns. Older adults demonstrated 

lateralized recruitment during conflict processing and bilateral recruitment during evaluation and 
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adaptation, with anterior recruitment common to both processes. These fine-grained analyses are 

critically important for more precise understanding of age-related compensatory activation.
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1. Introduction

Various cognitive processes, including episodic memory, spatial reasoning, and executive 

functioning, tend to decline in the course of typical, healthy aging [1-3]. Deficits in 

executive functioning, particularly the ability to withhold attentional or behavioral responses 

to irrelevant or interfering stimuli (i.e., inhibitory control; [4]), have received attention as 

potential mediators of more global cognitive decline [5,6]. However, the temporal sequence 

of neural activity underlying successful inhibition and, in particular, the effects of age on this 

sequence, are not understood [7].

Inhibitory control is commonly assessed using go/no-go and stop-signal tasks. In go/no-go 

paradigms, participants respond to go stimuli (e.g., the letter A) while selectively inhibiting 

responses to no-go stimuli (e.g., the letter B), where the participant knows in advance which 

stimulus is to be inhibited (i.e., the letter B always signals inhibition). Thus, successful 

performance requires an “internal” self-driven response selection process, aided by learning 

and memory [8,9]. In stop-signal tasks, participants respond to ‘go’ stimuli (e.g., the letter 

A) unless they are followed by an unpredictable stop-signal. The prepotent response to the 

‘go’ stimulus is activated and must be effortfully retracted based on the externally generated 

stop-signal. This is therefore a better index of response inhibition than no-go [9]. Indeed, our 

recent study demonstrates the advantages of using the stop-signal vs. no-go task in revealing 

age- and Alzheimer’s disease risk-related differences in cognitive event-related potentials 

(ERPs; [10]).

Neuroimaging studies of inhibitory control, typically using functional-MRI (fMRI), have 

implicated multiple sequential subprocesses involving right inferior frontal gyrus (IFG), 

insula, and cingulate cortex that are necessary for successful inhibition: interference/conflict 

resolution, action withholding, and action cancellation [11]. In addition, left pre-SMA 

and superior parietal gyrus contribute specifically to interference (i.e., conflict) resolution. 

However, although fMRI is well-equipped to determine which brain regions are active 

during a given task, the very slow (i.e., seconds-long) impulse response function greatly 

limits knowledge about the time course of activity in the relevant networks [12]. Temporal 

precision is particularly important for studying inhibitory control, for which relevant neural 

activity primarily occurs within the first ~400 ms [7].

In contrast to fMRI, research with temporally precise event-related potentials (ERPs), 

derived from electroencephalography (EEG), has isolated two key components of inhibition: 

N200 and P300 [13-15]. First, the N200 is a fronto-central negativity that occurs 

approximately 150–350 ms following an inhibitory cue. Source analyses have highlighted 
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the IFG and dorsal anterior cingulate as likely generators [7,16-18]. Despite the earlier 

conceptualization of N200 as reflecting response inhibition per se [19-21], more recent 

research suggests N200 is specifically tied to conflict monitoring and alerting of the need 

for inhibition prior to the motor ‘response’ underlying inhibition [18,22,23]. Indeed, N200 

amplitudes during inhibitory control tasks are associated with concurrent increases in theta 

power, indicative of cognitive processes that precede motor processing [18], and are evident 

even on trials with conflict resolution that do not require motor inhibition [24].

The second component important in inhibitory control, P300, is a positive-going wave 

that occurs ~300–500 ms post-inhibitory stimulus. In most tasks, P300 is maximal over 

parietal electrodes. However, in the context of inhibition, it is often larger over fronto-central 

sites, such as those corresponding with the precentral gyrus, pre-SMA, IFG, and cingulate 

cortex (i.e., no-go anteriorization; [25,26]). This activity is specifically linked to response 

inhibition, performance monitoring and evaluation, and error correction [17,18,23,24,27]. 

In line with this conceptualization, the inhibitory P300 is associated with increased 

delta power, which is thought to be associated with motivated attention and performance 

evaluation [18]. Because the current project aimed to investigate neural activity underlying 

successful inhibitory control, earlier components (i.e., N100, P200) reflecting more sensory 

processes were not examined.

The understanding of the neural underpinnings of age-related differences during no-go 

and stop-signal inhibitory control tasks is relatively limited. This is particularly true for 

stop-signal tasks, despite their ability to better control for task demand-related activation 

[7,9]. We recently examined this with ERPs at midline electrodes. Using inhibitory tasks 

with high and equal level group accuracy, we found older adults had smaller posterior but 

larger frontal P300 amplitudes and overall larger N200 amplitudes specific to the stop-signal 

task [10]. Other inhibition studies have also reported larger or comparable frontal-central 

P300 activity across age groups [28-30], some also with smaller central-posterior P300 in 

older adults [15,31]. These patterns suggest age-related compensatory frontal recruitment 

in older adults [32,33], particularly in anterior relative to posterior sites during successful 

inhibition [34]. These results are consistent with findings from fMRI studies, which show 

greater frontal than posterior activation, as well as greater bilateral activation (particularly in 

frontal lobes) in older than in younger adults [32,34-39]. A pair of fMRI studies specifically 

showed greater activation during successful no-go inhibition in healthy older compared to 

young adults in left prefrontal and inferior parietal clusters, which was replicable over a year 

later [35,36]. Such recruitment has been associated with better maintenance of high-level 

cognitive performance [32,33,40]. Unfortunately, despite the clear importance of lateralized 

activity, relevant ERP studies have thus far been limited to midline electrodes, with one 

exception. Hong, Sun, Bengson, and Tong [30] reported elevated frontal N200 and P300 

activation in older adults during response inhibition (i.e., no-go) that was particularly right-

lateralized.

The temporal precision afforded with ERPs can clarify the time course and mechanisms 

of age-related compensatory activation during successful inhibition. Whereas fMRI has 

revealed regions of greater activation, the impulse response function spans a period 

of seconds, which captures a number of critical inhibition-related processes. EEG and 
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ERPs provide the ability to understand which specific subprocesses are associated with 

compensatory activation, breaking down the global concept of inhibitory control to assess 

which types of recruitment (e.g., left hemisphere, right hemisphere, frontal cortex) are 

involved in conflict monitoring, detection, and resolution (i.e., N200), and which are 

involved in the evaluation and adaptation of inhibitory performance (i.e., P300). Moreover, 

despite the conceptualization of inhibition as reliant upon a number of interacting 

subprocesses [7,11], ERP research has examined inhibitory control by collapsing data 

across epochs of several hundred milliseconds (i.e., ~100–350 ms for N200, ~300–500+ 

ms for P300), rather than taking advantage of its unique ability to capture data with 

millisecond-level precision. Thus, a finer-grained temporal analysis of recruitment during 

inhibition, along with the inclusion of a wider array of lateral electrodes to examine specific 

hemisphere differences, might better characterize and disentangle the role of age-related 

recruitment within each of the specific subprocesses of inhibitory control [12,35,37,40,41]. 

The current study sought to address these gaps. We first analyzed N200 and P300 amplitudes 

using traditional ERP time windows, comparing young and older adults during a stop-signal 

task. The groups had comparable accuracy to preclude neural differences due to task 

difficulty or effort. Age-related delays in N200 and P300 latency are well-established 

[10,42] and, due to lack of direct relevance to compensatory activation, they were not 

analyzed in this study. Instead, we performed a follow-up analysis to interrogate the 

continuous waveform temporal dynamics within each age group, using temporal principal 

components analysis (PCA) to extract the relevant underlying activation. Based upon 

existing ERP research with inhibitory control tasks and compensatory models of cognitive 

aging [32,43], we hypothesized that successful stop-signal inhibition would produce left 

hemisphere-dominant N200 (conflict monitoring) and right hemisphere-dominant P300 

(response inhibition) amplitudes in young adults. We anticipated that older adults would 

exhibit bilateral activation, specifically attributable to recruitment of the non-dominant 

hemisphere (i.e., greater right hemisphere N200 and left hemisphere P300 recruitment). 

We expected these effects to be greatest at frontal and fronto-central electrodes. We further 

expected that such differences would result in age group differences in the spatio-temporal 

activation pattern for these components during stop trials, although there was too little 

published research to drive specific predictions for this follow-up analysis.

2. Materials and Methods

2.1. Participants

Healthy older adult participants (n = 49) were recruited via newspaper advertisements, 

screened for health by phone, and compensated monetarily. Young adults were recruited 

from psychology classes offering course credit (n = 42). The Mattis Dementia Rating 

Scale—Second Edition (DRS-2) was used to assure intact cognition in the older adult 

participants, with a cut-off score of 130/144 for intact status [44-46]. One older adult 

participant was excluded due to a DRS-2 score below 130, reducing the older sample to 

48. The depression subscale of the Brief Symptom Inventory (BSI; average six items scored 

0 (none)–4 (severe)) was used to assure normal mood and group comparability. All the 

participants were right-hand-dominant. However, only successful inhibition trial ERP data 

were analyzed; notably, no motor response occurred during these trials.

Paitel and Nielson Page 4

Symmetry (Basel). Author manuscript; available in PMC 2022 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Materials

2.2.1. Stop-Signal Task—The stop-signal task consisted of a serial stream of letters 

visually presented at a rate of 750 ms per letter with an interstimulus interval of 0 ms. First, 

in the go condition, the participants were instructed to press the space bar every time the 

letter “r” or “s” was presented (504 stimuli, 78 targets). This condition served to establish 

a prepotent response. Thereafter, in the stop condition, participants were instructed to press 

the space bar when the letter “r” or “s” appears (684 stimuli, 81 targets), except when the 

stimulus was followed by a red flash (i.e., the stop-signal, n = 36; flash duration = 100 

ms; stop-signal delays = 125 ms and 200 ms rather than a ‘staircase’ procedure to prevent 

predictability but also maintain high accuracy; see [10]). The outcome measures included 

target and inhibitory accuracy; target response time (RT); and stop-signal reaction time 

(SSRT), which is the latency for the process involved in stopping the motor response, as 

estimated from the distribution of observed target RTs (i.e., the probability of responding to 

a stop-signal trial) and the stop-signal delay [8,47,48].

2.2.2. EEG Data Acquisition and ERPs—Continuous EEG data were collected using 

a 64 electrode Brain Products actiCAP arranged according to the extended International 

10–20 System with ground at AFz and reference at FCz. The data were recorded using 

Neuroscan SynAmps2 with impedances kept under 50 kΩ. The EEG data were recorded 

in DC mode with a low-pass hardware filter at 100 Hz and a 500 Hz sampling rate using 

Neuroscan software (Scan 4.5). The continuous EEG data were processed off-line using 

EEGLAB (Version 14.1.0) software via MATLAB (Version 7.12, The MathWorks, Natick, 

MA, USA). The data were re-referenced to a common average of all electrodes and filtered 

using a band-pass filter from 0.5–100 Hz and a notch-filter from 59–61 Hz.

The continuous data were visually inspected, and channels were rejected as necessary 

to eliminate channel-level artifacts. The data for the rejected channels were interpolated 

based on an average of surrounding electrodes. Next, an Adaptive Mixture Independent 

Component Analysis (AMICA [49]) was used to decompose the data into individual 

components. Components reflecting eye blink, other ocular movements, and muscle 

contraction were rejected and removed from the data based on visual inspection. These 

data were then segmented from 100 ms prior to stop-signal presentation (i.e., the red 

flash) to 1500 ms after stimulus onset for correct trials only. A baseline correction of 100 

ms pre-stimulus was applied to all epochs. The epochs were then examined and rejected 

as appropriate based on visual inspection. The remaining epochs were averaged and an 

additional low-pass filter at 20 Hz (zero-phase, 4th-order, Butterworth) was applied. The 

peak amplitude was computed at frontal (F3, F4), frontal-central (FC3, FC4), central (C3, 

C4), and parietal sites (P3, P4) between the range of 100–350 ms for the N200 component 

and 300–700 ms for P300. These electrodes were selected based on typical maxima (i.e., 

P300 central-parietal, N200 frontal-central), and common reports from aging studies of 

frontal recruitment, particularly in inhibitory tasks [18,34,35,42].

The follow-up analyses using continuous waveform data aimed to determine whether the 

traditional N200 and P300 time windows (as employed in the primary analyses) effectively 

reflected single peaks, or a single ‘phase’ of activation, as indicated by those components, 
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or whether multiple activity phases occurred within these windows. In the event of multiple 

phases, we endeavored to describe the phase sequence and their corresponding spatial 

distributions (i.e., which sites were active and in which order), and how those sequences 

differed by age. Thus, grand average waveforms across inhibitory trials were computed in 

open-source Brainstorm software [50] using the full 64 channel array. This was followed by 

temporal PCA (Brain Vision Analyzer 2.0), using each time point as a variable [51,52] 

across the full 64 channel electrode array over the interval of 120–700 ms in young 

adults, and 175–700 ms in older adults. These temporal windows targeted the group-specific 

N200–P300 ranges from the traditional analyses (i.e., with a later window for older adults 

who had later component latencies). Separate analyses by group were also important to 

allow emergence of factor structure differences (i.e., temporal-spatial profiles), rather than 

emphasizing factors that were common to both groups. The factor threshold was set at 

eigenvalue >1.0 and the minimum total variance accounted for of 5%. The resulting factors 

were then back-projected to display their corresponding scalp topographies. Based on 

comparisons of the scalp maps with the raw ERP data, a good fit was achieved without 

rotation. Thus, the initial orthogonal matrix was retained [52]. A secondary independent 

components analysis (ICA) was used to confirm scalp topography [53-55]. Consistent with 

the approach by Dien [56,57], each factor time series was then compared with corresponding 

electrode-level waveforms from the original data matrix. Electrodes loading on the factor 

were considered those that occur within the factor-related zone on the corresponding scalp 

map.

2.2.3. Procedure—ERPs during the stop-signal task were collected as part of a larger 

study. The participants completed two testing sessions, separated by approximately one 

week, with individualized testing on both occasions. All the EEG data were collected on 

a single day. The participants were seated in front of a computer following EEG cap 

placement and were instructed and monitored throughout (with feedback as relevant) such 

that gross motor movements and speech were minimized to limit noise in the EEG signal. 

Although motion artifact was eliminated from the data as needed (see Section 2.2.2), 

motion artifact did not lead to the loss of stop-signal trials. Moreover, motion was not a 

relevant outcome measure to quantify or compare across groups because the trials of interest 

were stop-signal trials, which require the withholding of a motor response. The stop-signal 

task was presented in MATLAB (version 7.12, The MathWorks). The instructions were 

read aloud as they appeared on the screen, and the participants had the opportunity to 

ask questions regarding task instructions. Corrective feedback relative to task performance 

was provided throughout the practice blocks of each task condition, but no feedback was 

provided during the test blocks. All the procedures were approved by the University’s 

Institutional Review Board.

3. Results

3.1. Descriptive Statistics and Excluded Data

Two older adult participants and one young adult participant were excluded from the 

analyses due to technical issues during the collection of the EEG data. These exclusions 

resulted in a final sample of 46 older and 41 younger adult participants. The sample 
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demographics are presented in Table 1. Aside from age, the groups were comparable, except 

that the older group had, on average, one more year of formal education than the young 

adults, which was statistically significant. The young group could not have studied beyond 

a baccalaureate degree (i.e., 16 years), and education was range-restricted, limiting the 

variance. Thus, despite the statistical significance, one additional year of college education 

was not expected to significantly contribute to group differences in the study outcomes. 

However, to ensure this was not the case, education was included as a covariate in the 

primary ERP analyses.

3.2. Task Performance Analyses

The task performance data are shown in Table 2. The groups did not significantly differ on 

task accuracy measures, either in the preliminary go task or during the stop-signal task, for 

target responses or the withholding of responses (i.e., inhibition). However, as expected, the 

older adults demonstrated slower responses to targets and a slower SSRT than the young 

adults.

3.3. ERP Analyses

Repeated measures 2 × 2 × 4 ANOVAs, including Age (Young, Older), Hemisphere (Left, 

Right), and Site (F, FC, C, P) were conducted to assess the N200 and P300 amplitudes (in 

μV). Tables 3 and 4 summarize these analyses. Education was added as a covariate but did 

not significantly contribute to either model (all ps > 0.07). Greenhouse Geisser correction 

was applied where appropriate. The primary results of interest included the main effects of 

Age and the interactions of Age with Hemisphere and/or Site. The spatio-temporal dynamics 

of the continuous waveforms by age group were then examined using temporal PCA for the 

64-channel waveforms for each group (see Section 2.2.2).

3.3.1. N200 Component—After controlling for years of education, the N200 analyses 

revealed a significant main effect of Age (F(1,84) = 4.51, p < 0.05, ηp2 = 0.05), with 

overall larger amplitudes in the older adults (Molder = −2.96, Myounger = −2.36). The Age 

by Hemisphere (F(1,84) = 15.87, p < 0.001, ηp2 = 0.16) and Age by Site (F(2.2,181.27) = 

7.18, p < 0.001, ηp2 = 0.08) interactions were significant. Pairwise comparisons were used 

to interrogate significant omnibus effects (see Table 3 for corresponding statistics, Table 4 

for group means and SEM by factor). The Age by Hemisphere interaction revealed greater 

amplitude in older compared to young adults, specifically in the right hemisphere; the older 

adults demonstrated right hemisphere-dominant N200 amplitudes, while the young adults 

had larger left hemisphere amplitude (see Table 3). The Age by Site interaction showed 

that the older adults’ amplitudes were significantly larger than the young adults’ at central 

sites, with a non-significant trend at parietal sites (p = 0.06). Furthermore, the young adults 

demonstrated an anterior N200 maximum, while the older adults demonstrated maxima over 

both frontal and central sites, with less differentiation across the anterior to posterior sites 

(see Table 3; Figure 1).

3.3.2. P300 Component—After controlling for years of education, the P300 analyses 

revealed significant Age by Hemisphere (F(1,84) = 26.24, p < 0.001, ηp2 = 0.24) and Age by 
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Site (F(2.2,184.88) = 4.58, p < 0.01, ηp2 = 0.05) interactions. Pairwise comparisons were used 

to interrogate significant omnibus effects (see Table 3 for corresponding statistics, Table 4 

for group means and SEM by factor). The interactions revealed right hemisphere-dominant 

P300 amplitudes in the young adults, with no significant difference between hemispheres 

in the older adults (i.e., bilateral activation). That is, the young adults demonstrated larger 

amplitudes than the older adults in the right hemisphere, but the older adults demonstrated 

larger amplitudes than the young adults in the left hemisphere. Furthermore, the young 

adults exhibited maximal amplitudes at the parietal site, while the older adults demonstrated 

a more diffuse pattern of activation that was not significantly different across sites. The 

age groups significantly differed only in the parietal region, with greater P300 amplitude in 

young than old (see Table 3; Figure 1).

3.3.3. Post-Hoc Temporal PCA—Temporal PCA, including all 64 channels, revealed 

two factors in the young adults (120–700 ms) and three factors in the older adults (175–700 

ms). These factors are shown by group in Figure 2; the electrodes that loaded on the factors 

are listed in Table S1. Notably, the same structure resulted when using a full 0–700 ms range 

in both groups, but the differentiated windows provided more clarity to the spatio-temporal 

patterns underlying the factors. In the young adults, Factor 1 captured a single peak of 

P300-related activity (F1-Y, peak = 380 ms, 87.9% of total variance), with a bilateral 

central-parietal scalp distribution. Factor 2 captured N200; F2-Y exhibited a single negative 

peak at 226 ms (7.7% of total variance) and a somewhat left-dominant parietal-occipital 

distribution. By contrast, Factor 1 in the older adults (F1-O; 74.9% of total variance) 

included two phases of activation (peaks): (a) a diffuse negative peak (241 ms) with a central 

maximum that spanned from frontal through parietal sites, thereby effectively capturing the 

traditional N200 component, but with a broader and more anterior focus than in the younger 

adults (F2-Y); and (b) a diffuse positive peak (449 ms) corresponing to the P300 component, 

as in F1-Y, but with a more anterior maximum and an extent ranging from the frontal to 

the parietal sites. The second factor in the older adults (F2-O; 14.0% of total variance) was 

characterized by two parietal-occipital positivities (mean = 323ms), suggesting additional 

visual attentional processing or allocation in the older adults. Finally, in the older adults 

only, there was also a third factor: F3-O (9.6% of total variance), characterized by an early 

right frontal positivity (195ms), which is indicative of early sensory-perceptual processing 

(i.e., P200) rather than being related to the N200 or P300 components, which are the focus 

of this investigation.

4. Discussion

The current study used a high-accuracy stop-signal paradigm to examine age-related 

differences in lateralized N200 and P300 amplitudes, and to delineate the temporal sequence 

of compensatory recruitment during successful inhibition. Peak ERP amplitudes were first 

analyzed within traditional time windows, followed by the examination of continuous 

spatio-temporal patterns using temporal PCA. The analyses revealed distinct hemispheric 

patterns, both within and between the young and the healthy, cognitively intact older adults. 

The young adults exhibited left hemisphere-dominant N200 activation and right hemisphere-

dominant P300. By contrast, the older adults exhibited right hemisphere-dominant N200s, 
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which were of larger amplitude overall than in the young adults in the right hemisphere; 

the left hemisphere amplitudes were comparable between the groups. The older group 

also demonstrated distinctly bilateral P300 amplitudes, with between-group age effects 

dependent on the electrode site. Specifically, the older adults demonstrated larger left 

hemisphere amplitudes, but smaller right hemisphere amplitudes, than the young adults.

A follow-up analysis using temporal PCA allowed for more in-depth characterization of the 

dynamics underlying traditional N200 and P300 components in these groups. The young 

and older adults produced different spatio-temporal factor structures. The young adults 

exhibited two factors, one characterizing P300 with a centro-parietal maximum and one 

characterizing N200 with a parieto-occipital maximum. The older adults demonstrated a 

different profile, with three factors. Their first factor included two peaks that captured N200 

and P300 with diffuse activation patterns (i.e., anterior to posterior range) and more anterior 

maxima than in the young adults. The older adults also exhibited a second factor with two 

parietal-occipital peaks earlier in the P300 window, which likely characterized supplemental 

visual attention processing; and a third factor with an early right frontal peak representing 

sensory-perceptual processing. Thus, it was not simply the magnitude or latency of the ERPs 

that differed in the older adults, but rather, they engaged more diffuse, extensive networks in 

stop-signal processing. Importantly, this was evident despite the intact and comparable task 

accuracy in both groups.

4.1. N200 Age Group Differences

The N200 activation laterality patterns between the young adults, who were left-dominant, 

and the older adults, who were right-dominant, during successful inhibition might seem 

to conflict with the results of fMRI studies of inhibitory control that suggest the 

right hemisphere is dominant during inhibition [11]. The isolation of the contributing 

subprocesses, however, has shown that right hemisphere resources are more selectively 

active during inhibition of the motor response, while left hemisphere resources are more 

selectively active earlier, during pre-motoric conflict detection and monitoring; this is 

consistent with the role of the N200 component [11,16,18,58]. The young and older 

adults demonstrated comparable left hemisphere N200 amplitudes, but differed in right 

hemisphere activation, where the older adults demonstrated significantly larger amplitudes. 

This supports the interpretation that older adults required additional neural resources to 

engage pre-motoric conflict processing [17,18,32,59].

Conflict processing that generates N200 during stop-signal tasks includes monitoring for 

competing (i.e., high conflict) information, specifically the co-activation of the prepotent 

‘go’ and inhibitory ‘stop’ responses. Once conflict is detected, N200 may further reflect 

a sub-conscious alerting or activation of inhibitory mechanisms [18,60,61]. These types 

of conflict processing are thought to be generated by the dorsal anterior cingulate cortex 

[7,17,18]. This spatial distribution is consistent with the fronto-central N200 factor in 

older adults. By contrast, the parieto-occipital distribution in the young adults suggests 

that visual conflict processing was engaged without need for additional anterior conflict 

processing to successfully inhibit responding. Combined with the laterality differences 

between the groups, these patterns suggest that the older adults recruited both fronto-parietal 
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and non-dominant hemisphere resources that worked in concert to enable successful conflict 

monitoring, detection, and resolution. This recruitment thereby contributed to successful 

task performance despite age-related decline in neural functioning [32,62,63].

To our knowledge, there are only two studies to date of age-related N200 effects using 

a stop-signal task. One revealed overall larger N200 amplitudes in older compared to 

young adults at midline electrodes, despite comparable task performance, suggestive of 

compensation in elders [10], which is consistent with the current findings. The other 

found no significant age-related differences, which the authors interpreted as age-related 

compensation [15]. These findings and those from the current study contrast with some 

previous studies using go/no-go tasks, which overall demonstrated smaller N200 amplitudes 

in older compared to young adults [64]. However, a 2019 meta-analysis revealed that 

go/no-go ERP studies also demonstrated poorer overall performance in the older adult 

groups and, frequently, these studies presented equal numbers of go and no-go trials, which 

de-emphasized conflict processing invoked by prepotent responding by over-representing 

the motor inhibition trials relative to traditional paradigms [64]. Moreover, stop-signal tasks 

provide a number of advantages over no-go tasks, including a better measure of response 

inhibition per se (i.e., vs. response selection) and limiting the role of working memory 

to allow for more comparable task demand between groups [9]. To effectively capture 

compensatory recruitment, particularly in a task that is at least moderately demanding, such 

as inhibitory control, comparable performance between groups is crucial [63]. Thus, the 

current study, which achieved comparable task performance across groups, likely provided a 

more accurate reflection of inhibitory control and related compensatory recruitment in aging 

than was captured by earlier go/no-go studies.

4.2. P300 Age Group Differences

As expected, the young adults exhibited right hemisphere dominant P300 amplitudes during 

successful stop-signal trials, with a central-parietal maximum, evident both in traditional 

analyses and in their P300-related temporal PCA factor. These findings are consistent 

with other studies showing right hemisphere-dominant and central-parietal maximal P300 

activation [16,59,65]. These patterns coincide with the role of P300 in evaluation and 

adaptation of motoric response inhibition [7,16,24].

In contrast to young adults, the traditional ERP analyses highlighted distinctly bilateral 

P300 amplitudes in the older adults. Looking more closely at the bilateral activation in the 

older adults, the amplitudes in the left hemisphere were larger in the older compared to 

the young adults, highlighting the recruitment of non-task-dominant hemisphere resources 

[40]. The right hemisphere amplitudes were significantly smaller in the older group, 

differing from the N200 findings, where the older adults ‘matched’ the young in the 

expected regions but recruited additional contralateral resources. For P300, the older adults 

exhibited insufficiency relative to the young in the expected regions (right hemisphere) 

and compensated with contralateral recruitment, thereby suggesting the sensitivity of 

P300 to age-related deficits in neural sufficiency as well as to compensatory recruitment. 

Specifically, compensatory activation is most consistently evident in elders during low-to-

moderate task demand, when their performance is comparable with young groups, while 
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decreased activation becomes evident with high task demand and reduced task performance, 

which is indicative of depleted neural reserves [63]. P300 was sensitive to this depletion of 

neural reserve where N200 was not, which is consistent with previous studies showing P300 

sensitivity to early neural decline amongst healthy, cognitively intact elders with genetic 

risk for Alzheimer’s disease [66]. Thus, our findings suggest that the neural mechanisms 

underlying motor response inhibition and performance evaluation and monitoring via P300 

likely decline earlier than N200-related conflict monitoring sources in healthy, typical aging.

The closest comparisons in relevant research to our P300 findings are studies with oddball 

paradigms, where participants respond to some targets but not to others, which are rarer 

(i.e., oddballs). The oddball paradigm has often been used because task performance 

(i.e., task difficulty) is typically comparable between age groups due to the low level of 

cognitive demand [66]. Importantly, frontal P300 recruitment is evident in older adults 

in auditory oddball tasks, with compensatory recruitment localized to the precentral 

and parahippocampal gyri [67]. However, achieving comparable task performance does 

not necessitate such simplistic paradigms. The stop-signal task can provide comparable 

performance across groups while also examining the higher-order cognitive processes 

necessary for maintaining overall cognitive functioning [68] and independent living in older 

adulthood [69].

4.3. Spatio-Temporal Age Group Differences

We performed a post-hoc temporal PCA analysis of the inhibitory trials across time windows 

designed to include the N200 and P300 peaks in order to examine whether each peak 

genuinely reflected a single process. In addition, this analysis crucially provided added 

insight into the multiple subprocesses known to underlie inhibitory control, such as conflict 

detection, monitoring, and resolution, and inhibitory performance evaluation and adaptation 

[7,11], and how they differ in young and older adults. Although ERP research on inhibitory 

control offers the potential to reveal fine-grained temporal subprocesses at millisecond-level 

resolution, only large time windows of several hundred milliseconds, which are associated 

with major process divisions (e.g., N200, P300), have been examined. This, taken with a 

bilateral representation of electrodes, was pursued to better characterize and disentangle 

age-related differences within each of the specific subprocesses of inhibitory control 

[12,35,37,40,41].

The results of the temporal PCA suggested that a single “process”, or component, effectively 

represented the N200 and P300 peaks in the young adults. In this case, using traditional 

mean or peak amplitude metrics is appropriate. By contrast, however, two distinct P300-

related factors emerged for the older adults. Given the temporal overlap, traditional 

amplitude metrics would have been unable parse out these subprocesses, suggesting that 

a more nuanced spatio-temporal approach may be valuable. Furthermore, these factors 

clarified the timing and sequence of P300-related processing within the older adult group. 

First, the two successive early P300 parieto-occipital peaks indicated that there was added 

allocation of visual attentional resources for P300-related evaluative processes in older 

adults. Second, the older adults produced a P300 peak that was temporally consistent with 

the peak produced by the young adults, but the older adults exhibited a more diffuse 
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and anterior scalp distribution. This anterior ‘shift’ was indicative of frontal recruitment 

to support evaluation and adaptation during inhibitory performance. This effect was also 

apparent in our prior study, which also featured comparable task accuracy across groups 

[10]. We suggest that the recruitment of generally bilateral P300 resources along with 

frontal P300 recruitment and greater early parieto-occipital attention-related activation in 

older adults contributes to the maintenance of intact inhibitory performance in older age 

[10,34,70].

Similarly to P300, anterior maximal activity was apparent for the N200 in the older adults, 

with a more diffuse, bilateral response than in the young adults. Specifically, the older 

adults exhibited left frontal activation that was comparable to that of the young adults, 

along with significantly greater right frontal activation. In addition, the older adults exhibited 

extraneous early right frontal positive activation (Factor 3), as well as early and later 

parietal-occipital positivities (Factor 2) that were not apparent in the young adults. These 

were indicative of recruitment to engage supplemental sensory-perceptual and attentional 

control processes to engage in conflict processing and performance monitoring. Thus, the 

spatio-temporal analysis revealed multiple specific sub-processes during inhibition that were 

necessary for successful task performance in older adults that are not clearly characterized 

by a simpler traditional component analysis. Furthermore, these findings are most consistent 

with the interpretation of the task-specific recruitment of specific, relevant subprocesses than 

with a more general, diffuse overactivation or dedifferentiation [32,62,63].

4.4. Limitations

The stop-signal task reported in this study was designed to result in high-accuracy 

performance in both young and older adult participants to control group differences in neural 

activation based on task demand and to ensure a sufficient number of successful inhibition 

trials for ERP analysis. Future research using stop-signal paradigms with a more equal 

distribution of correct and error trials, while maintaining comparable performance across 

groups [47], would further enable the examination of error trials and provide increased 

performance variability, which would allow the assessment of ERP * task performance 

effects, both within and between subjects. Given the high-accuracy and low-demand nature 

of this task, subjective psychological stress measures were not assessed, but may be of 

interest in future studies.

The current paper focused specifically on interrogating neural activity underlying executive 

inhibitory control processes; thus, we focused the analyses on N200 and P300 activation. 

Future research directed at further parsing out the role of age on earlier sensory processes 

in such a task may benefit from a similar spatio-temporal investigation, as might studies 

investigating other complex cognitive processes. Future research will also benefit from 

the application of more advanced spatial localization procedures to clarify the sources of 

age-related differences in N200 and P300 processes.

5. Conclusions

The current study uniquely reduces the inhibition construct into specific subprocesses to 

allow the examination of how each is differentially impacted by aging. Compensatory 
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theories of cognitive aging are largely based on fMRI research, which provides information 

on the scale of seconds. However, relevant neural activity primarily occurs within the first 

~400 ms of an inhibitory stimulus [7]. Thus, studies using event-related potentials are 

uniquely capable of filling the critical gap addressing the temporal sequence underlying 

compensatory activation, such as is associated with aging. We explored traditional ERP 

metrics, collapsing activation over several hundred milliseconds, and we also explored 

continuous waveform activation with all 64 electrodes using a temporal PCA. The two 

analyses clarified the spatio-temporal dynamics of N200 and P300 roles in inhibitory control 

and how they differed by age group. In particular, the older adults’ activation was best 

characterized when including the supplemental analysis, which helped to reveal both the 

spatial and temporal sequence difference in P300 between the older and young adults. 

Furthermore, our findings highlighted the importance of examining hemisphere-specific 

activation patterns, which may be crucial to understanding both the subprocesses that 

contribute to successful inhibition in healthy young adults, and the maintenance of cognitive 

function in older adulthood [32,40]. Thus, we encourage the analysis of both anterior to 

posterior and hemispheric patterns of activation by including lateral electrodes in ERP 

analyses of complex cognitive functions, especially when assessing the contributions of age.

Given the prominent effect of N200 amplitude during our stop-signal task and the unique 

underlying spatio-temporal patterns between age groups, attention to the specific neural 

mechanisms underlying conflict processing during inhibitory control may be a particularly 

important target for research on healthy, normative aging as well as on risk for pathological 

aging [10,66]. Temporal PCA also revealed spatio-temporal patterns that differentiated age 

groups during the P300 window. Thus, given the particularly long time window typically 

used for P300 analyses, finer-grained temporal analysis of the P300 component could be 

helpful in revealing and characterizing important subprocesses that may be differentially 

impacted by aging.
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Figure 1. 
Average ERP amplitude (μV) ± SEM is shown by age group at left (electrode 3) and 

right (electrode 4) hemisphere sites for frontal through parietal regions (F = frontal; 

FC = fronto-central; C = central; P = parietal) for N200 (left column) and P300 (right 

column) components. For N200, a negative-going wave, larger amplitudes are negative (i.e., 

downward). For P300, a positive-going wave, larger amplitudes are positive (i.e., upward). 

Corresponding significant group differences are specified in Table 3 and mean and SEM 

provided in Table 4.
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Figure 2. 
A) PCA factor loadings by group. B-D) 64-channel grand average ERPs (one tracing/

electrode). Electrodes with significant factor loadings shown in color; scalp maps show 

spatial distributions. Young adults (left): Factor 1) central-parietal positivity (F1P; P300-

related; B1); Factor 2 was a parietal-occipital negativity (F2N; N200-related; C1). Older 

adults (right): Factor 1) two activation phases, with a central negative peak (F1N; N200-

related) and a frontal-central positive peak (F1P; P300-related), both of which were diffuse 

(anterior to posterior extent), with more anterior maximum than Young; Factor 2) two 

positive parietal-occipital peaks reflecting added visual attention/ processing (F2P); Factor 

3) early right frontal positivity (F3P; e.g., P200, sensory-perceptual processing).
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Table 1.

Demographics by age group (mean (±SD)).

Older Adults (n = 46) Young Adults (n = 41)

Age (years)
79.63 (4.68)

a
19.95 (2.74)

a

Education (years)
14.80 (2.65)

a
13.77 (1.16)

a

Sex (% female) 73.91% 73.17%

Dementia Rating Scale-2nd Edition 138.26 (2.88) --

Brief Symptom Inventory-Depression 0.39 (0.53) 0.56 (0.61)

Note.

a
Significant age group difference (older > young), p <.05.
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Table 2.

Descriptive statistics for the stop-signal task by group (mean (±SD)).

Older Adults (n=46) Young Adults (n = 41)

Go Task (prepotency):

% Correct Target Trials (PCTT) 99.52 (0.83) 99.50 (1.51)

Target Reaction Time (ms)
678.71 (47.72)

a
596.26 (39.51)

a

Stop-Signal Task:

% Correct Target Trials (PCTT) 98.58 (2.63) 98.16 (2.52)

% Correct Inhibitory Trials (PCIT) 75.00 (11.92) 77.64 (12.79)

Target Reaction Time (ms)
769.72 (63.36)

a
684.01 (39.31)

a

Stop-Signal Reaction Time (SSRT) (ms)
541.47 (36.89)

a
450.59 (44.94)

a

Note.

a
p < 0.001.
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Table 3.

Significant group and hemisphere contrast effects from Age by Hemisphere interactions for N200 and P300 

amplitude during successful stop-signal trials (education covaried).

Group Contrasts Hemisphere Contrasts

Effect F ηp2 Effect F ηp2

N200 Left -- Young L > R** 8.95 0.10

Right O > Y*** 25.17 0.23 Older R > L** 7.42 0.08

Frontal -- --

Fronto-central -- --

Central O > Y*** 31.79 0.28 --

Parietal -- --

P300 left O > Y* 5.61 0.06 Young R > L*** 47.93 0.37

Right Y > O*** 20.00 0.19 Older --

Frontal -- --

Fronto-central -- --

Central -- --

Parietal Y > O** 10.40 0.11 --

Note: O = older adults; Y = young adults. L = left (electrode 3); R = right (electrode 4).

***
p < 0.001

**
p < 0.01

*
p < 0.05.
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Table 4.

Mean N200 and P300 amplitude (μV ± SEM), education covaried) during successful stop-signal trials.

Young adults Older adults

N200 P300 N200 P300

Site Mean SEM Mean SEM Mean SEM Mean SEM

F3 −3.12 0.40 2.54 0.41 −2.30 0.38 4.19 0.38

F4 −1.90 0.32 4.66 0.31 −3.64 0.30 3.74 0.29

FC3 −3.69 0.42 3.22 0.34 −2.07 0.40 4.51 0.32

FC4 −2.26 0.39 5.96 0.41 −3.21 0.36 4.05 0.39

C3 −2.26 0.32 3.37 0.33 −2.89 0.30 4.41 0.31

C4 −1.43 0.30 6.36 0.45 −3.94 0.29 4.31 0.43

P3 −2.56 0.40 4.44 0.38 −2.69 0.38 4.13 0.36

P4 −1.64 0.38 7.27 0.48 −2.94 0.36 4.78 0.45

Note: F = frontal; FC = fronto-central; C = central; P = parietal; 3 = left; 4 = right.
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