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Abstract
Motif discovery has been one of the most widely studied problems in bioinformatics ever since genomic and protein
sequences have been available. In particular, its application to the de novo prediction of putative over-represented
transcription factor binding sites in nucleotide sequences has been, and still is, one of the most challenging flavors
of the problem. Recently, novel experimental techniques like chromatin immunoprecipitation (ChIP) have been
introduced, permitting the genome-wide identification of protein^DNA interactions. ChIP, applied to transcription
factors and coupled with genome tiling arrays (ChIP on Chip) or next-generation sequencing technologies
(ChIP-Seq) has opened new avenues in research, as well as posed new challenges to bioinformaticians developing
algorithms and methods for motif discovery.
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INTRODUCTION
‘Motif discovery’ (or ‘motif finding’) in biological

sequences can be defined as the problem of finding

short similar sequence elements (building the ‘motif’)

shared by a set of nucleotide or protein sequences

with a common biological function. The identifica-

tion of regulatory elements in nucleotide sequences,

like transcription factor binding sites (TFBSs), has

been one of the most widely studied flavors of the

problem, both for its biological significance and for

its bioinformatic hardness [1, 2].

This first step of gene expression, ‘transcription’, is

finely regulated by a number of different factors,

among which ‘transcription factors’ (TFs) play a

key role binding DNA near the transcription start

site of genes (in the ‘promoter’ region), but often

also within the region to be transcribed or in distal

elements like ‘enhancers’ or ‘silencers’ [3, 4]. The

actual DNA region interacting with and bound by

a single TF (called TFBS) usually ranges in size from

8–10 to 16–20 bp. TFs bind the DNA in a sequence-

specific fashion, that is, they recognize sequences that

are similar but not identical, differing in a few nu-

cleotides from one another.

The introduction of technologies like oligonucleo-

tide microarrays [5, 6] has given the possibility of mea-

suring simultaneously the mRNA expression levels of

thousands of genes at the same time. Thus, since TFs

activate or block the transcription of genes by binding

DNA, and genes showing similar expression patterns

should be regulated by the same TFs, the genomic

regions essential for the regulation of coexpressed

genes (e.g. their promoters) should contain short and

similar sequence elements, corresponding to binding
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sites for the common regulators [7, 8]. Promoters from

clusters of coexpressed genes (usually a few dozens)

have been thus the most typical input to algorithms

for finding overrepresented sequence motifs, even

though regulatory elements could be located else-

where in the genome.

On the other hand, the recent introduction of

technologies like chromatin immunoprecipitation

(ChIP [9]), coupled with tiling arrays (ChIP on Chip

[10]) or next-generation sequencing (ChIP-Seq [11]),

has permitted the direct genome-wide identification

of regions bound invivo by a given TF. In other words,

ChIP permits to single out a set of genomic regions

whose binding sites from the same TF are experimen-

tally supported. These regions usually range in size

from a few dozen base pairs to a few hundred base

pairs. Thus, ChIP experiments are another perfect

case study for motif finding, since the regions obtained

from ChIPs are larger than the actual TFBSs them-

selves, which still have to be discovered within the

regions. The actual binding specificity of the TF inves-

tigated can be thus identified and modeled. ChIP-Seq

has rapidly become the de facto standard in this field,

posing, as we will discuss in the following, new chal-

lenges to the developers of algorithms and tools.

DESCRIBINGTRANSCRIPTION
FACTOR BINDING SITES
An example of a set of binding sites recognized by

the same TF (CREB) is shown in Figure 1. We can

summarize them by building their ‘consensus’,

denoting for each position what seems to be the

nucleotide preferred by the TF. Since approximation

is tolerated by TF binding, all oligos that differ from

the consensus up to a maximum number of nucleo-

tide substitutions can be considered valid instances of

binding sites for the same TF. On the other hand,

the observation of a collection of TFBSs like the

example of Figure 1 shows how specific positions

are strongly conserved throughout all the sites, i.e.

the TF does not seem to tolerate variation in those

places, while differences seem to be confined to

some other positions. Accordingly, one could

employ ‘degenerate consensuses’, which can use

symbols denoting not only a single nucleotide, but

different nucleotides at the same position, e.g. by

using IUPAC codes [12], in which different letters

denote a set of nucleotides (e.g. W¼A or T, S¼C

or G, U¼A,C, or G, N¼ any nucleotide and so

on). All oligos which respect the definition given

by the degenerate consensus are again assumed to

be recognized by the TF.

Finally, the most flexible and widely used way of

building descriptors for TF binding is to align the

available sites, and to build an (ungapped) alignment

‘profile’ with the count or the frequency with which

each nucleotide appears at each position in the sites.

Once the profile has been built, any candidate oligo

can be compared to it, by using the corresponding

nucleotide frequencies to assess how well it fits the

descriptor. The result is a score ranging from 0 to 1

(rather than a yes/no decision like with consensuses),

expressing the ‘likelihood’ of the oligo to fit the pro-

file with respect to a random background nucleotide

distribution [14].

DISCOVERINGTRANSCRIPTION
FACTOR BINDING SITES
Regardless of the representation used, and of the

experiment performed to select the sequences to be

analyzed, the problem of motif discovery of TFBSs

in nucleotide sequences can be informally defined as

follows. The input is a set of DNA sequences, typ-

ically a few hundred base pairs long. The goal is to

find one or more motifs, that is, one or more sets of

oligos (10–16 bp long) appearing in a large fraction of

the sequences (thus allowing for experimental errors

and the presence of false positives in the set). Oligos

belonging to the same motif should be similar to one

another enough to be likely to be binding sites

recognized by the same TF. The motif size is usually

assumed to be known a priori. To assess the actual

significance of the motif, and to discriminate it

against random similarities, the motif should not

appear with the same frequency and/or the same

degree of oligo similarity in a set of sequences se-

lected at random or built at random with some

model generating ‘biologically feasible’ DNA se-

quences. Since the binding specificity of several

TFs is already known, the motifs discovered can be

then compared to already known motifs with tools

like STAMP [15] or TOMTOM [16].

This problem has been widely studied, and the

various approaches introduced so far mainly differ

in two points. The first is how similar oligos forming

a candidate motif are chosen, and the motif they

form is built and described. Then, in how the statis-

tical significance (overrepresentation) of the motifs is

assessed, and which ‘background’ or ‘random’ model

is employed.
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Given k input DNA sequences of length n, and a

motif size m, by assuming that a motif instance

should appear in each sequence we have (n�mþ 1)k

candidate solutions that can be built by combining

all the m-mers in all the possible ways, that is, an

overall number that is exponential in the number

of input sequences. Therefore, the exhaustive enu-

meration of the solution space (all possible oligo

combinations) is computationally unfeasible [17].

The choice of how to model motifs has thus straight-

forward implications in the heuristics that can be

applied to solve the problem.

USING PROFILES
Since profiles provide a description of the binding

specificity of a TF more powerful and flexible than

consensuses, they have been very often the method

of choice in the modeling of the solutions of motif

discovery. In general, the rationale is to select some

oligos from the input sequences, align them and

score the resulting profile according to its conserva-

tion with a suitable measure of significance. The

problem can be formalized as one of ‘combinatorial

optimization’, that is, finding the combination of

oligos that build the highest-scoring profile by

exploring the search space of all possible combin-

ations with some heuristic and avoiding exhaustive

enumeration. Nearly all the combinatorial optimiza-

tion techniques (i.e. greedy, local search, stochastic

search, genetic algorithms and so on) have been tried

and applied over the years.

For example, a greedy heuristic was introduced

in refs [18, 19], in which solutions are build incre-

mentally by first solving the problem on two

sequences, then by adding the third one and so

on, saving at each step only the highest scoring

profiles. When the last sequence of the set has

been processed, the resulting profiles, output by

the program, will contain one oligo for each

input sequence.

Another way of exploring the solution space is to

start from a given profile and refine it by substitut-

ing some oligos of the profile with others likely to

produce better solutions. Given a profile, the

Multiple Expectation Maximisation for Motif

Elicitation (MEME) algorithm [20, 21] evaluates

the likelihood of each oligo of given length to fit

the profile with respect to the rest of the sequences,

while the rest of the sequences should fit a ‘back-

ground model’ better than the profile. According to

this principle, a likelihood normalized value is com-

puted for each m-mer of each input sequence in the

E (Expectation) step. Then, the algorithm builds a

new profile by aligning all the sequence oligos of

length m weighted by the corresponding likelihood

Figure 1: Describing a ‘motif’ representing the binding specificity of a transcription factor (CREB). Given a set of
oligos known to be bound by the same TF, we can represent the motif they form by a ‘consensus’ (bottom left)
with the most frequent nucleotide in each position; a ‘degenerate’ consensus, which includes ambiguous positions
where there is no nucleotide clearly preferred (N¼ any nucleotide; K¼G or T; M¼A or C, according to IUPAC
codes [12]); an alignment profile (right) that can be converted into a nucleotide frequency matrix by dividing each
column by the number of sites used, as well as into a ‘sequence logo’ [13] showing the conservation of nucleotides
and the respective information content contribution at each position.
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value, in the M (Maximisation) step. At the begin-

ning, the algorithm builds a profile from each m-

mer in the input sequences, then it performs on

each one a single E and a single M step. The high-

est scoring profile obtained in this way is further

optimized with more EM steps. If MEME can be

seen as the implementation of a local search strat-

egy, the heuristic employed in the Gibbs sampling

strategy [22, 23] can be seen as its stochastic coun-

terpart. Indeed, the initial motivation was to im-

prove a EM local search strategy similar to the

one employed by MEME [24], avoiding possible

premature convergence to local maxima. The

basic idea, assuming again that one site appears in

each input sequence, is to build an initial profile by

choosing an m-mer at random in each of the k
input sequences. Then, the oligo coming from a

given sequence S is removed from the profile; a

likelihood value is computed for each oligo in S,

representing how well it fits the model induced by

the profile with respect to some background distri-

bution; then an oligo is chosen from sequence S

with probability proportional to the likelihood

values computed. The oligo is added to the profile,

replacing the one that was removed before. These

steps are iterated a number of times, or until con-

vergence (no oligo replacement is made) is reached.

This variant of the algorithm is also known as the

‘site sampler’. The main difference with local search

is that in the latter the best oligos are always se-

lected deterministically according to how well they

fit the current solution, while the Gibbs sampler

chooses how to modify the current solution in a

stochastic way. Further improvements were intro-

duced [23] for allowing multiple occurrences (or no

occurrence) of a motif within the same sequence

(algorithm known as ‘motif sampler’). Modifications

of the basic Gibbs sampling technique were also

described for example in AlignACE [25] and

ANN-Spec [26].

The function used to assess profile significance

should simultaneously take into account both

how much each column of the profile is conserved

and how the nucleotide frequencies in the profile

differ from a ‘background’ distribution that should

correspond to the frequencies that would be

obtained by aligning oligos chosen at random. If

we assume that nucleotides in genomic sequences

are independent, the overall conservation of the

motif and its distance from a ‘background’ random

distribution can be measured by computing the

‘information content’ (IC) or ‘relative entropy’ of

the profile:

IC ¼
X4

i¼1

Xm

j¼1

mi,j log
mi,j

bi

where mi,j is entry in row i and column j of the profile

and bi is the expected frequency of nucleotide i in the

input sequences (which can be derived from the gen-

omic sequence of the organism studied or from the

input sequences themselves). This measure, expressed

in ‘bits’, accounts for how much each column is con-

served and how much the nucleotide frequencies ob-

tained in the profile differ from what would have been

obtained by aligning oligos chosen at random. In case

of uniform background frequencies, this measure

equals Shannon’s entropy. Relative entropy is also

the measure employed to design sequence logos,

with the height of each nucleotide in each position

proportional to its entropy contribution. For example,

in the logo shown in Figure 1, uniform background

frequencies are assumed, and the most conserved nu-

cleotides have an entropy of 2 bits (derived from an

observed frequency of 1.0 compared to the expected

frequency of 0.25).

The weakest point of this type of model is that the

‘background’ probability of finding a nucleotide in the

input sequences is not influenced by its neighbors, an

assumption that can be easily proven to be too unreal-

istic in natural sequences. A straightforward improve-

ment, introduced in different tools, has been thus to

model the background with a higher order Markov

model [27]. Intuitively, when a j-th order Markov

model is employed, the probability of finding a nu-

cleotide in a given position of a sequence depends on

the j nucleotides preceding it in the sequence itself.

The model parameters can be estimated from the ana-

lysis of a number of regulatory regions, e.g. by taking

all the promoters of all the genes annotated in a given

species and producing organism-specific probability

distributions and expected oligo frequencies [28]. In

turn, any significance score can be augmented by

terms indicating not only how much the profile

itself is conserved, but also how (un)likely it is to

find the oligos composing it in the sequences analyzed

according to the background model employed [29].

For example, the performance of MEME has been

shown to be significantly improved by the introduc-

tion of a higher-order background [30]. Different

flavors of Gibbs samplers are presented in refs

[31–33], where the background is described with a

third order Markov model.
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In the GLAM [34] software the sampling proced-

ure as well as the IC score have been modified in

order to compare profiles of different size, sparing the

user the visual inspection and comparison of the re-

sults obtained trying different motif lengths. The op-

timal length is computed with a simulated annealing

strategy. In ref. [35], the idea presented is to use

position-specific frequencies: the expected frequency

of an oligo is estimated by analyzing the oligos that

appear at approximately the same distance from the

genes transcription start site with a Bayesian segmen-

tation algorithm.

NestedMICA [36] introduced mosaic background

modeling. The idea is to use four different higher

order background models according to the overall

nucleotide composition of the input sequences, and

in particular to the content of C and G nucleotides

(corresponding to the presence or absence of CpG

islands in promoters). The profile optimization strat-

egy adopted in this algorithm is also novel, based on

a sequential Monte Carlo Expectation Maximization

approach.

Research has also focused on employing different

optimization strategies. Genetic algorithms are com-

bined with expectation maximization in GADEM

[37]. Also, in all the algorithms we described so far

optimization steps are performed only by selecting

oligos to build a solution according to their respect-

ive similarity or their similarity to the profile, but the

scores to be optimized are considered only a posteriori
to compare different candidate solutions. A straight-

forward approach could be then to consider directly

the scoring function in the optimization, as in ref.

[38] where evolutionary computation is employed.

In ref. [39], Gibbs sampling has been applied directly

to the optimization of the IC score associated with

profiles, reporting performance improvements over

traditional a posteriori methods.

USING CONSENSUSES
If consensuses are employed, the problem can be

formalized in a completely different way: for each

of the 4m nucleotide sequences of length m
(8–16 bp for TFBSs), collect from the input se-

quences all its approximate occurrences with up to

e mismatches, and compute the significance of find-

ing a given match count number. In other words, it

becomes an exhaustive approximate pattern match-

ing problem. Typically, pattern matching is per-

formed allowing from two (for 8-mers) to four

(on 16 nt) substitutions. Indeed, this has been the

earliest approach to the problem [40–42], although

considered to be too time-consuming. The applica-

tion of indexing structures to the input sequence set,

however, made it feasible on real case studies, redu-

cing also its theoretical complexity from 4m to 4e

(exponential in the number of mismatches allowed

instead of on motif length [43, 44]).

If no substitutions in instances of the same motif

are allowed, the problem becomes simpler and this

strategy can be employed in genome-wide analyses

of overrepresented oligos, as for example in refs [45–

47]. That is, oligos can be counted in a subset of the

genomic regions (e.g. promoters, or regions access-

ible to TFs including enhancers), and their count

compared to an expected value based on their

genome-wide frequency. Similar overrepresented

oligos can be clustered in a post-processing stage,

and considered instances of binding sites for the

same TF. Exhaustive pattern matching can be also

accelerated significantly by using ‘degenerate con-

sensuses’, which allow for variation only in the de-

generate or ambiguous positions [48, 49].

Exhaustive matching with no restrictions on the

position of substitutions was introduced in the

SMILE [43] and Weeder [44] algorithms, where

the exhaustive search for the exponential number

of candidate consensuses was implemented with the

preliminary indexing of the sequences with a suffix

tree [50]. SMILE then compares the number of oc-

currences of a given motif with its occurrences in a

‘negative’ or ‘random’ sequence set, while in Weeder

the observed number of occurrences of a motif is

compared with expected oligo frequencies derived

from all the promoter regions of the same organism

of the input sequences, with a measure similar to IC

applied to whole oligos instead of single nucleotides

[51]. To overcome the coarseness of the consensus

representation, the best instances of each motif can

be extracted from the sequences by using a profile

built with the oligos selected by the consensus-based

algorithm, in order to have a more fine-grained

ranking of predicted motif instances and to detect

oligos fitting the motif but exceeding the predefined

substitution thresholds used.

A further refinement of consensus associated sig-

nificance measures is presented in ref. [52], where

given a Markov model of some order a P-value is

computed with a compound Poisson approximation

for the null distribution of the number of motif

occurrences both in terms of overall number of
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occurrences and of number of sequences contain-

ing a motif instance. The monotonicity properties

of the compound Poisson approximation are ex-

ploited to avoid exhaustive enumeration of candidate

consensuses.

OTHERMETHODS
While the model employed is fundamental to predict

candidate sites that fit a descriptor [14], or compare

different motifs [15], it is much less so when the aim

is to extract from the sequences a set of oligos sharing

some level of pairwise similarity. For example, a

straightforward way of modeling the problem is to

employ a graph, whose nodes correspond to oligos of

the input sequences and edges connect nodes corres-

ponding to similar oligos. The problem can be thus

recast in graph–theory terms, and motifs can be

found for example by detecting cliques [53, 54] or

maximum density subgraphs [55]. However, the

same argument concerning the complexity of the

solution space of profile-based optimization methods

holds for graph-based approaches, making the intro-

duction of optimization heuristics mandatory to

obtain solutions in reasonable time. Alternatively,

the motif discovery problem can be recast as a clus-

tering one, in which oligos forming the motif should

cluster together, and the rest should belong to a

‘background’ cluster. Suitable clustering strategies

like ‘self organizing maps’ can be then applied to

solve the problem [56, 57].

PERFORMANCE EVALUATION
BEFORENEXT-GENERATION
SEQUENCING
Assessing the merits and shortcomings of different

algorithms for motif finding has always been far

from being straightforward. When experimental

data were scarce, algorithms were often tested on

synthetic data sets, in which simulated binding sites

were planted into simulated sequences [53, 58, 59].

Some benchmark sequence sets derived from experi-

mental data have been introduced over the last few

years [60–62].

All in all, the overall picture that emerged was

that, starting from gene expression data and pro-

moter sequences, motif finding algorithms could

provide reliable results in simple organisms like bac-

teria or yeast, but in higher eukaryotes like human

the performance was still far from being satisfactory.

Consensus-based methods showed in different tests a

slightly better performance [61], probably due to the

possibility of performing an exhaustive search and

thus of finding optimal solutions, or suboptimal

candidate solutions to be further refined with

profile-based optimization methods.

The poor performance usually reported for motif

finding in promoter analysis is due to several reasons.

First of all, similarity shared by sites recognized by

the same TF is often very subtle, and when just a few

sequences are investigated the motif they would

form is not conserved enough to be discriminated

against random similarities. Then, the complexity

of the regulation of every level of gene expression

seems to grow in parallel with organism complexity,

and coexpression does not mean coregulation. The

functional activity of a promoter depends on the

nature and the spatial organization of several

TFBSs. Therefore, what yields a set of coexpressed

genes in human, mouse or Drosophila can be the

combined activity of several different cooperating

or competing factors each one acting on a subset of

genes. Third, TFBSs are not confined to the pro-

moter region, since transcription can be regulated

by distal elements like enhancer or silencers, and

can be located thousands or even millions of base

pairs away from the genes they regulate. On the

other hand, the statistical methods usually employed

to assess motif significance and enrichment cannot

produce feasible results on whole intergenic regions.

Finally, traditional motif finding algorithms usually

ignored chromatin structure and epigenetic informa-

tion, assuming that all regions of DNA are accessible

to TFs in the same way, and thus TF binding de-

pends on sequence only.

The main issue is however not the lack of motif

prediction, but, vice versa, typically motif finding

algorithms report as significant motifs that can be

considered as false positives. This has led to the es-

tablishment of ‘meta-predictors’ [63–65] that pool

together the output of different algorithms, with

the idea that motifs on which different tools agree

on are more likely to possess some biological

function.

Other additional considerations are usually em-

ployed when performing analyses aimed at finding

common regulators of the genes and their sites in

the sequences. One can limit the search to already

known motifs, by matching the sequences to

the TFBSs profiles available in specialized databases

(see, e.g. [66] and references therein). Also, a widely
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used technique has been ‘phylogenetic footprinting’

[67–69], that is, to compare a given sequence with its

orthologous counterparts in evolutionary close

enough species. Indeed, a strikingly high level of

sequence conservation can be found across different

genomes in noncoding regions [70], as well as in

conserved short sequence elements within promoters

likely to be single conserved TFBSs. This type of

analysis can be performed prior to motif finding,

by masking out the less conserved parts of the

sequences investigated, but also simultaneously, by

designing algorithms aimed at finding motifs both

overrepresented in a sequence set, and at the same

time significantly conserved with respect to homolo-

gous sequences in other species (see, e.g. [71, 72],

which are enhancements of the Gibbs sampler and

MEME to this case). The drawback is clearly that

every single functional site in an organism like

human cannot be expected to be conserved in

other species [73].

Improvements in motif finding reliability have also

been reported when nucleosome occupancy of se-

quences has been added to a Gibbs sampling algo-

rithm [74], by modifying the a priori probabilities, as

also introduced in ref. [75] for MEME or in ref. [76],

where a sampling method (parallel tempering) similar

to NestedMICA is employed with better conver-

gence properties than standard Gibbs sampling. The

idea is that while in general at the beginning all the

oligos of the input sequences have the same prob-

ability of being part of a conserved motif, these prob-

abilities can be modified according to any given

criterion, e.g. conservation in orthologous sequences

or nucleosome occupancy, thus associating with

some oligos higher a priori probabilities of being se-

lected during the optimization iterations [77].

THE CHROMATIN
IMMUNOPRECIPITATION ERA
In the last few years novel experimental methodol-

ogies have been introduced, opening to researchers

in the field novel avenues of unprecedented power.

A typical example is ChIP [9], that allows for the

extraction from the cell nucleus of a specific pro-

tein–DNA chromatin complex, like TFs together

with the DNA they bound in vivo. The introduction

of ‘tiling arrays’ has permitted for the first time the

analysis of the DNA extracted on a whole-genome

scale (ChIP on Chip [10]) by using probes designed

to cover a whole genome or at least its promoter

regions. DNA regions bound by the TF are those

whose corresponding probes show the greater en-

richment over a control experiment. The recent

introduction of novel and efficient sequencing tech-

nologies collectively known as ‘next-generation

sequencing’ [78] has permitted taking this approach

one step further, and in order to identify the DNA

regions extracted by the cell, the DNA can be

sequenced (ChIP Sequencing, or ChIP-Seq [11]).

Once again, the regions bound by the TF investi-

gated are the ones showing enrichment over a con-

trol sample, expressed as the difference between the

number of times each base pair of the genome has

appeared in the sequenced IP sample versus the con-

trol [79].

The typical output of experiments of this kind

consists of a list of thousands of genomic regions,

whose size seldom exceeds a few hundred base

pairs. Although the TF binding the regions is already

known, motif discovery methods apply also to this

case, for finding the actual binding sites for the TF

within the regions and for modeling its binding spe-

cificity in vivo. Also, ‘secondary motifs’ less con-

served than the main one could be associated with

other TFs cooperating with the TF investigated.

Indeed, when applied to sequences from ChIP ex-

periments motif discovery methods become more

reliable than in promoter analysis, for different rea-

sons. The most important one is that the frequency

with which binding sites for the same TF appear is

much higher in regions coming from a ChIP, where

they should appear a very high percentage of the

sequences examined, even more than once in a

single sequence, while in promoters from

coexpressed genes there is no guarantee for this.

Thus, ChIP experiments produce sequence sets

which are ‘cleaner’ and more importantly much

more redundant, since in thousands of sequences

we can expect to find several instances of binding

sites highly similar to one another. In gene promoter

analysis the input set is much less cleaner, the se-

quence set is much smaller (and thus the different

sites in the sequences can be very different from

one another) and the sequences are longer. Indeed,

the performance of traditional motif finding methods

on ChIP sequence sets managed to redeem their bad

reputation in several cases, by actually ‘discovering’

the sites bound by the TF (see among many others

[80–83]).

The main drawback is that the size of the input is

significantly larger. In promoter analysis it rarely

Motif discovery and transcription factor binding sites 231



exceeds a few hundred sequences, while in

genome-wide ChIPs a typical input is made of thou-

sands of sequences. Hence, the (n�mþ 1)k candi-

date solutions constitute a search space too large for

profile-based methods, which even with heuristics

become too slow taking days or weeks to complete

a computation. Indeed, ChIP-tailored versions of

MEME [84] and the Gibbs sampler [85] overcome

this issue by preselecting a subset of the sequences

and performing the motif optimization only on

them. STEME [86] is a speed up of MEME in

which sequences are indexed with a suffix tree for

accelerating the EM steps in which sequences have

to be scanned with the profile currently being opti-

mized, and feasible time requirements also for

ChIP-Seq data are reported. ChIPMunk [87] com-

bines EM with a greedy approach similar to Con-

sensus, again to speed up the profile optimization.

On the other hand, the number of candidate so-

lutions for consensus based methods (4m) remains

constant regardless of the size of the input, and com-

putation time is expected to increase only linearly in

the matching stage. However, even the more widely

applied tools of this kind, like Weeder, can be sig-

nificantly slow, taking several hours on typical case

studies, because they were devised for finding subtle

similarities in small sequence sets, rather than large

similarities in large ones. For example, when looking

for motifs 10-bp long in promoter analysis Weeder

collects from the sequences the occurrences of

10-mers up to three substitutions: but in ChIP stu-

dies it often suffices to allow one or two substitutions

to capture the main motif bound by the TF investi-

gated, thus reducing time complexity both in theory

and in practice.

All these considerations have thus led to the intro-

duction of consensus-based methods tailored for

working on large scale ChIP studies, like MDScan

[88], Trawler [89], Amadeus [90] (introduced for

ChIP on Chip), and DREME [91], CisFinder [92],

cERMIT [93], HMS [85], and RSAT Peak-motifs

[94] (introduced for ChIP-Seq). All these tools

report significant reduction of computational re-

sources required over methods that were devised

for promoter analysis. The general ideas underlying

these tools are somewhat similar. Initial candidate

solutions are built by matching consensuses (as e.g.

MDScan and RSAT) or degenerate consensuses

(Trawler, Amadeus, DREME, cERMIT) on the

input sequences—which can be indexed with a

suffix tree as in Trawler to speed up the search.

Exact or degenerate consensuses are in fact powerful

enough to capture significant motifs given the

much higher redundancy of motif instances in

the sequences. Significance can be then assessed

for example with a third-order background model

(MDScan), or more simply by comparing the match

counts in the input to randomly selected background

sequence sets, e.g. with z-scores (Trawler) or a

hypergeometric test (Amadeus and DREME), or

the overall match count across the whole genome.

Finally, similar motifs are merged, and motifs are

modeled with a profile which can be further opti-

mized on the input sequences.

Also, since probe or sequence enrichment defining

a bound region in ChIP is reported to be an indicator

of the affinity of the TF for the region [95], higher

priority or weight can be given to those regions that

are more enriched in the experiment. This is some-

thing that can be trivially done by analyzing only a

selected subset of ‘best’ sequences [84, 85], but can

be taken into account directly by the algorithms, as

in MDScan on ChIP on Chip and ChIPMunk,

cERMIT for ChIP-Seq, similarly to what has been

done by correlating sequence motifs in promoters

with gene expression [96, 97].

In the last couple of years ChIP-Seq has become

the method of choice for the genome-wide charac-

terization of TF binding, as well as polymerase bind-

ing and histone modifications. Next-generation

sequencing can be used also for building genomic

maps of DNA methylation (ME-DIPseq), open

chromatin accessible to TFs (DNase I hypersensitive

sites—DNase-Seq, Formaldehyde-Assisted Isolation

of Regulatory Elements—FAIRE-Seq [98]), and

other genetic or epigenetic factors involved in the

regulation and activation of gene transcription.

ChIP-Seq can provide maps of the binding of the

TF studied with a much higher resolution than ChIP

on Chip [99], as shown in Figure 2: the sites bound

by the TF are more likely to be located near the

center of the region extracted [95] or within a few

base pairs from the point of maximum enrichment

within the ‘peak’ region itself. Thus, input sequences

can be made shorter, confining the analysis on the

100–200 bp around the point of ‘peak’. Positional

bias within the input sequences becomes then an-

other key factor for assessing the significance of a

motif, as in ref. [100] where IC is applied also to

the position where motifs appear with respect to a

background uniform distribution, or in the HMS

tool. In case, however, of TFs binding DNA as
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homo- or hetero-multimers, hence with multiple

sites in the same ChIP region, the picture is less

clear and positional bias much less evident (see e.g.

Figure 4 from [79]). In this case, however, different

motifs should be located at preferred distances from

one another, and thus positional bias should be de-

tected by comparing motifs’ relative distances.

ChIP-Seq or similar experiments providing

genome-wide epigenetic profiles can be also a sup-

port of great importance in motif discovery itself. For

example, as with nucleosome occupancy, the analysis

can be confined only to regions of open chromatin

accessible to the TFs (identified by DNase-Seq or

FAIRE-Seq [101, 102]), or corresponding to specific

histone modification profiles, or on nonmethylated

DNA. Indeed, several whole genome maps of these

latter elements are becoming available, e.g. within

the ENCODE project, and data can be retrieved

from databases like the UCSC Genome Browser

[103]. It should be kept in mind, however, that

these maps are strongly cell-line or even allele

specific: hence reliable results can be obtained if TF

binding is investigated in the same cell line for which

epigenetic information is available.

PERFORMANCE EVALUATION IN
THE CHIP-SEQ ERA
Genome-wide ChIP experiments for TFs can also be

a source of great value for building feasible bench-

mark sequence sets for the testing of motif finding

algorithms, like the ‘Harbison data set’ derived from

203 DNA binding proteins in yeast presented in ref.

[104] or the ‘metazoan data set’ introduced in ref.

[90], composed of several promoter sets mostly

derived from genome-wide ChIP on Chip experi-

ments. These data sets can be considered as an ‘hy-

brid’ benchmark, composed of promoter sequences

(like in an expression study) in which however the

TF binding has been identified through ChIP.

Indeed, the performance of motif finding algorithms

Figure 2: Schematic view of the results of ChIP-Seq performed on a genomic region bound by aTF [79]. DNA is
fragmented at random, and thus the ends of each sequenced DNA fragment map on different positions on the
genome. Each fragment is assumed to be the 50 of a 200- to 300-bp region. The ‘peak’, corresponding to the point
of maximum enrichment (‘coverage’) within the region (that is, appearing in the highest number of sequenced frag-
ments) should be located in correspondence of the actual binding site for theTF (bottom).
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improves significantly with respect to promoter

analysis.

On the other hand, as of today there is still no ref-

erence benchmark set derived from ChIP-Seq, and

in the respective articles the different methods are

usually compared only on a few data sets, that

change according to the authors’ expertise or taste.

Overall, binding sites from the main TF investigated

in each experiment are nearly always correctly re-

covered also by ‘first generation’ methods like

MEME or Weeder, as shown by the myriad articles

presenting the results of genome-wide ChIP-Seq ex-

periments now published. The main difference lies in

computational resources needed, as discussed before,

with newest methods being much faster, and, indeed,

special emphasis is often put on the execution time

needed by the algorithms that often differ very little

in the overall design and significance measure adopt-

ed. Also, older methods tend to produce a more re-

dundant output, with highest scoring motifs highly

similar to one another. Some tools have then been

introduced to ‘clean’ the output and for clustering

redundant motifs [105]. We can expect finding the

binding motif for the TF investigated to become

even easier in the future, with the introduction of

novel experimental techniques like ChIP-exo [106,

107], which by using exonuclease trims the DNA

regions at a precise distance from the binding site.

The focus of more recent motif discovery methods

has anyway further moved on, that is, not only by

assessing the performance of motif-finding algo-

rithms in recovering the sites for the TF studied,

but also in identifying, as mentioned before, sites

for secondary TFs binding DNA in the neighbor-

hood of the main one [108, 109], and positional

correlations among different motifs. Meta-servers

pooling the output of different methods can be

applied also for this task, each one detecting a differ-

ent set of secondary motifs [64, 65]. However, we

still lack a unique benchmark data set, and often the

assessment of the merits of a method in finding cor-

related motifs is left to the speculation of the authors,

e.g. ‘motifs A and B are both found to be enriched,

and indeed from literature we know cases in which

TFs A and B co-operate’. Also with ChIP-Exo data

the focus can move to finding functionally distinct

motifs for the same TF, clustering of different motifs,

secondary interactions and combinatorial modules

within a compound motif.

As with gene expression experiments, in which

the selection of the set of genes to be studied

influences the result of motif discovery, also the se-

lection of the ChIP enriched regions is an essential

step for the feasibility of the results. ‘Peak finding’,

that is, identifying enriched regions in a ChIP-Seq

experiment is a very hot topic of research nowadays,

with novel methods appearing on a regular basis: the

up and downsides of the different strategies have yet

to be fully appreciated [110]. In this case, however, it

has been shown how sequence analysis can be also

applied in parallel to peak finding to support the

results: in other words, since the regions actually

bound by the TF should be enriched for the TF

binding sites, the presence/absence of the motif

within a putative binding region can be used as a

further indicator of the reliability of a given predic-

tion. Thus, peak finders can be integrated with peak

finding tools to provide a comprehensive pipeline for

ChIP-Seq analysis, as with GADEM [109].

A great amount of data have been recently pro-

duced, e.g. by the ENCODE project [103], includ-

ing ChIP-Seq experiments for dozens of TFs in

several cell lines as well as histone modifications,

DNA methylation and so on. Other than being an

invaluable source of information, we suggest this data

could be used also to build exhaustive benchmark

sets for motif discovery algorithms. One could

choose the binding regions (‘peaks’) for a given

TF, and check which methods correctly identify

the corresponding binding motif (usually, this is the

case for all the methods). Then, secondary motifs

found to be enriched in the peaks analyzed can be

checked against peaks from other ChIP-Seq experi-

ments performed in the same cell line, to determine

whether the subset of regions in which they are pre-

dicted are indeed also peaks for the corresponding

TFs. In other words, one could validate a predicted

secondary motif coming from a ChIP-Seq peak set

against the ChIP-Seq peaks of the corresponding TF.

Finally, the influence of epigenetic information on

the results could be studied and assessed, by including

in the predictions data on histone modifications or

DNA methylation, and determine whether it correl-

ates with the presence or absence of motifs.

Key Points

� Motif discovery (motif finding) has been one of the most widely
studied problems in bioinformatics.

� A typical case study for motif discovery has been the analysis of
sequences (e.g. promoters) from genes showing similar expres-
sionpatterns and likely to beboundby the same setof transcrip-
tion factors, in order to identify their putative binding sites that
should appear to be overrepresented in the sequences.
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� Different algorithmic strategies and significancemeasures for as-
sessing overrepresentation have been applied to the problem,
however with limited success in higher eukaryotes.

� The recent introduction of ChIP coupled with tiling arrays or
next-generation sequencing (ChIP on Chip and ChIP-Seq) has
permitted the genome-wide identification of the regions bound
by transcription factors.

� Regions derived from a ChIP experiment are a perfect case
study for the computational discovery of TFBSs, leading on one
hand to better results, but on the other posing new computa-
tional challenges for developers of motif discovery algorithms
and tools.
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