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Heterozygous connexin 50 mutation affects
metabolic syndrome attributes in
spontaneously hypertensive rat
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Abstract

Background: Several members of connexin family of transmembrane proteins were previously implicated in
distinct metabolic conditions. In this study we aimed to determine the effects of complete and heterozygous form
of connexin50 gene (Gja8) mutation L7Q on metabolic profile and oxidative stress parameters in spontaneously
hypertensive inbred rat strain (SHR).

Methods: Adult, standard chow-fed male rats of SHR, heterozygous SHR-Dca+/− and SHR-Dca−/− coisogenic
strains were used. At the age of 4 months, dexamethasone (2.6 μg/ml) was administered in the drinking water for
three days. The lipidemic profile (cholesterol and triacylglycerol concentration in 20 lipoprotein fractions,
chylomicron, VLDL, LDL and HDL particle sizes) together with 33 cytokines and hormones in serum and several
oxidative stress parameters in plasma, liver, kidney and heart were assessed.

Results: SHR and SHR-Dca−/− rats had similar concentrations of triacylglycerols and cholesterol in all major
lipoprotein fractions. The heterozygotes reached significantly highest levels of total (SHR-Dca+/−: 51.3 ± 7.2 vs.
SHR: 34.5 ± 2.4 and SHR-Dca−/−: 34.4 ± 2.5 mg/dl, p = 0.026), chylomicron and VLDL triacylglycerols. The
heterozygotes showed significantly lowest values of HDL cholesterol (40.9 ± 2.3 mg/dl) compared both to SHR
(51.8 ± 2.2 mg/dl) and SHR-Dca−/− (48.6 ± 2.7 mg/dl). Total and LDL cholesterol in SHR-Dca+/− was lower
compared to SHR. Glucose tolerance was improved and insulin concentrations were lowest in SHR-Dca−/− (1.
11 ± 0.20 pg/ml) in comparison with both SHR (2.32 ± 0.49 pg/ml) and SHR-Dca+/− (3.04 ± 0.21 pg/ml). The
heterozygous rats showed profile suggestive of increased oxidative stress as well as highest serum
concentrations of several pro-inflammatory cytokines including interleukins 6, 12, 17, 18 and tumor necrosis
factor alpha.

Conclusions: Our results demonstrate that connexin50 mutation in heterozygous state affects significantly the
lipid profile and the oxidative stress parameters in the spontaneously hypertensive rat strain.
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Background
The rapidly increasing incidence and prevalence of
dyslipidemia, obesity and type 2 diabetes is becoming
a major global health issue, however, the need for
identification of relevant molecular targets and devis-
ing effective preventive and therapeutic algorithms is
met by only modest advancement of our knowledge.
Historically, several major definitions of metabolic
syndrome have been used, yet in 2009, five major sci-
entific organizations released a joint interim statement
leading to a unified definition of the disorder [1]. Indi-
viduals who meet at least 3 out of 5 criteria [elevated
waist circumference, elevated triglycerides, reduced
high-density lipoprotein cholesterol, elevated blood
pressure and elevated fasting glucose (or treatment of
these conditions)] are diagnosed with metabolic syn-
drome. Exact thresholds are defined for all criteria, ex-
cept elevated waist circumference, which must rely on
population and country-specific definitions [1]. All in-
dividual features of metabolic syndrome are complex
traits with relatively balanced strengths of heritable
and environmental components (the heritability of indi-
vidual components ranges from 40–70%) [2]. The detailed
analysis of genetic component of complex traits in general
human population encounters numerous hurdles, includ-
ing reduced penetrance, expressivity, ethnical admixture
and other population stratifications, epigenetic and envir-
onmental influences [3]. Also, it is not only the fully mani-
fested condition that is of clinical relevance; evidence is
mounting with regard to the importance of early stages of
metabolic syndrome components, particularly impaired
glucose tolerance and prediabetes [4]. In this context, ex-
perimental models can greatly facilitate the process of de-
construction of genetic architecture of multifactorial traits
[5]. In rodents and humans, a family of highly conserved
transmembrane proteins forming intercellular gap junc-
tion channels called connexins comprises 21 isoforms [6].
The tissue distribution pattern of many connexins and
their close functional connection to multiple metabolic
and signaling pathways that are crucial for insulin sensitiv-
ity, lipid homeostasis and hemodynamic regulation makes
them plausible candidates for metabolic syndrome patho-
genesis [7]. We have previously established that a spon-
taneous mutation L7Q in Gja8 gene (coding for
connexin50) which arose in spontaneously hypertensive
rat strain (SHR hereafter; Rat Genome Database (RGD)
[8] ID: 631848) leads to microphthalmia and cataract [9].
The resulting mutant coisogenic strain SHR-Gja8m1Cub

(SHR-Dca−/− hereafter, RGD ID: 2293729) shows de-
creased blood pressure compared to SHR [10]. This study
aimed to further explore the effects of connexin50 muta-
tion on metabolic and cytokine profile in SHR-Dca−/−
and SHR-Dca+/− strains including a battery of parameters
of oxidative stress in the animals challenged by

dexamethasone, a dyslipidemia and insulin resistance-
inducing glucocorticoid [11, 12].

Methods
Experimental protocol
Adult male rats were housed under temperature- and
humidity-controlled conditions with a 12 h/12 h light–
dark cycle. Animals had free access to food (standard
chow) and water at all times. At 4 months of age, males
from the SHR, SHR-Dca+/− and SHR-Dca−/− strains
(n = 8/strain/procedure) were administered dexametha-
sone (Dexamed, Medochemie) in drinking water (2.6
μg/ml) for three days as described previously [11, 12].
Subsequently, they were subjected to an oral glucose
tolerance test (OGTT) after overnight fasting and blood
samples were drawn. The animals were then sacrificed,
and their total weight and the weights of the heart,
liver, kidneys, and adrenal glands, and the epididymal
and retroperitoneal fat pads, were determined.

Metabolic measurements
The OGTT was performed after overnight fasting. Blood
samples for glycemic assessment (Ascensia Elite Blood
Glucose Meter, Bayer HealthCare, Mishawaka, IN, USA;
validated by the Institute of Clinical Biochemistry and La-
boratory Diagnostics of the First Faculty of Medicine,
Charles University in Prague) were obtained from the tail
vein at intervals of 0, 30, 60, 120, and 180 min after intra-
gastric glucose administration to conscious rats (3 g/kg
body weight, 30% aqueous solution). The lipid profile
(cholesterol and triacylglycerols blood concentration in 20
lipoprotein fractions, glycerol level and chylomicron,
VLDL, LDL and HDL particle sizes) was assessed by high
performance liquid chromatography method as described
previously [13, 14]. Enzyme-linked immunosorbent assay
(ELISA) kits were used to determine the serum levels of
adiponectin (BioSource, San Diego, CA, USA). Milliplex
Rat Metabolic Hormone Magnetic Bead panel (Merck
Millipore, Darmstadt, Germany) was used for the simul-
taneous quantification of C-peptide, gastric inhibitory
polypeptide (GIP), glucagon-like polypeptide-1 (GLP1),
pancreatic polypeptide (PP), protein tyrosine tyrosine
(PYY), glucagon, insulin and leptin, the Bio-Plex Pro Rat
Cytokine 24-Plex Immunoassay (Bio-Rad, Hercules, CA,
USA) was used to assess the concentrations of erythropoi-
etin (EPO), Granulocyte-colony stimulating factor (G-
CSF), Granulocyte-macrophage colony-stimulating factor
(GM-CSF), chemokine (C-X-C motif) ligand 1 (GRO/KC),
interferon gamma (IFN-γ), interleukins IL-1α, IL-1β, IL-2,
IL-4, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-17A, IL-
18, macrophage colony-stimulating factor (M-CSF),
monocyte chemotactic protein 1 (MCP-1), macrophage
inflammatory protein 1-alpha (MIP-1α), macrophage
inflammatory protein 3-alpha (MIP-3α), regulated on
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activation, normal T cell expressed and secreted
(RANTES), tumor necrosis factor alpha (TNF-α) and vas-
cular endothelial growth factor (VEGF), using BioPlex sys-
tem (Bio-Rad, Hercules, CA, USA).
The oxidation stress parameters were assessed as de-

scribed previously [15, 16]. In short, the activity of
superoxide dismutase (SOD) was determined spectro-
photometrically using p-tetrazolin nitro-blue, the activity
of catalase (CAT) was measured spectrophotometrically
by ammonium molybdate reaction with H2O2, and the
activity of glutathione peroxidase (GSH-Px) and content
of glutathione (GSH) were analyzed spectrophotometric-
ally using Ellman’s reagent. Glutathione reductase activ-
ity was measured using commercially available assay kit
(Sigma-Aldrich, St. Louis, MO, USA). The level of con-
jugated dienes (CD) was determined spectrophotomet-
rically after extraction into n-heptane. Thiobarbituric
acid reactive substances (TBARS) were measured ac-
cording to Naito et al. [17].

Statistical analysis
All statistical analyses were performed using STATISTICA
12 CZ. The metabolic and morphometric data were com-
pared by one-way analyses of variance (ANOVA) with
STRAIN as main factor followed by Tukey’s honest sig-
nificance difference test for detailed pair-wise comparison.
The null hypothesis was rejected whenever p < 0.05.

Results
Morphometric and metabolic profile
The body weights and the relative weights of major organs
were comparable among the three genotypes. The relative
weight of the adipose tissue depots was decreased in the
SHR-Dca−/− rats and increased in the heterozygotes com-
pared to SHR, in both cases reaching statistical signifi-
cance for the epididymal fat pad (Table 1). Glucose
tolerance was improved in SHR-Dca−/− in comparison to
both SHR and SHR-Dca+/− strains as reflected by signifi-
cantly lowest values of glycaemia throughout the oral glu-
cose tolerance test (Fig. 1) combined with lower insulin
and C-peptide concentrations (Table 1). The heterozygous
rats showed the highest concentrations of gastric inhibi-
tory polypeptide of the three tested strains. Glucagon,
glucagon-like polypeptide-1, pancreatic polypeptide, pro-
tein tyrosine tyrosine, adiponectin and leptin levels did
not differ among the three strains (Table 1).

Detailed lipid profile
While SHR and SHR-Dca−/− rats had similar concentra-
tions of triacylglycerols and cholesterol in all major lipopro-
tein fractions, the heterozygotes reached significantly
highest levels of total, chylomicron (CM) and very low-
density lipoprotein (VLDL) triacylglycerols of the three
tested strains (Table 2). As shown in Fig. 2, this difference
was evident throughout most CM and VLDL subfractions,
further corroborated by significantly largest VLDL particles

Table 1 Morphometric and metabolic profile of SHR, SHR-Dca +/− and SHR-Dca −/− male rats

Trait SHR SHR-Dca+/− SHR-Dca−/− p-value

Body weight (b.wt.), g 299 ± 6 299 ± 9 281 ± 8 0.16

Liver, g/100 g b.wt. 3.19 ± 0.02 3.29 ± 0.08 3.16 ± 0.09 0.41

Heart, g/100 g b.wt. 0.44 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.99

Kidney, g/100 g b.wt. 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.98

Adrenals, mg/100 g b.wt. 8.46 ± 0.04 8.50 ± 0.04 9.58 ± 0.07 0.21

EFP wt., g/100 g b.wt. 1.05 ± 0.03 1.14 ± 0.03 b 0.92 ± 0.05* 0.005

RFP wt., g/100 g b.wt. 0.91 ± 0.05 0.98 ± 0.05 0.79 ± 0.09 0.16

Glycerol (mg/dl) 2.97 ± 0.32 2.73 ± 0.23 3.12 ± 0.30 0.67

Adiponectin (μg/ml) 5.14 ± 0.56 5.58 ± 0.30 5.42 ± 0.24 0.72

C-peptide, pg/ml 615 ± 57 653 ± 39a 425 ± 42* 0.046

GIP, pg/ml 163 ± 25 247 ± 33*,a 122 ± 20 0.031

GLP1, pg/ml 102 ± 56 68 ± 41 71 ± 44 0.86

Glucagon, pg/ml 155 ± 50 365 ± 111 153 ± 35 0.10

Insulin, ng/ml 2.32 ± 0.49 3.04 ± 0.21b 1.11 ± 0.20* 0.025

PP, pg/ml 39.3 ± 3.9 45.1 ± 4.3 39.2 ± 3.5 0.52

PYY, pg/ml 79.3 ± 10.0 96.3 ± 15.6 76.6 ± 13.5 0.53

Leptin, ng/ml 6.38 ± 0.39 6.51 ± 0.35 6.41 ± 0.52 0.97

Data are shown as mean ± SEM. The significance levels of one-way ANOVA for STRAIN as a major factor are shown in the last column; significant values are italicized. *
p < 0.05 for pair-wise comparisons (post-hoc Tukey’s HSD test) between SHR-Dca−/− or SHR-Dca+/− strains vs. SHR. a p < 0.05 and b p < 0.01 for pair-wise comparisons
between SHR-Dca−/− and SHR-Dca+/− strains. b.wt: body weight; EFP epididymal fat pad, RFP retroperitoneal fat pad, GIP gastric inhibitory polypeptide, GLP1 glucagon-
like polypeptide-1, PP pancreatic polypeptide, PYY protein tyrosine tyrosine. * p < 0.05 vs. SHR. a p < 0.05 vs. SHR-Dca−/−. b p < 0.01 vs. SHR-Dca−/−
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in SHR-Dca+/− (Additional file 1: Table S1). On the other
hand, total and low-density lipoprotein (LDL) cholesterol in
SHR-Dca+/− was lower compared to SHR and for high-
density lipoprotein (HDL) cholesterol the heterozygotes
showed significantly lowest values compared both to SHR
and SHR-Dca−/− (Table 2). The detailed analysis revealed
that most pronounced dissimilarities for cholesterol con-
centrations were found in small and very small LDL parti-
cles and in very large HDL particles (Fig. 2).

Oxidative stress assessment and cytokine profile
SOD activity in liver and plasma GSH were significantly
decreased both in SHR-Dca+/− and SHR-Dca−/− com-
pared to SHR (Table 3). TBARS in plasma were signifi-
cantly increased both in SHR-Dca+/− and SHR-Dca−/−
compared to SHR. While the SHR-Dca−/− showed
comparable values to those in SHR for the rest of the
assessed oxidative stress parameters, the heterozygous
rats had significantly lowest activity of kidney SOD,
kidney glutathione peroxidase and plasma glutathione
reductase as well as significantly highest liver catalase
activity compared both to SHR and SHR-Dca−/−
(Table 3). Also, plasma glutathione peroxidase activity
was lower in SHR-Dca+/− compared to SHR. While
SHR and SHR-Dca−/− did not differ across the panel of
24 cytokines, the SHR-Dca+/− showed significantly
highest concentrations of interleukins IL6, IL12, IL17,
IL18, granulocyte-macrophage colony-stimulating fac-
tor, macrophage inflammatory protein 3-alpha and
monocyte chemotactic protein 1 (Fig. 3).

Discussion
The results of the current study demonstrate that the
nonsynonymous mutation L7Q in the amino terminal
domain of Cx50 has multiple metabolic consequences in
spontaneously hypertensive rat and these vary substan-
tially depending on the homozygous vs. heterozygous
state of the mutation. The distinct phenotypic effect of
heterozygous genotype has been previously observed for
another member of connexin family, the GJA5 gene cod-
ing for connexin 40. While several heterozygous GJA5
mutations were identified in patients suffering from
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Fig. 1 Glycemic time courses for adult male SHR (black squares) vs. SHR-Dca+/− (grey triangles) and SHR-Dca−/− (white squares) adult male rats.
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Table 2 Triacylglycerols and cholesterol concentrations in major
lipoprotein subfractions in SHR, SHR-Dca+/− and SHR-Dca−/−
male rats

Trait (mg/dl) SHR SHR-Dca+/− SHR-Dca−/− p-value

Total TG 34.5 ± 2.4 51.3 ± 7.2*, a 34.4 ± 2.5 0.026

Chylomicron TG 6.20 ± 0.87 10.53 ± 1.80*, a 5.78 ± 0.79 0.030

VLDL-TG 15.7 ± 1.3 26.8 ± 4.9*, a 16.0 ± 1.4 0.025

LDL-TG 9.63 ± 0.55 9.98 ± 0.76 9.84 ± 0.32 0.91

HDL-TG 2.89 ± 0.22 3.19 ± 0.21 2.84 ± 0.13 0.42

Total C 81.4 ± 5.2 58.0 ± 3.2† 70.2 ± 5.7 0.016

Chylomicron C 0.70 ± 0.07 0.83 ± 0.09 0.63 ± 0.06 0.19

VLDL-C 2.64 ± 0.12 2.67 ± 0.30 2.19 ± 0.15 0.22

LDL-C 26.2 ± 3.0 13.6 ± 1.3† 18.7 ± 3.0 0.015

HDL-C 51.8 ± 2.2 40.9 ± 2.3†, a 48.6 ± 2.7 0.020

Triacylglycerols (TG) and cholesterol (C) concentrations in major lipoprotein
subfractions (chylomicron, VLDL very low-density lipoprotein, LDL low-density
lipoprotein, HDL high-density lipoprotein) in SHR, SHR-Dca+/− and SHR-Dca
−/− male rats. Data are shown as mean ± SEM. The significance levels of one-
way ANOVA for STRAIN as a major factor are shown in last column; significant
values are italicized. * p < 0.05 and † p < 0.01 for pair-wise comparisons (post-
hoc Tukey’s HSD test) between SHR-Dca−/− or SHR-Dca+/− strains vs. SHR. a p
< 0.05 for pair-wise comparisons between SHR-Dca−/− and SHR-Dca+/−
strains. * p < 0.05 vs. SHR. † p < 0.01 vs. SHR. a p < 0.05 vs. SHR-Dca−/−
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atrial fibrillation, transgenic mice carrying one of these
mutations, Cx40A96S, developed hypertension only
when both alleles were mutant [18]. Further studies sug-
gest that the gene dosage effect may be also tissue-
specific [19]. It is presumed that mutations in the re-
gions contributing to channel pore are likely to result in
functional alterations [20]. In a comprehensive review of
available structural and functional studies of Cx50 gap
junction channels, Xin and Bai summarized compelling
evidence that the amino terminal domain of Cx50 lines
the pore of gap junction channels and plays an

important role in single channel conductance and trans-
junctional voltage-dependent gating as well as in limiting
the rate of ion permeation. The pore size of a gap junc-
tion channel, its switch control for opening and closing,
and the modulations by chemicals can differ depending
on the connexin subtypes that compose the channel.
[21]. It is possible that in the heterozygous animals, het-
erotypic and/or heteromeric Cx50 channels are formed
with both the mutated and the wild-type connexin50,
resulting in distinctive shifts in functional properties of
the connexin [22]. The ability of mutant Cx50 to
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oligomerize with wild type Cx50 and other connexins to
form gap junction channels is well documented [23]; the
ensuing functional consequences range from no effect to
dominant negative inhibition of the channel function
[23, 24]. While the observable effects of the complete
mutation included relative protection of the SHR-Dca
−/− rats from the diabetogenic effect of dexamethasone
and decrease of SOD activity combined with increase of
TBARS, the heterozygous animals displayed a pheno-
typic profile markedly distinct from both the parental
SHR and the SHR-Dca−/− strains. It has been

established that gap junctions-mediated signaling is crit-
ical for correct function of pancreatic β cells in response
to glucose stimulation and pulsatile insulin release [25,
26]. Mice deficient in connexin36, the major connexin
isoform in pancreatic β cells, are normoglycemic but are
intolerant to postprandial glucose levels and show loss
of circulating insulin oscillations, similar to human pre-
diabetes [26, 27]. A recent study of 299 type 2 diabetics
and 500 unrelated normoglycemic subjects corroborated
these findings in human sample by showing that T allele
of single nucleotide polymorphism rs3743123 in GJD2

Table 3 Oxidative stress parameters in SHR, SHR-Dca+/− and SHR-Dca−/− male rats

Phenotype SHR SHR-Dca+/− SHR-Dca−/− p-value

Plasma SOD 0.343 ± 0.030 0.319 ± 0.030 0.283 ± 0.034 0.43

Liver SOD 0.097 ± 0.006 0.074 ± 0.005† 0.082 ± 0.003* 0.012

Kidney SOD 0.070 ± 0.002 0.040 ± 0.002‡,b 0.059 ± 0.008 0.0010

Heart SOD 0.085 ± 0.008 0.079 ± 0.009 0.083 ± 0.009 0.88

Plasma CAT 341 ± 16 354 ± 30 414 ± 55 0.36

Liver CAT 773 ± 37 1081 ± 24‡,c 827 ± 31 0.000004

Kidney CAT 464 ± 19 571 ± 41 539 ± 46 0.16

Heart CAT 629 ± 36 679 ± 31 621 ± 38 0.44

Plasma GSH-Px 546 ± 30 379 ± 27† 426 ± 60 0.027

Liver GSH-Px 417 ± 27 320 ± 18* 389 ± 33 0.042

Kidney GSH-Px 506 ± 31 378 ± 23†,a 460 ± 24 0.0092

Heart GSH-Px 624 ± 35 577 ± 20 612 ± 16 0.38

Plasma GR 212 ± 21 158 ± 13*,c 259 ± 13 0.001

Liver GR 387 ± 22 430 ± 14 372 ± 32 0.20

Kidney GR 273 ± 16 241 ± 9 198 ± 31 0.06

Heart GR 244 ± 24 228 ± 16 192 ± 26 0.27

Plasma GSH 31.0 ± 2.0 22.3 ± 1.1‡ 21.9 ± 1.0‡ 0.0004

Liver GSH 24.6 ± 1.5 23.4 ± 1.3 28.2 ± 1.8 0.10

Kidney GSH 25.1 ± 1.7 19.8 ± 1.2 24.6 ± 1.9 0.06

Heart GSH 25.8 ± 2.4 27.4 ± 2.0 25.5 ± 1.2 0.75

Plasma TBARS 1.72 ± 0.05 2.32 ± 0.13† 2.24 ± 0.13† 0.0030

Liver TBARS 0.62 ± 0.04 1.05 ± 0.09‡ 0.87 ± 0.05* 0.0016

Kidney TBARS 1.27 ± 0.11 1.49 ± 0.14 1.54 ± 0.16 0.37

Heart TBARS 1.88 ± 0.11 2.38 ± 0.23 1.97 ± 0.23 0.20

Plasma CD 31.6 ± 2.7 34.8 ± 1.5 33.0 ± 2.0 0.54

Liver CD 33.7 ± 1.0 32.1 ± 1.6 29.1 ± 2.2 0.18

Kidney CD 19.8 ± 2.3 20.7 ± 1.6 20.8 ± 2.3 0.93

Heart CD 15.1 ± 1.1 19.5 ± 1.4 19.1 ± 1.9 0.11

The parameters of oxidative stress in plasma, liver, kidney cortex and heart of SHR, SHR-Dca+/− and SHR-Dca−/− adult male rats are shown as mean ± SEM. The
significance levels of one-way ANOVA for STRAIN as a major factor are shown in the last column; significant values are italicized. * p < 0.05, † p < 0.01 and ‡ p <
0.001 for pair-wise comparisons (post-hoc Tukey’s HSD test) between SHR-Dca−/− or SHR-Dca+/− strains vs. SHR. a p < 0.05, b p < 0.01 and c p < 0.001 for pair-
wise comparisons between SHR-Dca−/− and SHR-Dca+/− strains. Superoxide dismutase (SOD) units : U I ml−1 (plasma), U I mg prot−1 (liver, kidney, heart); Catalase
(CAT) units: μM H2O2 min−1 ml−1 (plasma), μM H2O2 min−1mg prot−1 (liver, kidney, heart); Glutathione peroxidase (GSH-Px) units μM GSH min−1ml−1 (plasma), μM
GSH min−1mg prot−1 (liver, kidney, heart); Glutathione reductase (GR) units: nM NADPH min−1ml−1 (plasma), nM NADPH min−1mg prot−1 (liver, kidney, heart);
Glutathione (GSH) units: nM ml−1 (plasma), μM mg prot−1 (liver, kidney, heart); Thiobarbituric acid reactive substances (TBARS) units nM ml−1 (plasma), nM mg prot
−1 (liver, kidney, heart); conjugated dienes (CD) units: nM ml−1 (plasma), nM mg prot−1 (liver, kidney, heart). * p < 0.05 vs. SHR. a p < 0.05 vs. SHR-Dca−/−. † p < 0.01
vs. SHR. b p < 0.01 vs. SHR-Dca−/−. ‡ p < 0.001 vs. SHR. c p < 0.001 vs. SHR-Dca−/−
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gene (coding for Cx36) leads to altered formation of gap
junction plaques and cell coupling in β cells despite
showing only marginal association to type 2 diabetes sta-
tus [25]. There is further evidence showing that
dexamethasone-induced insulin resistance is associated
with increased connexin 36 mRNA and protein expres-
sion in pancreatic rat islets [28]. Although no data are so
far available for the similar involvement of Cx50, it is of
interest that according to data from the Human Inte-
grated Protein Expression Database, CX50 protein is
overexpressed in pancreas [29]. Nevertheless, this hy-
pothesis remains to be validated by further studies. The
significantly increased concentration of gastric inhibitory
polypeptide together with highest insulinemia observed
in heterozygotes is in line with the presumed primary
action of GIP, i.e. the stimulation of glucose-dependent
insulin secretion. Furthermore, the increase in postpran-
dial insulin secretion after dexamethasone administra-
tion were shown to be mediated, at least in part, by
increases in meal-stimulated GIP secretion [30]. One of
the most striking observations was the simultaneous
shift towards higher concentrations of triglycerides in
chylomicrons and VLDL together with decrease of LDL
and HDL cholesterol in heterozygous animals in com-
parison with both SHR and the SHR-Dca−/−. There is
robust body of literature describing the role of connexins
in mediating the unfavorable effects of hyperlipidemia
[31–33], particularly the atherosclerotic plaque forma-
tion [34]. However, in the current study the cholesterol
distribution into lipoprotein classes was modulated by
distinct connexin 50 genotype, perhaps through non-

genomic action of the glucocorticoid similar to the one
described for Cx43 [35]. It is probable that the mutant
Cx50 cannot form hemichannels or gap junctions in
SHR-Dca−/− tissues [36] and their function related to
lipid handling is compensated for by other members of
the connexin family. However, in heterozygous animals,
formation of heteromeric hemichannels containing both
wild type and mutant Cx50 is possible with functional
consequences (distinct permeability, voltage gating, abil-
ity to form homotypic or heterotypic gap junctions)
leading, through yet unidentified mechanism, to the ob-
served hyperlipidemia. Also, transdominant effects of
the mutant Cx50 on other connexins cannot be ruled
out as similar effects were described e.g. for interaction
between mutant Cx26 and Cx43 [37]. Several of the in-
creased oxidative stress indices were apparent in plasma
and livers of rats with both homozygous and heterozy-
gous form of the Cx50 mutation. Again, this trend was
much more pronounced in SHR-Dca+/− rats, with ex-
clusive manifestation also in kidney (decrease of activity
glutathione peroxidase and superoxide dismutase). This
was accompanied by increased levels of pro-
inflammatory cytokines including IL-6, IL-12, IL-17 and
TNF-α. The role of oxidative stress and inflammation in
cardiovascular disease and related conditions is well
established and is affected by numerous intrinsic and ex-
trinsic factors [38]. Several connexins were previously
linked to redox homeostasis, including Cx40 [39], Cx43
[40] and Cx46 [41]. The mechanism of their involvement
include intra- and extracellular exchange of small mole-
cules that are critical for redox homeostasis, such as
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GSH [42], for which Cx50 was shown to be permeable
[41]. The heteromeric channels containing the mutant
Cx50 could thus affect the redox homeostasis directly by
modulating the flow of relevant ions, molecules or me-
tabolites or through altered post-translational modifica-
tions and interactions with other cellular proteins [43].
One of the limitations of the present study lies in the
fact that we did not uncover the detailed mechanism
which underlies the metabolic effects in the Cx50-defi-
cient and heterozygous animals. Also, since all the mea-
surements were done in animals treated with
dexamethasone, the specific outcomes may be due to
pharmacogenetic interaction of variant Cx50 with dexa-
methasone as glucocorticoid effects on connexins have
been documented [35].

Conclusions
The results of this study demonstrate that homozygous
mutation in the amino terminal domain of Cx50 leads, in
dexamethasone-treated adult male rats, to relative protec-
tion from dexamethasone-induced insulin resistance, de-
crease in visceral adiposity and increase in oxidative stress
indices. At the same time, heterozygous form of the same
Cx50 variant results in increased concentration of triacyl-
glycerols, decrease of cholesterol and elevation of several
pro-inflammatory cytokines. Altogether, we show the sub-
stantial involvement of connexin 50 in several metabolic
syndrome features.
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Additional file 1: Table S1. Lipoprotein particle size in SHR, SHR-Dca+/-
and SHR-Dca-/- male rats. (PDF 114 kb)
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