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Abstract: MXene nano-sheets were introduced into a thin-film composite membrane (TFC) to reduce
the mass transfer resistance (concentration polarization) and improve the membrane performance.
The process entailed dissolving the MXene nano-sheets in a membrane casting solution using the
blending method and introducing them into the porous support layer to prepare a modified thin-film
composite forward osmosis (TFC-FO) membrane. The results showed that the water contact angle
decreased by about 16%, indicating that the hydrophilicity was strengthened, and the O/N ratio of
the active selective layer decreased by 13%, indicating an increased degree of crosslinking, thereby
demonstrating that the introduction of MXene nano-sheets changed the properties of the membrane
and played a positive role in its physicochemical properties. In contrast to the unmodified TFC-FO
membrane, the modified membrane had a slightly higher reverse solute flux, while its water flux
increased by about 80%. Its specific reverse osmosis flux was also significantly optimized (only
0.63 g/L). In conclusion, adding MXene nanosheets to TFC-FO membranes led to the modified
membranes with better mass transfer, lessened internal concentration polarization (ICP), and better
osmotic separation.

Keywords: TFC-FO membrane; MXene nano-sheets; internal concentration polarization

1. Introduction

With the increasing impact of the global shortage of water resources on human soci-
ety, the protection of freshwater resources is especially important. Membrane separation
technology has become one of the main technical means of addressing freshwater issues
and improving water recycling efficiency and has yielded remarkable results in the area of
seawater desalination. Among the membrane types currently used, thin-film composite
(TFC) membranes are among the most widely studied and frequently used [1] and are
considered the most effective membranes for desalination. Generally, interfacial polymer-
ization is carried out on the porous support layer formed by phase transformation to form
an asymmetric membrane composed of the porous support layer and an active selective
layer, which has the characteristics of high selectivity and low energy consumption.

The main membrane processes used in the production of TFC membranes are reverse
osmosis (RO) and forward osmosis (FO). In the past, reverse osmosis technology was
widely used all over the world and was considered the most effective desalination process.
However, its high energy consumption was a technical bottleneck, so the focus shifted to
FO membrane separation technology. Compared with the traditional pressure-driven mem-
brane separation process, FO technology has demonstrated the outstanding advantages
of a high cycle recovery rate, low system energy consumption possibility, less membrane
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fouling propensity, and low operating pressure input. Thus, it has excellent potential for
future application [2].

Currently, FO technology is widely used and has achieved good results in green
production, wastewater treatment, food processing, biomedicine, and other fields [3]. To
further improve the filtration efficiency of FO technology, researchers have studied the
preparation and application of TFC-FO membranes. However, concentration polarization
has been a major limiting factor, which hinders the mass transfer process, greatly reducing
the performance of the TFC-FO membrane and resulting in the actual water flux being
far less than the theoretical water flux. This has greatly limited the development of FO
technology [4]. Previous studies have shown that the introduction of nanomaterials into
TFC membranes can effectively reduce mass transfer resistance and alleviate concentration
polarization [5]. Therefore, researchers have begun to add nanomaterials to the porous
support layer or active selective layer to improve the mass transfer process, alleviate
concentration polarization, and improve membrane performance. For example, Xiao Tong
blended carbon nanoparticles with polyethersulfone (PES) to prepare a conductive thin-film
nanocomposite membrane with improved anti-fouling ability. The gradual addition of
modified materials was found to significantly enhance the conductivity of the membrane.
Under the conditions of additional voltage and no voltage, the water flux of the modified
membrane remained close to its pristine value after 8 h, indicating improved anti-fouling
ability [6]. Niksefat used silica nanoparticles as additives to improve the performance of
TFC membranes, dispersing the nanoparticles into the aqueous phase during the interfacial
polymerization reaction to prepare an active layer. The results showed that the implantation
of SiO2 improved the interfacial polymerization rate of FO and enhanced its hydrophilicity.
The modified FO membranes had high water flux and low reverse solute flux, achieving
a maximum water flux of approximately 36 LMH [7]. Due to the interaction between the
porous support layer and the active selective layer, there was an inseparable relationship.
Some researchers have modified both layers at the same time. For example, Masood
simultaneously added halloysite nanotubes (HNT) to the polysulfone support layer using
the mixing method and added functional nano cellulose (NCC) by mixing it into the
polyamide active selective layer to prepare modified TFC-FO membranes. The results
showed that the addition of HNT increased the growth of the finger pore structure of the
support layer and that NCC made the surface of the active selective layer more compact.
With both additions, the permeability test results showed that the water flux was around
140% higher than that of the unmodified membranes, constituting a breakthrough in
this direction [8]. This shows that choosing one or two nanomaterials and changing
the membrane structure can improve the performance of the TFC-FO membrane to a
certain point.

At present, numerous new nanomaterials are being used in membrane separation
technology. Due to their chemical function and special physical structure, the properties of
the modified membranes are significantly improved [9].Among these new nanomaterials,
two-dimensional transition metal carbide MXene nano-sheets have been widely used
in wastewater treatment, seawater desalination, and gas separation due to their thermal
stability, excellent film-forming ability, and high hydrophilicity, constituting a breakthrough
in modified membrane research [10,11]. For example, Huang et al. mixed magnetic nickel
MXene with polyethersulfone (PES) to prepare a modified ultrafiltration membrane. The
results showed that the modified PES membrane was 2.5 times higher than the unmodified
membranes in the water flux, and the flux recovery of the humic acid solution reached
99.8% [12]. Alfahel prepared an MXene-modified nanofiltration membrane by mixing
MXene with cellulose acetate via blending and crosslinking. The addition of MXene
was found to improve the hydrophilicity and anti-fouling performance of the membrane.
Its anti-fouling ability proved superior to that of commercial membranes [13]. Taking
advantage of the scalability of MXene and the special structure of the TFC-FO membrane,
Wu prepared a modified TFC-FO membrane by constructing an MXene nano interlayer
between the porous support layer and the active selective layer and found that the water
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flux was improved due to the promotion of MXene layer spacing on moisture particles [14].
It can be seen that MXene has been applied to membrane application fields, but for the
field of forward osmosis membrane, only the influence of constructing an MXene interlayer
on the TFC-FO membrane has been studied. Few researchers have systematically studied
how the addition of MXene to the porous support layer, the active selective layer, or both
affects the performance of the whole membrane. Thus, further research is urgently needed
to explore the application potential of MXene in the TFC-FO membrane.

Given the key influence of the structural characteristics of the porous support layer
on the performance of the active selective layer and the whole TFC-FO membrane, and
the effect of internal concentration polarization (ICP) on the permeation mass transfer
process, which mainly takes place in the porous support layer, this paper describes the use
of the blending modification method to modify the TFC-FO membrane porous support
layer with different addition amounts of MXene nano-sheets. State-of-the-art characteri-
zation methods, including scanning electron microscopy (SEM), atomic force microscopy
(AFM), contact angle (CA), Fourier transform infrared spectroscopy (FTIR), and X-ray pho-
toelectron spectroscopy (XPS), were used to analyze and study the as-prepared modified
TFC-FO membranes.

2. Materials and Methods
2.1. Experimental Materials

The raw materials used to prepare the porous support layer were polysulfone (PSf,
average molecular weight of 22,000 Da) purchased from Sigma-Aldrich, St. Louis, MI, USA,
polyvinylpyrrolidone (PVP, K30) and N-methyl pyrrolidone (NMP, analytical purity >99%)
from Aladdin, Shanghai, China. The raw materials used to prepare the active selective
layer were m-phenylenediamine (MPD, analytical purity >99.5%), n-Hexane (Chromato-
graphic grade, >98%) purchased from Aladdin, Shanghai, China, and trimethyl chloride
(TMC, >98%) purchased from Sigma-Aldrich, St. Louis, MI, USA. The modified material
was MXene nano-sheets (single layer), which was provided by Suzhou Bei Ke 2D Materials
Co., Ltd. Suzhou, China. In addition, the reagents for preparing the draw solution and feed
solution were sodium chloride, which was purchased from Macklin, Shanghai, China, and
self-made pure water (conductivity less than 5 µS/cm), respectively.

2.2. Preparation of the MXene Nano-Sheets Modified TFC-FO Membranes
2.2.1. The Preparation of the Modified Porous Support Layer

The dried MXene nano-sheets were ultrasonically dispersed in pure water for more
than 3 h to prepare the MXene dispersion solution. The PSf, PVP, and NMP were mixed to
a ratio of 7:2:40 in a container and then fully stirred with a constant temperature magnetic
stirrer for 24 h (25 ◦C) before being left to stand for 12 h to obtain a clear casting film
solution. The casting solution was mixed with MXene dispersion solution in the container,
and the mixture was fully stirred with a magnetic stirrer for 48 h. Ultrasonic dispersion
was carried out alternately during the mixing process. The prepared mixture was evenly
poured on a clean glass plate and then put into a coagulation bath for 30 min to prepare a
modified porous support layer [15], as shown in Figure 1.

2.2.2. Preparation of the Active Selective Layer

The active selective layer was prepared on the modified porous support layer by a
classic interfacial polymerization reaction [16]. First, an MPD aqueous solution (the ratio of
MPD to pure water was 2.0%) was poured on the porous support layer. After soaking for
2 min, the aqueous solution was drained and immersed in the TMC/n-Hexane solution
(the ratio of TMC to n-Hexane was 0.13%) for 1 min. It was then placed in an oven for
drying and finally rinsed with pure water to prepare the modified TFC-FO membranes. The
addition amounts of MXene nano-sheets were 0%, 0.005%, 0.007%, 0.01%, and 0.03%, which
correspond to the prepared TFC-FO membranes T-1, T-2, T-3, T-4, and T-5, respectively, as
shown in Figure 2.
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2.3. Characterization of the MXene Nano-Sheets

The surface morphology of MXene nano-sheets was observed by an emission scanning
electron microscope (FEI inspect F50 FSEM, Hillsboro, OR, USA). The chemical element
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composition was measured by the ATR mode transforming the infrared spectrum of the
spectrometer (Thermo Fisher Nicolet IS5, Chengdu, China) and X-ray electron spectroscopy
(XPS, Thermo Scientific Escalab250Xi, Waltham, MA, USA).

2.4. The Characterization of the MXene Nano-Sheets Modified TFC-FO Membranes

Contact angle meter (CAM, Kruss DSA100, Hamburg, Germany), emission scanning
electron microscope (FEI inspect F50 FSEM, Hillsboro, OR, USA), and atomic force micro-
scope (dimension icon AFM, Billerica, MA, USA) were used to characterize the physical
morphology of the modified TFC-FO membrane. The chemical element composition
was measured by the ATR mode transforming the infrared spectrum of the spectrome-
ter (Thermo Fisher Nicolet IS5, Chengdu, China) and X-ray electron spectroscopy (XPS,
Thermo Scientific Escalab250Xi, Waltham, MA, USA).

2.5. Permeability Test of the MXene Nano-Sheets Modified TFC-FO Membranes
2.5.1. Test Equipment

The TFC-FO membrane test equipment consisted of a self-made membrane module,
peristaltic pumps (Jie Heng, Chongqing, China), a conductivity meter (Lei Ci, Shanghai,
China), and an electronic balance (APTECH Shenzhen, China). The effective test area of
the membrane was 8 cm2, and 1M NaCl solution and pure water were used as the draw
solution and feed solution, respectively. The change of the weight in the draw solution
during the forward osmosis process was recorded by the electronic balance, and the change
in the conductivity in the feed solution was recorded by the conductivity meter. The
permeability test of the TFC-FO membrane included the AL-DS mode and the AL-FS mode,
which were the active selective layer facing draw solution and the active selective layer
facing feed solution, respectively. The cross-flow filtration method was adopted, as shown
in the Figure 3.
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2.5.2. Test Parameters

Test indicators of the TFC-FO membranes included water flux (Jw), reverse solute flux
(Js), and specific reverse solute flux (FS) [17]. The water flux represents the permeability of
the membrane, and a higher water flux means superior permeability. The reverse solute
flux represents the interception performance of the membrane, and a low reverse solute
flux means strong interception capacity. The specific reverse solute flux represents the
comprehensive separation performance of the membrane, and the lower its value, the better
the membrane selectivity.
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The calculation formulas are:
Jw =

∆V
A·T (1)

where Jw is the water flux of the TFC-FO membrane (unit: L·m−2·h−1), ∆V is the volume
change of the draw solution (unit: L), T is the operation time of the forward osmosis process
(unit: h), and A is the effective test area of the TFC-FO membrane module (unit: m2).

Js =
C × (Vc − Vs)

A·T (2)

where Js is the water flux of the TFC-FO membrane (unit: g·m−2·h−1), C is the solute
concentration of the draw solution in the feed solution (unit: g/L), Vc is the initial feed
solution volume (unit: L), Vs is the volume of permeated pure water (unit: L), T is the
operation time of the forward osmosis process (unit: h), and A is the effective area of the
TFC-FO membrane module (unit: m2).

FS =
Js
Jw

(3)

where FS is the specific reverse solute flux of forward osmosis (unit: g·L−1).

3. Results and Discussion
3.1. Characterization of MXene Nano-Sheets

Figure 4a is the scanning electron microscope diagram of MXene nano-sheets. Through
this diagram, it can be observed that it presented an overlapping structure, which was
consistent with the test results of Shi et al. [18]. Figure 4b presents an XPS diagram of the
MXene nano-sheets, which shows that the main elements in the MXene nano-sheets were C,
O, Ti, and F. Figure 4c shows the Fourier infrared spectrum of the MXene nano-sheets. The
figure shows characteristic peaks around 3400 cm−1 and 1650 cm−1, which were caused by
the O-H and C=O vibrations in the MXene nano-sheets [19].
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Figure 4. The characterization of MXene nano-sheets: (a) SEM micrograph, (b) XPS spectra, (c) Infrared
spectrogram in the range of 400–4000 cm−1.
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3.2. Characterization of the Physical Morphology of the TFC-FO Membranes Modified by
MXene Nano-Sheets

Figure 5 shows the effects of different MXene nano-sheet additions on the water CA
of the TFC-FO membranes. It can be seen from the figure that the water CAs on the
surface of membranes T-1 to T-5 were 61.7◦, 57.6◦, 54.8◦, 51.4◦, and 53.3◦, respectively.
The water contact angles on the surface of the TFC-FO membranes showed a downward
trend. After the addition of MXene nano-sheets, the TFC-FO membranes had a more
hydrophilic active selective layer. This was because the MXene nano-sheets contained a
large number of O-H bonds of hydrophilic groups [20]. After being added to the casting
solution by blending modification, the MXene nano-sheets were driven by the hydrogen
bonds contained in water molecules and evenly distributed in the membrane during the
phase transformation process. Therefore, the prepared porous support layer had a more
hydrophilic membrane surface, which promoted the formation of a more hydrophilic active
selective layer, strengthening the hydrophilicity of the prepared TFC-FO membranes. At the
same time, the presence of a large number of C=O and N-H hydrophilic functional groups in
the active selective layer further strengthened the hydrophilicity of the TFC-FO membranes.
The subsequent contact angle showed a slight upward trend, which may be because
the high concentration of MXene nano-sheets led to an increase in the viscosity of the
casting solution, which was similar to the phenomenon of high polymer concentration [21],
inhibiting the exchange rate between solvent and non-solvent in the non-solvent-induced
phase separation process; this, in turn, affected the uniform distribution of MXene nano-
sheets on the membrane surface, and finally led to a slight decrease in the hydrophilicity of
the membrane. In addition, a more hydrophilic membrane matrix was also conducive to
reducing the resistance in the mass transfer process and improving water flux.
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Figure 5. The water contact angles of the TFC-FO membranes with different amounts of
MXene nano-sheets.

Since the main element in the MXene nano-sheets was Ti, the distribution of Ti can
prove whether MXene nano-sheets were added to the porous support layer. Figure 6
shows the results of an EDX scan of Ti in the modified porous support layer. It can be seen
that Ti was evenly distributed throughout the porous support layer, proving that MXene
nano-sheets were successfully added to the porous support layer.



Membranes 2022, 12, 368 8 of 17

Figure 7 shows SEM images of the surface and cross-section of the TFC-FO membranes
prepared by adding different concentrations of MXene nano-sheets. As can be seen from
the figure, not only did the addition of MXene nano-sheets directly impact the porous
support layer, but it also indirectly affected the formation of the active selective layer. The
plane SEM diagram showed that all membrane surfaces showed the typical morphology
of the active selective layer and the structural characteristics of the “protuberance” [22].
Due to the limitations of the membrane structure and the surface hydrophilicity of the
porous support layer, fewer aqueous phases participated in interfacial polymerization, so
the morphological characteristics of the “protuberance” of the polyamide active selective
layer were not obvious. Therefore, the “protuberances” in the active selective layer of the
T-1 membrane were few and insignificant. When the MXene was added, the prepared
TFC-FO membrane active selective layer immediately changed to present a more obvious
“protuberance” structure, and the structural characteristics became more obvious. Due
to the gradual increase in the MXene nano-sheet concentration, the sheets were evenly
dispersed throughout the porous support layer, forming a more hydrophilic membrane
surface with more aqueous phases, which intensified the interfacial polymerization reaction.
However, when the MXene nano-sheet addition amount was increased to 0.03% due to
the aggregation of excess MXene nano-sheets in the porous support layer, the aqueous
phase attached to the porous support layer was also reduced accordingly, which indirectly
affected the formation of the active layer. Therefore, the “protuberance” structure was
significantly reduced.
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The SEM cross-section images show that the as-prepared TFC-FO membranes were
roughly composed of a thin, dense skin layer, a finger pore channel layer, and a sponge
macropore structure at the bottom. Due to the good affinity between hydrophilic MXene
nano-sheets and water, the rapid exchange of water and solvent may lead to the change
of membrane cross-section morphology [21]. Compared with the TFC-FO membranes
without MXene nano-sheets, all the TFC-FO membranes prepared with MXene nano-sheets
showed varying degrees of membrane pore structure changes, which mainly resulted
in the generation of more and longer finger pore channel structures and a reduction in



Membranes 2022, 12, 368 9 of 17

sponge-like macropore structures. As the amount of added MXene nano-sheets increased,
the finger pore structure grew longer. The finger pore structure of the porous support layer
was longest when the addition of MXene nano-sheets reached 0.01%, indicating that this
addition could promote the growth of finger pore structure in the resultant membrane.
This was attributed to a large number of hydrophilic groups inside the MXene nano-sheets
themselves, which lowered the thermodynamic stability of the membrane casting dope
during the non-solvent-induced phase separation process, increasing the mass transfer rate
between solvent and non-solvent, encouraging the formation of finger pore structures that
provide water molecular channels, improving the mass transfer process, alleviating the ICP
issue, and promoting the transport of water molecules [23]. The combination of these factors
meant that the modified membranes performed better in terms of water flux. The specific
impact on the water flux was further analyzed via the osmotic separation performance test.
However, as more MXene nano-sheets were added, the pore structure of the T-5 membrane
was significantly reduced. This may be similar to the agglomeration phenomenon caused
by the addition of excessive MXene nano-sheets [24], which improved the viscosity of the
casting solution and dynamically reduced the exchange rate between solvent and non-
solvent in the non-solvent-induced phase separation process, thus hindering the formation
of finger pore structures.
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The AFM images of the active selective layer of the TFC-FO membranes prepared by
interfacial polymerization are shown in Figure 8. The morphology in the figure shows
that all the membrane surfaces had a typical polyamide “valley ridge” structure, which
also indicated that the TFC-FO membranes were successfully prepared. In addition, it
can be seen that with the gradual addition of more MXene nano-sheets, the protrusion
morphology in the figure became sharper, which meant that the contact area between the
membrane surface and the water molecules increased.

Table 1 shows the surface roughness of the TFC-FO membranes modified by different
MXene nano-sheets. It can be seen from the figure that the surface roughness of the TFC-FO
membranes prepared on the porous support layer with different MXene nano-sheet addi-
tions was higher than that of the unmodified TFC-FO membranes and showed a gradual
upward trend. One possible reason was that it increased the pore size and hydrophilicity
of the porous support layer and promoted the reaction rate of aqueous phase diffusion
to organic phase when a certain number of MXene nano-sheets were added [25], and the
aqueous phase attached to the porous support layer’s membrane surface increased its
participation in the interfacial polymerization reaction with the organic phase. The reaction
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was more intense, so the roughness of the polyamide active selective layer increased. How-
ever, the roughness later decreased due to the distribution of MXene nano-sheets in the
porous support layer when the concentration of MXene nano-sheets continued to increase.
Excessive particles led to agglomeration, destroying the membrane structure, and causing
the roughness of the polyamide active selective layer to decrease synchronously.
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Table 1. The surface roughness of the TFC-FO membranes with different amounts of MXene nano-sheets.

TFC-FO Membranes Ra (nm) Rms (nm)

T-1 23.9 34.6
T-2 32.4 40.3
T-3 35.7 45.3
T-4 40.2 53.4
T-5 38.3 51.2

3.3. Chemical Element Composition Characterization of the TFC-FO Membranes Modified by
MXene Nano-Sheets

Figure 9 shows the test results of the FTIR spectra of membranes T-1 to T-5. It can
be seen from the figure that all symmetrical O=S=O peaks (1148 cm−1), symmetrical
C-O-C peaks (1237 cm−1), asymmetric O=S=O peaks (1294 cm−1), and CH3-C-CH3 peaks
(1503 cm−1) of polysulfone membranes appeared. Moreover, a series of characteristic
peaks and obvious characteristic peaks were observed at about 1610 cm−1, 1650 cm−1,
and 1544 cm−1, which were respectively attributed to the aromatic ring, amide I band
(C=O), and amide II band (C-H) in the active selective layer, indicating the success of the
interfacial polymerization [26]. At the same time, in the range of 2000–4000 cm−1, with the
addition of MXene nano-sheets, the characteristic peak of approximately 3300~3400 cm−1

gradually increased, which may be due to the hydrophilic groups contained in the MXene
nano-sheets, resulting in a more hydrophilic porous support layer.
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Figure 9. The ATR-FTIR spectra of the TFC-FO membrane with different amounts of MXene nano-sheets.

Figure 10 shows the XPS test results of the prepared TFC-FO membranes modified
with MXene nano-sheets. It can be seen that membranes T-1 to T-5 were mainly composed
of oxygen, nitrogen, and carbon. Using Table 2, we can calculate the percentage content of
C, O, and N. The crosslinking degree of the TFC-FO membrane surface was obtained by
calculating the O/N ratio. The lower the O/N value, the higher the crosslinking degree
of the membrane surface, and the higher the salt rejection rate of the active selective layer.
Conversely, the higher the O/N value, the lower the crosslinking degree of the membrane
surface, and the more unfavorable it was for the active selective layer to intercept salt
ions [27]. The XPS results showed that the oxygen–nitrogen ratio of the membrane surface
active selective layer first decreased and then increased with the addition of the MXene
nano-sheets, and the crosslinking degree of the TFC-FO membranes modified by the MXene
nano-sheets was higher than that of the unmodified TFC-FO membranes. The reason for
the initial decrease and subsequent increase in the oxygen–nitrogen ratios could be that
the initial addition of MXene nano-sheets (0.005%) had an immediate significant impact
on the formation of the porous support layer, changed the membrane structure and the
surface of the porous support layer, and indirectly played a positive role in the formation
of the polyamide active selective layer generated by interfacial polymerization in the
later stage, so the O/N ratio decreased greatly. When MXene nano-sheets were added
continuously (0.007–0.01%), because the MXene nano-sheets were evenly distributed in
the porous support layer, the membrane structure of the porous support layer was directly
changed, enhancing the adhesion ability and diffusion rate of the aqueous phase on the
surface of the porous support layer. This greatly promoted the interfacial polymerization
reaction, and the O/N ratio of the generated polyamide active selective layer continued
to decrease significantly, leading to a substantial increase in the degree of crosslinking.
However, when the addition amount of MXene nano-sheets reached 0.03%, a large number
of excessive MXene nano-sheets gathered in the porous support layer, destroying the
membrane structure of the porous support layer. Simultaneously, due to the synchronous
reduction in hydrophilicity, the aqueous phase attached to the surface of the porous support
layer decreased, and the corresponding degree of reaction with the organic phase decreased,
which hindered interfacial polymerization and led to an increase in the O/N ratio and a
decrease in the degree of crosslinking of the polyamide active selective layer.
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Table 2. The elements composition and O/N ratios of the TFC-FO membranes with different amounts
of MXene nano-sheets.

TFC-FO
Membranes

C
Content (%)

O
Content (%)

N
Content (%)

O/N
Value

T-1 75.41 13.91 10.68 1.30
T-2 74.82 13.68 11.39 1.20
T-3 73.93 13.84 12.08 1.15
T-4 74.43 13.48 11.97 1.13
T-5 72.21 14.84 12.78 1.16
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Figure 10. The XPS spectra of the surface of the TFC-FO membranes with different amounts of MXene
nano-sheets: (a) T-1; (b) T-2; (c) T-3; (d) T-4, and (e) T-5.

3.4. Permeability Test of the MXene Nano-Sheets Modified TFC-FO Membranes

It can be seen that the TFC-FO membranes modified with MXene nano-sheets had
obvious changes in terms of surface physical morphology and chemical element composi-
tion. TFC-FO membranes modified with different contents were tested to see how well they
could pass through water. This was to see how these changes would affect the performance
of the membrane.

3.4.1. Effects of MXene Nano-Sheets on the Water Flux of the TFC-FO Membranes

The results of the water flux test are depicted in Figure 11. The figure shows that
with the increase in MXene nano-sheet content, the water flux of the TFC-FO membranes
first increased and then decreased. When the addition amount of MXene nano-sheets
was 0.01%, the water flux was the highest, reaching 13.63 L·m−2·h−1 (AL-DS mode) and
10.45 L·m−2·h−1 (AL-FS mode). According to the above analysis of physical structure and
chemical composition, when the addition amount of MXene nano-sheets was within a
certain range (0.005–0.01%), the MXene nano-sheets were evenly distributed and dissolved
in the casting solution. On the one hand, the addition of MXene nano-sheets reduced the
membrane contact angles and generated more finger pore structures. The reduction in
the contact angles meant the enhancement of membrane hydrophilicity, which improved
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the mass transfer resistance and enhanced the affinity of TFC-FO membranes for water
molecules, and the finger pore structure had a lower S value than the sponge macropore
structure of the original membrane [28]. The lower the S value, the more conducive it was to
alleviating the ICP and improving the mass transfer process, and the finger pore structure
was shorter in the path than the sponge structure, which was theoretically conducive to
reducing the ICP [29]. Based on the above two points, the addition of MXene nano-sheets
reduced the mass transfer resistance of the membrane structure and was conducive to the
transfer of water molecules in the membrane. On the other hand, due to the structural
characteristics of MXene nano-sheets, they were evenly distributed in the porous support
layer, providing additional transmission channels for the passage of water molecules and
improving the water flux to a certain extent [30,31]. However, when the addition amount of
MXene nano-sheets reached 0.03%, the high concentration caused agglomeration to occur
in the membrane. The viscosity of the casting solution increased, forming a membrane pore
structure that was not conducive to the passage of water molecules or directly blocked the
finger pore structure. At the same time, the decrease in hydrophilicity also led to a decrease
in the affinity of the TFC-FO membranes for water molecules in solution. Finally, the water
flux decreased synchronously.
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Figure 11. The effects of different amounts of MXene nano-sheets on the water flux of the
TFC-FO membranes.

3.4.2. Effects of MXene Nano-Sheets on the Reverse Solute Flux of the TFC-FO Membranes

Figure 12 shows the results of the test of reverse solute flux. It can be seen from
the figure that with the addition of MXene nano-sheets, the reverse solute flux of the
modified TFC-FO membranes first increased and then decreased slightly. The highest
reverse solute flux occurred when the addition amount of MXene nano-sheets was 0.01%,
reaching 8.58 g·m−2·h−1 (AL-DS mode) and 6.83 g·m−2·h−1 (AL-FS mode). According to
the above physical and chemical characterization, when the addition amount of MXene
material was within a certain range (0.005–0.01%), although the addition of MXene material
promoted the formation of an active selective layer, improved the crosslinking degree
of the polyamide layer, and was conducive to the interception of salt, the MXene nano-
sheets themselves produced swelling effects [32,33]. Under the influence of restrictive
factors, the MXene nano-sheets had a unique adsorption effect on monovalent cations [30].
This occurred when the Na+ ions in the draw solution passed through the nanochannel
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formed by the MXene nano-sheets. Due to the selection of size and charge, Na+ ions were
quickly adsorbed and intercalated into the MXene nano-sheets layer. With the electrostatic
interaction between Na+ ions and negatively charged MXene nano-sheets, more Na+ ions
were adsorbed, thus expanding the MXene layer. Not only did this create conditions for
the rapid passage of water molecules, but it also facilitated the passage of a large number
of salt ions. However, when the addition amount of MXene nano-sheets reached 0.03%, the
reverse solute flux decreased, because, on the one hand, the excessive addition of MXene
nano-sheets broke the finger pore structure in the porous support layer. On the other
hand, as the concentration of MXene nano-sheets rose, the agglomeration phenomenon in
the pore support layer blocked the formed pore channels and destroyed the extra nano
channels that were formed since the swelling effect of MXene nano-sheets. This caused the
final reverse solute flux to go down.
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Figure 12. The effects of different amounts of MXene nano-sheets on the reverse solute flux of the
TFC-FO membranes.

3.4.3. Effects of MXene Nano-Sheets on the Specific Reverse Solute Flux of TFC-FO Membranes

Figure 13 shows the ratio of water flux and reverse solute flux under two different
modes (AL-DS and AL-FS), which reflect the separation performance of the TFC-FO mem-
branes. As shown in the figure, the specific reverse solute flux of the modified membrane
under both the AL-DS and AL-FS modes showed a consistent downward trend compared
with the specific reverse solute flux value of 0.77 g·L−1 (AL-DS mode) and 0.78 g·L−1

(AL-FS mode) of the unmodified membrane, thus a better optimization was achieved. A
comparison of the results showed that an addition amount of 0.01% resulted in the best
membrane separation performance.
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Figure 13. The effects of different amounts of MXene nano-sheets on the specific reverse solute flux
of the TFC-FO membranes.

4. Conclusions

With the aim of achieving improved water flux in the process of TFC membrane filtra-
tion, this paper assesses the effects of MXene nano-sheets on TFC-FO membranes using the
FO process. Tests of SEM, AFM, CA, FTIR, XPS, and osmotic separation performance were
applied to systematically analyze the modified TFC-FO membranes. The successful intro-
duction of MXene nano-sheets and their positive effects on membrane performance were
demonstrated. The results showed that the surface morphology, roughness, hydrophilicity,
and degree of crosslinking of the modified TFC-FO membranes changed in accordance
with the variation in the introduction concentration of MXene nano-sheets. Compared
with the unmodified TFC-FO membranes, the modified TFC-FO membranes had higher
hydrophilicity, higher roughness, and a higher degree of crosslinking. Because of the more
hydrophilic structure and the formation of more finger pore channels, the FO mass transfer
process was improved, and the ICP effect was alleviated, which greatly improved the water
flux. In the AL-DS mode, when the addition amount was 0.01%, the water flux of the FO
membrane was 13.63 L·m−2·h−1, the reverse solute flux was 8.58 g·m−2·h−1, and the mem-
brane separation performance was relatively good, indicating good application potential
in the field of membrane separation. However, due to the swelling effect of the MXene
nano-sheets and the agglomeration factor, further improvement of the performance of the
TFC-FO membranes was limited, highlighting an important avenue for further research on
process optimization.
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