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Abstract

Network modularity is an important structural feature in metabolic networks. A previous study suggested that the variability
in natural habitat promotes metabolic network modularity in bacteria. However, since many factors influence the structure
of the metabolic network, this phenomenon might be limited and there may be other explanations for the change in
metabolic network modularity. Therefore, we focus on archaea because they belong to another domain of prokaryotes and
show variability in growth conditions (e.g., trophic requirement and optimal growth temperature), but not in habitats
because of their specialized growth conditions (e.g., high growth temperature). The relationship between biological
features and metabolic network modularity is examined in detail. We first show the absence of a relationship between
network modularity and habitat variability in archaea, as archaeal habitats are more limited than bacterial habitats.
Although this finding implies the need for further studies regarding the differences in network modularity, it does not
contradict previous work. Further investigations reveal alternative explanations. Specifically, growth conditions, trophic
requirement, and optimal growth temperature, in particular, affect metabolic network modularity. We have discussed the
mechanisms for the growth condition-dependant changes in network modularity. Our findings suggest different
explanations for the changes in network modularity and provide new insights into adaptation and evolution in metabolic
networks, despite several limitations of data analysis.
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Introduction

Because metabolism is responsible for physiological functions

and for maintaining life, it is an important topic not only in general

biology but also in applied biological research fields such as

biotechnology and medical science. Metabolism can be defined as a

series of chemical reactions, and it is often represented as a

network (called a metabolic network) [1–3]. In recent years,

several new technologies and high-throughput methods have

generated considerable genomic and metabolic network data.

Accordingly, comprehensive analyses of metabolic networks have

been actively carried out, and the entire picture of metabolic

networks has steadily become clearer (reviewed in [4,5]). Until

now, many studies have discussed the mechanisms involved in the

evolution of metabolic networks [6–8] and environmental

adaptation from the viewpoint of metabolism (reviewed in [9,10]).

When discussing metabolic networks, previous works have

focused on metabolic network modularity because the network

modularity, which reflects how well a network can be decomposed

into dense subnetworks that are relatively weakly interconnected,

is believed to be one of the important organizing principles of

biological networks [11–13]. Specifically, Parter et al. [14]

revealed that variability in natural habitat promotes metabolic

network modularity in bacteria (i.e., the network modularity of an

organism living in wider environments is higher), and they showed

a mechanism possibly responsible for the change in metabolic

network modularity.

However, because previous studies [15–19] have reported

different structural properties in the metabolic networks

between domains and different properties with respect to

oxygen requirements and optimal growth temperature, we

have 2 natural questions when extending the discussion of

network modularity to habitats of species: (i) Are similar results

observed in other domains? (ii) Are there other explanations

for the differences observed in metabolic network modularity

(e.g., can biological features such as oxygen requirements and

optimal growth temperature be related to network modular-

ity?)?

Archaea are interesting examples to consider when answering

these questions. Like bacteria, they belong to the prokaryotes and

are widely distributed throughout normal and extreme environ-

ments (e.g., high temperatures, highly acidic conditions, and

oxygen-free conditions) [20], but their habitats are limited (or

narrow) due to their specialized growth conditions (see also

Figure 1). Thus, it may be possible to discuss other possible

mechanisms causing changes in the metabolic network modularity

through archaea. Despite this advantage, until now, this evaluation

was difficult, because not much genomic and metabolic data were

available for archaea because of experimental difficulties.

However, the recent genome projects have revealed the whole

genomes of many archaea (see [21] for details); moreover,

metabolic information has been correctly annotated thanks to

the elucidation of the gene manipulation system [22].
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In this study, therefore, we investigate other possibilities

responsible for changes in the metabolic network modularity in

archaea and show 2 main results: The first is that no differences

were observed in metabolic network modularity with respect to

habitat variability, because of the limited habitats of archaea. The

second observation is a change in metabolic network modularity

with growth conditions (trophic requirement and optimal growth

temperature, in particular) in the absence of habitat variability.

This result implies different possible mechanisms of metabolic

network modularity, and provides new insights into metabolic

network adaptation.

Results

Variability in the habitats of archaeal species hardly
influences metabolic network modularity

We investigated whether the increase in metabolic network

modularity with habitat variability, previously reported in bacteria

[14], is observed in archaea.

We selected 45 archaeal species for which biological features

and metabolic network data are available (see Table S1 and

Materials and Methods for details). Based on previous work [14],

we constructed the metabolic networks of archaea whose nodes

and undirected edges are metabolites and reactions, respectively,

and calculated the metabolic network modularity, Qm (see

Materials and Methods for details). Note that Qm shows no

correlation with the number of metabolites (i.e., network size;

Spearman’s rank correlation coefficient rs~{0:05 with the P-

value p~0:73) or the number of metabolic links (i.e., reactions;

rs~0:07, p~0:62) because it was normalized to allow comparison

between different network sizes and connectivity. In addition, Qm

does not correlate with genome size (rs~{0:18 with p~0:24) or

the number of protein-encoding genes (rs~{0:26, p~0:08),

because they are related to the network size and the number of

links.

Like a previous study [14], the classification of archaeal lifestyle

was determined on the basis of the Entrez Genome Project

database [23]. Using this database, 45 archaea were classified into

24 specialized species, 17 aquatic species, and 4 multiple species,

where specialized species are organisms living in specialized

environments such as marine thermal vents; aquatic species are

organisms living in fresh- or seawater environments and are not

associated with hosts; and multiple species are organisms living in

multiple different kinds of environments, such as species with a

wide host range. Note that the lifestyles of organisms are classified

into 6 classes in this database (See [14] for the other lifestyle

classes) The archaeal lifestyle was weighted in case of specialized

and aquatic species, compared that of bacteria (Figure 1A).

Figure 1B shows no statistical difference between habitat

variability and metabolic network modularity in archaea. The

network modularity of aquatic species seems to be greater than

that of specialized species. However, no statistically significant

difference is observed because of high variance. The fact that there

is no difference in network modularity between aquatic species and

specialized species may be not surprising because a previous study

also showed a similar result (see also Figure 2 in [14]).

However, the fact that multiple species have lower network

modularity than aquatic species and specialized species may be

remarkable because a greater network modularity is expected as

Figure 1. Effect of habitat variability on metabolic network
modularity (Qm). (A) The ratio of species in each category of
environmental variability between the archaea and bacteria; values for
bacteria were obtained from published data [14]. (B) No relationship
was observed between metabolic network modularity and habitat
variability in archaea (P-value p~0:15, using the Kruskal–Wallis test).
The degree of environmental variability increases in the following order:
specialized, aquatic, and multiple.
doi:10.1371/journal.pone.0025874.g001

Figure 2. Limited relationship between metabolic network
modularity (Qm) and oxygen requirements. The limited difference
in the network modularity with respect to oxygen requirement is
observed (P-value p~0:04, using the Kruskal–Wallis test). The degree of
oxygen required increases in the following order: anaerobic, facultative,
and aerobic.
doi:10.1371/journal.pone.0025874.g002
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network modularity is promoted by habitat variability (see also

Figure 2 in [14]). Note that multiple species have a wider habitat

than specialized or aquatic species do. However, the difference

between multiple species and the other species is ambiguous

because of the small number of multiple species in the sample.

As explained in the previous section, habitat variability hardly

explains the differences in metabolic network modularity because

of the narrow habitat of archaea species. Are there other

explanations for the changes in network modularity? In the

following section, we consider other possible explanations for the

differences in metabolic network modularity.

Oxygen requirements have a limited effect on metabolic
network modularity

The effect of oxygen on metabolic networks [17,19] implies a

difference in the structure of metabolic network (the network size,

in particular) with respect to oxygen requirement. In this section,

the effect of oxygen requirements on metabolic network

modularity is considered. The 45 archaeal species were classified

into 6 aerobes, 3 facultative aerobes, and 36 anaerobes, on the

basis of the available literature [24,25], indicating that the sample

is skewed toward anaerobes.

Figure 2 shows that metabolic network modularity seems to

slightly decrease with oxygen requirement because there is a small

statistically significant difference due to the difference in oxygen

requirements (p~0:04, using the Kruskal–Wallis test). Because of

the small significance, this result implies a limited effect of oxygen

requirements on metabolic network modularity, and it is consistent

with the previous works [17,19], which showed that oxygen

requirements hardly affect the topology of metabolic networks

excluding the network size.

However, we may be not able to completely reject the effect of

oxgen requirement on the network modularity because the

difference in network size cannot simply explain the difference

in network modularity in addition to the small statistical

significance. The network modularity is independent from the

network size (see the first subsection in this section). Thus, oxygen

requirements may partially contribute the metabolic network

modularity although its effect is limited.

Autotrophs show greater metabolic network modularity
than heterotrophs

The reduction in metabolic network modularity due to niche

specification [12] suggests that trophic requirement affects network

modularity. We investigated the relationship between trophic

requirement and network modularity. The 45 archaea were

categorized into 22 autotrophs, 7 facultative autotrophs, and 16

heterotrophs, on the basis of the available literature [24,25].

We found that the metabolic network modularity of autotrophs

is clearly greater than that of facultative autotrophs and

heterotrophs (Figure 3). This result suggests another possible

explanation for the difference in metabolic network modularity.

Most autotrophs are methanogens that generate methane from

carbon sources (generally carbon dioxide) under anoxic condi-

tions; thus, it is possible to interpret the difference in network

modularity between autotrophs and heterotrophs as the one

between methanogens and heterotrophs.

Metabolic network modularity correlates with optimal
growth temperature

Structural differences with respect to optimal growth temper-

ature [18,19] indicate the effect of temperature on metabolic

network modularity. In this section, we investigate the relationship

between network modularity and optimal growth temperature. In

addition, the effect of optimal growth pH is considered because it

is well known that some archaea live in highly acidic environ-

ments.

Figure 4 shows the variability in the optimal growth parameters

of 45 archaea. The archaea are roughly classified into 2 groups on

the basis of optimal growth temperature (Figure 4A): archaea

whose optimal growth temperature is around 370C (generally

called mesophiles) and those who optimal growth temperature is

around 850C (generally called hyperthermophiles). The minimum

and maximum optimal growth temperatures are 23.40C and

1060C, respectively. Moreover, most archaea have an optimal

growth pH of around 7 (i.e., neutrality); however, some archaea

thrive in acidic environments (Figure 4B). The minimum and

maximum optimal growth pH values are 0.7 and 9.0, respectively.

These results indicate a high diversity of archaea based on optimal

growth conditions, but no habitat variability (see Figure 1A).

Figures 5 shows moderate significant correlations between

optimal growth conditions and metabolic network modularity.

Although there are some outliers, the negative and positive

correlations of network modularity are observed in the cases of

optimal growth temperature (Figure 5A) and pH (Figure 5B),

respectively.

Discussion

We found no statistically significant differences between habitat

variability and metabolic network modularity in archaea

(Figure 1B). However, this finding does not contradict the

metabolic network modularity promoted by the variability in the

natural habitat of an organism in bacteria [14], because the

habitat variability of archaea is more limited than that of bacteria.

Until now, archaea living in extreme conditions (i.e., species with

narrow habitats) have been actively explored because such

organisms are useful for industrial applications. Thus, the 45

selected archaea may be weighted toward species with narrow

habitats. However, because the existing types of archaea is higher

Figure 3. Trophic requirement influences metabolic network
modularity (Qm). The significant difference in the network modularity
with respect to trophic requirement is observed (P-value pv10{5,
using the Kruskal–Wallis test). The degree of trophic requirement
increases in the following order: autotrophic, facultative, and hetero-
trophic.
doi:10.1371/journal.pone.0025874.g003
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than expected [20], the relationship between network modularity

and habitat variability may be observed not only in bacteria but

also in archaea when more archaeal metabolic networks are

available. Therefore, the effect of growth conditions (i.e., trophic

requirement and optimal growth temperature) on network

modularity revealed in this study becomes significant in case of

organisms with similar habitats (narrow habitats in this study).

Oxygen requirements are likely to reduce metabolic network

modularity despite their limited effect (Figure 2). Although the

effect of oxygen requirements on network modularity is limited, we

discuss how oxygen requirements reduce network modularity.

This reduction in network modularity may be explained by using

the suggestion by Raymond and Segré [17], i.e., the link rewiring

metabolic networks after oxygen becomes available in organisms

(i.e., the transition from anaerobe to aerobe). The network

modularity indicates that dense subnetworks are weakly connected

to one another. If metabolic links are rewired in such networks, the

networks may be randomized. As a result, the dense subnetworks

may be broken, implying a reduction in network modularity.

However, note that the effect of the link rewiring due to the

oxygen availability on the network modularity is very limited as

shown in Figure 3. The previous studies [17,19] also show the

limited effect of oxygen requirements on structural properties of

metabolic networks.

The greater network modularity of autotrophs (Figure 3) may be

explained using the implication by Kreimer et al. [12], i.e., the

decrease in network modularity due to niche specialization during

evolution. Because autotrophs generate essential metabolites (e.g.,

organic acids and sugars) from very simple carbon sources

Figure 4. High diversity of archaea based on optimal growth
conditions. (A) Optimal growth temperature, (B) Optimal growth pH.
doi:10.1371/journal.pone.0025874.g004

Figure 5. Optimal growth conditions (temperature, in particu-
lar) affect metabolic network modularity (Qm). (A) Optimal
growth temperature (Spearman’s rank correlation coefficient
rs~{0:51 with the P-value pv10{3), (B) Optimal growth pH
(rs~0:33 with p~0:03)
doi:10.1371/journal.pone.0025874.g005
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(generally carbon dioxide), they have metabolic pathways

(modules) for carbon fixation. However, the carbon fixation

modules become unnecessary when such essential metabolites

become enriched in the environment. These metabolic modules

may be lost because of its unnecessity during evolution, and

organisms might begin to require specific nutrients (i.e., transition

to autotrophs to heterotrophs). As a result, metabolic networks

might become simplified by the disintegration of dense subnet-

works, implying a reduction in metabolic network modularity.

The decrease in metabolic network modularity with respect to

optimal growth temperature (and pH) may be discussed using the

possible mechanism of the change in network modularity proposed

by Parter et al. (see Figure 5 in [14] for details). The authors

explained that network modularity decreases as alternative paths

between a given metabolite pair vanish in organisms whose

habitats are narrow. Such a vanishment of alternative paths

indicates that network modules are broken (i.e., a decay of network

modularity). However, another work [26] uses the network model

to show that such an alternative path vanishes (i.e., is not selected)

at a high optimal growth temperature. The selection of alternative

paths might be caused by a temperature-dependent selective

constraint (negative selection) [27,28]. Metabolic paths consist of

enzymes (i.e., proteins). Because enzymes might need structural

stability to survive in hot and/or acidic environments, they tend to

easily get deactivated in such conditions, and therefore, the

emergence of alternative paths may be restricted. Through this

mechanism, metabolic network modularity may decrease with

increasing optimal growth temperatures. This mechanism of

network modularity change is critically different from those based

on species-specific habitats, although these mechanisms state that

non-selection of alternative paths between a given metabolite pair

may reduce network modularity.

Some outliers are observed in the growth condition-dependent

nature of metabolic network modularity. This may be because

many biological features, including the focused parameters in this

work, intricately influence metabolic network modularity. Thus, it

is difficult to determine the most dominant feature for explaining

metabolic network modularity at this time, because of the number

of samples. Thus, we need to test this growth condition

dependence of network modularity using more species although

it is difficult at this time because of a few available data on

metabolic networks and species phenotypes. Since the develop-

ment of high-throughput technics may provide more such data,

the validation using more species may be possible in the future. In

addition to this limitation, our analysis has several other

limitations, as do many other works on metabolic network

analyses: limited knowledge of metabolic reactions (i.e., missing

links), reconstruction of metabolic networks based on genomic

information, and failure to consider reaction stoichiometry and

direction of reaction (i.e., reversible or irreversible).

Although data analysis has these limitations, the growth

condition-dependent nature of network modularity is useful for

explaining other possible mechanisms in the change in metabolic

network modularity, and they provide new insights into the

adaptive and evolutionary mechanisms in metabolic networks.

Materials and Methods

Selection of archaeal species
We collected data on oxygen requirements (i.e., aerobic and/or

anaerobic), trophic requirement (i.e., autotrophic and/or hetero-

trophic), optimal growth temperature, and optimal growth pH of

archaea based on the available literature [24,25]. We selected

archaea for which data on metabolic networks were available in

the KEGG (Kyoto Encyclopedia of Genes and Genomes) database

[29], which is a well-known database on metabolic pathways.

Moreover, we selected archaea for which data on lifestyles were

available in the Entrez Genome Project database [23]. We

examined 45 archaeal species.

Construction of metabolic networks
This part of the research was similar to the previous work [14],

and therefore, we could compare the two.

We downloaded XML files (version 0.7.1) containing the

metabolic network data of 45 archaea on 20 May 2011 from the

KEGG database [29] (ftp://ftp.genome.jp/pub/kegg/xml/kgml/

metabolic/organisms/). Note that the KEGG ftp site is available

only to paid subscribers beginning July 1, 2011. Based on [14],

these metabolic networks are represented by undirected networks

(i.e., substrate graphs) in which the nodes and edges correspond to

metabolites and reactions (i.e., substrate-product relationships

based on atomic mapping [3]), respectively. Ubiquitous metabo-

lites such as H20, ATP, and NADH were removed. Moreover, the

largest connect component (or giant component) was extracted

from each metabolic network to more accurately calculate network

modularity.

Measurement of metabolic network modularity
This is also similar to the previous work [14], thereby allowing

comparison.

To allow the comparison of metabolic network modularity with

different network sizes and connectivity, we used the normalized

network modularity Qm based on [14], defined as

Qm~(Qreal{Qrand)=(Qmax{Qrand),

where Qreal and Qrand are the network modularity of a real-world

metabolic network and the average network modularity value

obtained from 300 randomized networks constructed from its real-

world metabolic network, respectively. The network modularity

measure Q is defined as the fraction of edges that lie within

modules rather than between modules relative to that expected by

chance (e.g., see Equation (4) in [30] for definition). Each Q was

calculated using the fast greedy algorithm proposed by Clauset et

al. [30]. Qmax was estimated as 1{1=M, where M is the number

of modules in the real network.

Randomized networks were generated from a real-world

metabolic network using the simple edge-rewiring algorithm

[31]. This algorithm generates a random network by rewiring 2

randomly-selected edges until the rewiring of all edges is

completed. For example, we consider 2 edges: A–B and C–D,

where the alphabets and lines are nodes and edges, respectively.

Through this edge-rewiring algorithm, in this case, we obtain the

edges A–D and C–B (see [31] for details).

In metabolic networks (i.e., substrate graphs), in general, multi-

substrate reactions emerge short cycles due to the network

representation. For example, we consider a reaction:

C1zC2?C3zC4. According to the network representation in

this work, the cycle of length 4 (the square graph) is generated

because the nodes (metabolites) C1 and C2 connect to the nodes

C3 and C4. In this manner, cycles are generated when metabolic

reactions have multi substrates and multi products. Since these

cycles are related to the network modularity, it is not suitable to

simply apply this edge-rewiring algorithm to metabolic networks in

general. Ideally, randomized networks should be generated with

maintenance of the number of short cycles generated due to the

Growth Conditions Influence Metabolic Networks
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network representation. However, this edge-rewiring algorithm

does not consider this constraint.

Although the edge-rewiring algorithm has such a limitation, this

limitation poses little problem for calculating Qrand in this work

because we used the substrate graphs based on the atomic

mapping in which currency metabolites such as water and ATP

are neglected. In our metabolic networks, hence, most (about 98%

on an average) of metabolic reactions are represented as reactions

with single substrate and/or single product as a result. Therefore,

short cycles generated due to the network representation hardly

arise.

Supporting Information

Table S1 A list of 45 archaeal species. This table includes

the species name, KEGG ID (see [32]), genome size, number of

protein-encoding genes, lifestyle, oxygen requirements, trophic

requirement, optimal growth temperature, and optimal growth

pH for each archaeon. In addition, it includes the parameters in

each archaeal metabolic network: the number of nodes (i.e.,

network size), the number of links, Qreal, the number of modules

(M ), Qrand, and Qm.

(XLS)
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