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Heterogeneity at the invasion front 
of triple negative breast cancer cells
Koh Meng Aw Yong   1,3, Peter J. Ulintz   1, Sara Caceres1,4, Xu Cheng1, Liwei Bao1, 
Zhifen Wu1, Evelyn M. Jiagge2 & Sofia D. Merajver   1*

Identifying better predictive and prognostic biomarkers for the diagnosis and treatment of triple 
negative breast cancer (TNBC) is complicated by tumor heterogeneity ranging from responses to 
therapy, mutational burden, and clonal evolution. To overcome the gap in our understanding of tumor 
heterogeneity, we hypothesized that isolating and studying the gene expression profile of invasive 
tumor cell subpopulations would be a crucial step towards achieving this goal. In this report, we utilized 
a fluidic device previously reported to be capable of supporting long-term three-dimensional growth 
and invasion dynamics of cancer cells. Live invading and matched non-invading SUM149 inflammatory 
breast cancer cells were enriched using this device and these two functionally distinct subpopulations 
were tested for differences in gene expression using a gene expression microarray. 305 target genes 
were identified to have altered expression in the invading cells compared to the non-invading 
tumoroid cells. Gene ontology analysis of the gene panel identified multiple biological roles ranging 
from extracellular matrix reorganization to modulation of the immune response and Rho signaling. 
Interestingly, the genes associated with the invasion front differ between different samples, consistent 
with inter- and intra-tumor heterogeneity. This work suggests the impact of heterogeneity in biomarker 
discovery should be considered as cancer therapy increasingly heads towards a personalized approach.

Despite the technological advances of molecular diagnostics, little progress has been made with respect to the 
development of robust biomarkers for diagnosis and treatment of triple negative breast cancer due to a high 
degree of tumor heterogeneity within and between samples. While next generation sequencing approaches 
have been successful in detecting biomarkers, a disconnect between the biomarkers and functional actionabil-
ity remains1. To bridge such a disconnect, correlating the identified putative biomarkers to a functional role in 
disease progression, such as the tumor’s physical “invasion front” represents a suitable strategy toward tackling 
tumor heterogeneity. Invasion is also a critical measure of disease progression supported by clinical knowledge 
that the overall five-year survival rates for organ-confined epithelial cancers are generally high but drop once 
invasion occurs to regional sites. Therefore, understanding the invasion process represents an opportunity to 
catch the disease at an early stage and help develop biomarkers which improve clinical diagnosis of early invasive-
ness and potentially identify treatment strategies to improve clinical outcome2.

A multifactorial process, cancer cell invasion requires cells to undergo a phenotypic transition triggered by 
intrinsic genetic and/or extrinsic environmental factors. Intrinsic factors include the genetic mutations or epige-
netic dysregulation while extrinsic factors include cellular (immune or stromal cells) or non-cellular (extracellu-
lar matrix stiffness and interstitial pressure)2–5. This phenotypic transition results in cancer cells first degrading 
and invading past the basement membrane either collectively or as single cells into adjacent tissues or regional 
sites6. The tumor invasion front is characterized by leader cells that appear to pave the way for other cancer cells 
to follow2. Specific biological processes such as Rho signaling and epithelial mesenchymal transition (EMT) tran-
scription programs have been widely reported to play important roles in invasion and metastasis, although recent 
reports have suggested that EMT may not be as crucial as previously thought7–9. Regardless of the molecular 
mechanism driving invasion, invading cells located in the tumor invasion front constitute an area of research 
interest, as they likely possess a functional phenotype of clinical relevance. Being able to capture and analyze these 
unique invading subpopulations in the act of doing so, together with their matched non-invasive counterparts, 
will be key in making progress towards understanding and treating cancer. While much work has been done in 
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this field, some of these studies compare between different patients or utilize cell lines of different invasive prop-
erties10–14, which may be confounded by existing inter-tumor heterogeneity. While there have been other reports 
studying spatial heterogeneity within patient samples, these studies utilized the use of formalin fixed primary 
tumor tissue for the identification of genomic markers15,16. These studies mainly focus on identifying genomic 
mutations as markers of invasion as the deleterious effects of formalin on RNA integrity has been well docu-
mented and although technological advances in processing has resulted in improvements in nucleic acid quality, 
time of fixation plays a crucial role in the process, making such approaches inconsistent when studying gene 
expression17,18. In this study, we adopted a different approach toward understanding the heterogeneity existing 
within TNBC, by using a previously reported fluidic device to enrich for live cells found within the invasion front 
of this disease subtype for the specific purpose of studying the gene expression profile associated with invasion19. 
This device allows the long-term culture of cancer cells as a tumor mass (termed tumoroid) and has been demon-
strated to enable the tumor invasion front formation and analysis in prostate cancer cells. Using this device, live 
invading cells at tumor invasion front, along with the matching non-invading tumoroid mass of TNBCs were 
isolated and analyzed for differences in gene expression.

Results
Tumoroid culture of established or patient derived xenograft TNBC cell lines demonstrate dif-
ferent invasion dynamics in the fluidic device.  To determine the ability of the device to culture breast 
cancer cells, four triple negative breast cancer cell lines (SUM149, MDA-MB-231, BT549 and HCC1937) as well as 
three triple negative breast cancer patient derived xenografts (PDX1 (9040), PDX2 (vari004), and PDX3 (vari068)) 
were seeded and cultured in the fluidic device. Cancer cells were seeded into one channel while growth media was 
perfused into the system via the adjacent channel (Fig. 1A). Over a period extending to three weeks, varying rates 
of invasion into the surrounding collagen gel were observed in all samples tested. In terms of maximum measured 
invasion distance over a period of 7 days, MDA-MB-231 cells were the most invasive, with cells invading approx-
imately 2 mm into the surrounding collagen within one week of culture. In contrast, HCC1937 cells were less 
invasive, invading only 1 mm by one week of culture before tumoroid culture became unstable. SUM149 invaded 
1 mm by three weeks while BT549 invaded only 750 μm by three weeks of culture (Fig. 1C, Supp. Videos 1–4). 
This observation is in line with previous reports using Boyden invasion assays that demonstrated MDA-MB-231 
to be more invasive than SUM149. Of note, SUM149 were noted to be less invasive than BT549 in that report20. 

Figure 1.  Fluidic culture of different breast cancer cell lines. (A) Schematic of fluidic device with tumoroid 
(side view). Cancer cells are seeded into one of the fluidic channels (channel B) and the channel subsequently 
sealed. Growth media is introduced into the chamber via peristaltic pump through channel A. (B) Phase 
images of tumoroid channel for triple negative breast cancer cell lines: SUM149 (first row); BT549 (second 
row); MDA-MB-231 (third row) and HCC1937 (last row). (C) Measurements of observed invasion distance of 
SUM149, BT549, MDA-MB-231 and HCC1937 over time. n = 3 *p < 0.05.
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Furthermore, the ability to form a tumoroid as well as the invasion front differed between cell lines. SUM149 
consistently formed a defined tumoroid that appeared confined within the fluidic channel throughout culture, 
while MDA-MB-231 did not (Fig. 1C, Supp. Video 2). BT549 formed multiple smaller tumor spheroids within 
the middle channel while HCC1937 culture was unstable after one week, with noticeable deformation of the 
fluidic channel bearing the cancer cells (Fig. 1C). Single cell invasion was observed in MDA-MB-231, SUM149, 
HCC1937, and BT549 although collective invasion was also observed in HCC1937(Fig. 1C, Supp. Video 3).

The invasion rate of three PDXs also demonstrated a diversity of profiles. Among the three PDXs tested, PDX2 
was the most invasive, with observed invasion into the surrounding collagen one day after seeding (Supp. Fig. 1, 
Videos 5, 6).

Gene expression analysis yielded a panel of 305 genes to be affected during SUM149 invasion.  
To discern the overall gene expression profile of invading cells, we first examined the invasive cancer cell sub-
population of SUM149. These invasive cells, visually determined by cells that advanced outside of the tumoroid 
into the collagen, were enriched along with the matching non-invading cancer cells in SUM149 tumoroid masses 
using a combination of enzymatic and mechanical dissociation. RNA was isolated from these two phenotypically 
distinct subpopulations and the gene expression profiles of these matched subpopulations were compared using 
an RNA expression microarray. From the microarray analysis, 305 genes were found to be differentially expressed 
at the invasion front compared to the non-invading tumoroid mass out of a set of 12,074 genes with measured 
expression (Fig. 2B). Principal component analysis of the different subpopulations suggested that the enriched 
invading subpopulation are distinct from the non-invading tumoroid subpopulation (Supp. Fig. 2). Examples of 
statistically significantly differentially expressed genes include cadherin 13 (CDH13) with a 2.1 log2-fold expres-
sion increase; brain expressed X-linked 1 (BEX1) with a 2.7 log2-fold expression increase, and a disintegrin and 
metalloprotease domain 19 (ADAM19) with a 1.8 log2-fold expression increase. The full set of relative gene 
expression measurements was further analyzed using the iPathwayGuide (Advaita Bioinformatics, Ann Arbor, 
MI) to help elucidate the possible biological roles encompassed. Results suggest that the tumor invasion front of 
SUM149 cell line is associated with specific regulation of with multiple biological roles including organization of 
the extracellular matrix and the negative regulation of leukocyte activation (Fig. 2A, Table 1). Interestingly, the 
expression of cytokeratin 14 (KRT14) which had a −0.9 log2-fold expression decrease, cadherin 2 (CDH2) which 
had a 1.9 log2-fold increase in expression, and Ki-67 which had 0.7 log2-fold expression increase, genes which 
have been reported to be associated with the invasion front, were not among the statistically significant targets 
identified21 (Fig. 2B). In addition, several target genes such as secreted frizzled-related protein 1 (SFRP1) and 
tenascin C (TNC) were associated with more than one biological process (Fig. 2C).

To examine if the protein levels of several target genes at the tumor invasion front were also affected, whole 
SUM149 tumoroids were fixed, sectioned and stained for several target genes that demonstrated the highest fold 
change in expression (ADAM19, BEX1 and CDH13) along with cytokeratin 14 (KRT14) and Ki-67. In SUM149 
tumoroids, cells that demonstrate stronger KRT14 staining appear localized to the interface between the tumor-
oid and collagen gel, while KRT14 staining appeared weaker overall in both the tumoroid interior as well as 
in the invading cells (Fig. 3A). Scoring of KRT14 staining, demonstrated a 50% increase in KRT14 staining in 
the tumoroid compared to invading cells. Unlike KRT14, Ki-67 positive cells were found both within the inva-
sive subpopulation as well as the interface of the tumoroid and collagen with significantly fewer Ki-67 positive 
cells at the tumoroid interior. Quantification of Ki-67 staining supported this observation with the percentage of 
Ki-67 positive cells at the invasion front were 1.5-fold higher than those in the tumoroid (interface and interior) 
(Fig. 3A). In agreement with the microarray results, ADAM19, BEX1 and CDH13 protein levels were also higher 
within invading SUM149 cells compared to the tumoroids (5-, 3-, and 2-fold, respectively) as indicated by the 
higher percentage of cells that displayed stronger staining in the invading cells.

Immunohistochemistry of PDX tumoroids indicate inter and intra-tumor heterogeneity.  To 
examine if a common distribution of gene expression exists in other cells, tumoroids of cell lines BT549, HCC1937 
and two TNBC PDXs (PDX1, PDX2) were stained for KRT14, KI-67, ADAM19, BEX1, and CDH13. In BT549, 
the percentage of cells that exhibited stronger KRT14 and ADAM19 protein levels were higher in the invading 
cells (2- and 1.5-fold, respectively) while the percentage of KI-67 positive cells was approximately 1.5-fold lower 
in the invading cells. While the percentage of cells that exhibited stronger BEX1 staining was 1.5-fold higher in 
invading cells, the change was not statistically significant. Likewise changes in CDH13 expression of 1.3-fold 
lower in the invading cells, were not statistically significant (Supp. Fig. 3).

In HCC1937 tumoroids, there was no statistical difference in percentage of cells positive for KI67 staining 
between the invading and non-invading tumoroid cells. There was also no significant difference in the percent-
age of cells that demonstrate stronger BEX1 between invading and tumoroid non-invading cell subpopulations. 
While the percentage of cells with stronger ADAM19 and KRT14 staining was higher in invading cells, the results 
were not statistically significant. However, the percentage of cells staining for stronger CDH13 expression was 
2-fold higher in the invading cell subpopulation. (Supp. Fig. 3).

In PDX1, there were insufficient invading cells observed in the fixed samples for statistical analyses of IHC 
staining, although observable differences in staining could be seen with stronger staining for ADAM19, BEX1, 
and KRT14 at the interface of the tumoroid and collagen (Supp. Fig. 4).

In PDX2, the percentage of cells with stronger KRT14 and ADAM19 staining were higher (3- and 4-fold, 
respectively) while BEX1 and CDH13 were lower in invading cells (2- and 3-fold, respectively). While the per-
centage of cells positive for KI-67 was lower in invading cells, this difference was not statistically significant 
(Fig. 3B).
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Discussion
The initial objective of this report was to demonstrate the ability of our tumoroid culture device to identify poten-
tial gene signatures for the invading cells of triple negative breast cancers that could be used for diagnostic or 
therapeutic purposes. A strategy involving a prior enrichment step of different live subpopulations based on 
functional phenotype (such as invasive capability) followed by transcriptome analysis was adopted to reduce 
the complexity and heterogeneity that would have arisen, had such global analyses been carried out without 

Figure 2.  Differences in gene expression between invading and non-invading subpopulations. (A) Pie chart 
distribution of biological processes predicted to be affected during invasion based on gene expression profiling. 
Processes are arranged according to statistical significance, from magenta (lowest) to cyan (highest p-value), 
using weight pruning method of p-value correction. Processes were defined by a minimum of 5 genes per term 
with a p-value < 0.05. (B) Volcano plot of genes affected during invasion, displaying expression change (x-axis) 
in log2FC values with significance of the change (y-axis) represented in terms of the negative log (base 10) of the 
p-value (more significant genes are plotted higher on the y-axis). Cut-off thresholds in dotted lines were set at 
log 1.5-fold change in expression with adjusted p-value < 0.05. (C) Expression profile of target genes associated 
with several of the most significant predicted biological processes with the lowest p-values. Images were 
generated by the iPathwayGuide software (Advaita Bioinformatics, Ann Arbor, MI).
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prior enrichment. Using a novel fluidic device previously shown to be capable of maintaining long-term tumor-
oid growth and invasion dynamics, two functionally different, live subpopulations of cancer cells from a single 
sample could be enriched based on invasive capability for comparative downstream transcriptome analysis. This 
process was successful largely due to the ability of the device to establish sufficient spatial resolution between the 
invading and non-invading subpopulations. Moreover, the ability to isolate matching invading and non-invading 
subpopulations from a single device enabled the use of paired statistical analyses for each sample. Coupled with 
the capacity to correlate these gene expression signatures with a visually quantifiable functional behavior such as 
invasion highlights the advantage of the fluidic system.

Based on transcriptome analysis, 305 genes were identified to be up or down-regulated at a statistically sig-
nificant level within the invading SUM149 cell subpopulation. Given that both invading and non-invading sub-
populations were subjected to collagenase, it is unlikely that these differences in gene expression were an artifact 
of collagenase treatment. Interestingly, several known genes associated with invasion such as KRT14, cadherin 2 
(CDH2) and FOSB, were not among the statistically significant targets21–23. In contrast to prior work on leading 
invasion edge biology in breast cancer, which showed KRT14 to be upregulated at the invasion front21, our gene 
expression microarray indicated a log 2-fold decrease of 1.03 in KRT14 (pval 0.077) within the invading SUM149 
cells. Although this finding at the transcript level was not statistically significant, IHC staining for KRT14 con-
firmed the downregulation of KRT14 protein within invading cells in SUM149 tumoroids. Interestingly, within 
the tumoroid itself, KRT14 staining was observed to be strongest at the interface between the tumoroid and col-
lagen, which suggests a possible association of KRT14 expression during the transition towards invasion. More 
work is needed to elucidate this possibility.

Pathway analysis of the differentially expressed genes between invading and non-invading cells using iPathway 
guide suggests that invading cells located at the tumor invasion front may play multiple roles that contribute to the 
progression of disease. Several of the biological processes identified were known to be associated with invasion, 
such as remodeling the extracellular environment, cellular adhesion, and Rho protein signal transduction7. The 

goId goName countDE countAll
ratio 
(DE/All) pv_weight

GO:0030198 extracellular matrix organization 19 191 0.1 0.00002

GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 9 51 0.18 0.000027

GO:0010811 positive regulation of cell-substrate adhesion 8 42 0.19 0.000043

GO:0001503 ossification 17 199 0.09 0.00038

GO:0030514 negative regulation of BMP signaling pathway 5 27 0.19 0.00141

GO:0071398 cellular response to fatty acid 5 30 0.17 0.0023

GO:0099131 ATP hydrolysis coupled ion transmembrane transport 5 30 0.17 0.0023

GO:0050868 negative regulation of T cell activation 6 51 0.12 0.00525

GO:0015909 long-chain fatty acid transport 5 32 0.16 0.0054

GO:1901655 cellular response to ketone 5 41 0.12 0.00914

GO:0001525 angiogenesis 16 237 0.07 0.00998

GO:0050679 positive regulation of epithelial cell proliferation 8 95 0.08 0.01038

GO:0048010 vascular endothelial growth factor receptor signaling pathway 5 45 0.11 0.01345

GO:0055114 oxidation-reduction process 25 405 0.06 0.01502

GO:0009636 response to toxic substance 8 103 0.08 0.01882

GO:0032963 collagen metabolic process 8 79 0.1 0.01982

GO:0042542 response to hydrogen peroxide 6 61 0.1 0.02195

GO:0042493 response to drug 14 205 0.07 0.02234

GO:0048660 regulation of smooth muscle cell proliferation 6 72 0.08 0.02632

GO:0009991 response to extracellular stimulus 17 215 0.08 0.02697

GO:1902600 hydrogen ion transmembrane transport 5 30 0.17 0.02705

GO:0002695 negative regulation of leukocyte activation 10 82 0.12 0.03308

GO:0001764 neuron migration 6 62 0.1 0.03354

GO:0046578 regulation of Ras protein signal transduction 7 82 0.09 0.03844

GO:1903409 reactive oxygen species biosynthetic process 5 50 0.1 0.03866

GO:0002237 response to molecule of bacterial origin 11 171 0.06 0.04151

GO:0050770 regulation of axonogenesis 6 68 0.09 0.04315

GO:0007266 Rho protein signal transduction 5 63 0.08 0.04909

Table 1.  Summary of Gene Ontology (GO) Biological Process terms identified. Gene ontology ID (goId) and 
name (goName) are indicated in the first two columns respectively. The third column (countDE) indicates 
the number of genes identified in the microarray that have been shown to be correlated with the biological 
process while the fourth column (countAll) indicates the total number of genes known to be correlated with the 
biological process. The fifth column shows the ratio of detected genes to all genes and the last column shows the 
corrected p-values.
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detection of these known processes coupled with the visual determination of invasion suggests that enrichment of 
the invading cell subpopulation was successful. Moreover, this work has identified several pathways beyond what 
is known to be associated with invasion. Of particular interest were the “negative regulation of T-cell activation” 
and “response to drug”. While more work is needed to extend these findings, the data presented suggest that the 
invasion process may contribute more to disease progression than just to the physical spread of disease.

While a candidate invasive gene signature was identified for SUM149; not surprisingly, given the heteroge-
neity of TNBC, we were unable to verify that this signature is common between the different cell lines tested 
in this study. This suggests strong inter-tumor heterogeneity in gene expression at the invasion front between 
different triple negative cells. While changes such as the upregulation of ADAM19 in the invading subpopulation 
may be shared among the triple negative breast cancer cells tested in this study, other genes, such as BEX1 and 
CDH13, were seen in some samples but not in others. This finding reaffirms the uniqueness of any individual 
biological sample and highlights the significance of considering inter-tumor heterogeneity when evaluating bio-
markers. This work shows the potential utility of this device in discerning invasion front signatures, provided a 
large number of samples are analyzed in future studies. Future work will involve examining and comparing in 
detail gene expression profile differences between patients using more sensitive transcriptomic methods such as 
RNA-sequencing. In conclusion, our study suggests the importance of isolating and analyzing for each sample, 
the various cancer cell subtypes that are distinguished by differences in invading phenotypes. This will be an 
important consideration as in the era of tailored personalized therapy.

Materials and Methods
Cell culture methods.  All cell lines underwent strict procedures to determine their purity and identity. 
SUM149 cells were obtained from Dr. Stephen Ethier. They were cultured in F12/DMEM media supplemented 
with 5% FBS, insulin hydrocortisone and penicillin/streptomycin. Cells were placed in a 37 °C tissue culture incu-
bator at 10% CO2. Growth media was changed every other day. HCC1937 and MDA-MB-231 cells were grown in 
RPMI media supplemented with 10% FBS and penicillin/streptomycin. BT549 cells were grown in RPMI media 
supplemented with 10% FBS and insulin. HCC1937, MDA-MB-231 and BT549 cells were placed in a 37 °C tissue 
culture incubator at 5% CO2. Cells were subcultured at a 1:6 ratio upon attaining confluent culture. All cell lines 
were identified by short tandem repeats (STR) within approximately 10 passages of use.

Patient derived material.  Collection and use of human tumor tissue were conducted under approved IRB 
protocols at the University of Michigan and animal studies were performed under approved institutional animal 

Figure 3.  Immunohistochemistry of tumoroids for markers of invasion. SUM149 (A) and PDX #2 (B) 
tumoroids were stained for KRT14, Ki67, ADAM19, BEX1 and CDH13. 3D surface plots of staining intensity 
(represented in the middle panel of each row) while quantification of staining intensity in tumoroid (T) or 
invading cells (I) indicated as the percentage of cells that display stronger staining (represented in the third 
panel of each row). n = 3 *p-value < 0.05; ns = not significant.

https://doi.org/10.1038/s41598-020-62516-8


7Scientific Reports |         (2020) 10:5781  | https://doi.org/10.1038/s41598-020-62516-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

care and use committee (IACUC) protocols. All three PDXs (PDX1: 9040; PDX2:vari004; PDX3:vari068) were 
obtained from the primary tumors of triple negative breast cancer patients who had signed informed consent. 
The PDXs vari068 and 9040 underwent targeted panel next-generation sequencing (NGS) and all 3 PDXs were 
developed de novo in our lab and were used at early passages (<10). The PDXs are stable in culture with regards to 
receptor expression and p53 status. The loss-of-function mutations have been ascertained by a targeted gene panel 
for the PDXs used in this study. PTEN homozygous loss-of-function variants were observed in 5 out 6 samples; 
p53 mutation are present in vari068.

Additional clinical history and description of the PDX patient donors can be found in Supplementary Table 1. 
Collected human tumor tissue from operation room was implanted into eight weeks old NSG mice at once when 
received. Breast tumor tissue was implanted into the mammary fat pad. Tumor was monitored once a week. 
Tumor was harvested when size reach at 0.6–0.7 cm. Tumor was cut into small pieces of 2–4 mm. The equip-
ment and enzymes for the following procedures are from Miltenyi Biotec. Tissue pieces were transferred into 
gentleMACS C tube (cat# 130-096-334) containing 4.7 ml of RPMI1640 and enzyme mix (cat# 130-095-929). 
The tumor tissue was enzymatically digested using enzyme mix and mechanical dissociated using gentleMACS 
Dissociator. Total time of procedure is one hour. Between each turn of the gentleMACS Dissociator, the sample 
was incubated for 30 minutes at 37 °C under continuous rotation using the MACSmix tube rotator. After dis-
sociation, the sample was sequentially filtered by a 70 µm and 40 µm strainer (Fisher # 22363548 & 22363547) 
to remove any remaining large particles from the single-cell suspension. Cell number was determined. The cell 
pellet was resuspended in 80 µl of 0.5% BSA/PBS and 20 µl of mouse cell depletion cocktail (cat# 130-104-694) 
per 107cells. The sample was incubated in the 4 °C refrigerator for 15 minutes. Cells were magnetically separated 
with an LS column (cat# 130-042-401). The flow-through of enriched human tumor cells was collected and used.

Tumoroid culture.  Fluidic devices were constructed as previously described10. Two fluidic channels were 
molded the experiments described here. For devices bearing breast cancer cell lines SUM149, BT549, HCC1937, 
and MDA-MB-231, 1 × 105 cells were injected into one of the fluidic channels to form the tumoroid. For PDXs 
or pleural effusion, 1 × 106 cells were injected to form the tumoroid. Growth media used was 1 × DMEM sup-
plemented with glucose, glutamine and 10% FBS. Tumoroids bearing HCC1937, BT549, and MDA-MB-231 were 
grown under 37 °C, 5% CO2, while tumoroids bearing SUM149, PDXs or pleural effusion were grown under 
37 °C, 10% CO2. Phase images were taken of the tumoroids to monitor distance invaded by each of the cell lines. 
Tumoroids were cultured for up to three weeks or when invasion reached 1 mm on either side of the tumoroid 
mass. The selection of three weeks as an endpoint was based on the observation that most cell lines tested had 
demonstrated invasion by then. The distance 1 mm was selected as an endpoint due to the physical location of the 
fluidic channel delivering growth media.

Separation of invading cells from non-invading tumoroid subpopulation.  Invading cells were 
isolated from the non-invading tumoroid subpopulation using a combination of enzymatic and mechanical dis-
sociation. First, the top PDMS layer of the fluidic chamber is peeled away to expose the collagen gel. Under a 
stereomicroscope, any surrounding excess collagen gel was first excised from the tumoroid. After mechanically 
removing as much collagen as possible, the tumoroid is further subjected to enzymatic treatment using colla-
genase A (Roche) to digest away the collagen surrounding the tumoroid and release any invading cells in prox-
imity to the tumoroid. Collagenase A digestion was performed as suggested by the manufacture using a 0.25% 
w/v concentration of collagenase A solution resuspended in 1 × PBS and incubated at 37 °C. The digestion is 
visualized at five-minute intervals using brightfield microscopy to ensure over-digestion does not occur. After 
sufficient digestion has occurred, the tumoroid is removed carefully using a pair of sterile forceps and placed in a 
separate tube for RNA isolation. The collagenase A solution containing digested collagen and invading cells was 
centrifuged at 200 g for five minutes to harvest the invading cells for RNA isolation.

Microarray analysis.  RNA was first isolated from cells using RNeasy kit (Qiagen). The isolated RNA from 
different subpopulations were sent to the University of Michigan DNA Sequencing Core for low-input processing 
followed by Affymetrix GeneAtlas Human Gene 2.1.ST. To ensure consistency and reduced bias, the same amount 
of RNA from invading and non-invading subpopulations were subjected to low-input processing. Microarray 
data was further processed using Bioconductor (R) and ‘affycoretools v.1.50.6’. Gene expression measurements 
were generated using a robust multi-array average (RMA) modeling approach, and probe sets with variance less 
than 0.04 were removed. The PCA plots were generated using the plotPCA method of the affy library.

Differentially expressed genes were identified by fitting linear models using limma, selecting genes with a fold 
change threshold of 1.5 and an adjusted p-value of 0.05. Pathway analysis of the SUM149 cell line was performed 
using the commercial software iPathwayGuide (Advaita Bioinformatics, Ann Arbor, MI), which implements both 
an overrepresentation analysis and an impact analysis for pathway identification24,25. In this experiment, 305 
differentially expressed (DE) genes were identified out of a total of 12,074 genes with measured expression from 
the microarray. These were identified using a threshold of 0.05 for statistical significance (p-value) and a log2 fold 
change of expression with absolute value of at least 0.585. These data were analyzed in the context of pathways 
obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database26, and gene ontologies from the 
Gene Ontology Consortium database27.

Immunohistochemistry.  Harvesting the tumoroids and immunohistochemistry were performed as pre-
viously described19. Briefly, PDMS devices were first disassembled and the tumoroids harvested and fixed in 4% 
paraformaldehyde fixative for 3 days. The tumoroids were then embedded in paraffin, sectioned, and stained by 
the Unit for Laboratory Animal Medicine In-vivo Animal Core at the University of Michigan. Hematoxylin and 
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eosin (H&E) staining was performed and immunohistochemical (IHC) staining for KRT14 (BioLegend), Ki67 
(Abcam), BEX1 (ThermoFisher) CDH13 (ThermoFisher) and ADAM19 (ThermoFisher) was conducted with 
hematoxylin counterstain. Non-invading tumoroid cells can be identified on the slides by a continuous mass of 
cells with a distinct straight border which mirrors the brightfield images of the live culture (Fig. 1B) while invad-
ing cells are indicated by single cells either rounded or elongated that are not part of the continuous mass of cells. 
To quantitatively represent the difference in protein levels between invading and non-invading cells, images of 
both populations in a single file are taken. 3D surface plot of these images was performed using the 3D surface 
plot application in ImageJ (NIH) to detect the staining intensity in invading and non-invading tumoroid cells. 
The number of cells in either subpopulation that exhibit stronger staining intensity are enumerated and further 
calculated as a percentage of all cells in the corresponding subpopulation.
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