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Pulmonary Edema Due to Oral Gavage in a Toxicological Study 
Related to Aquaporin-1, -4 and -5 Expression
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Abstract: A one-time oral gavage can be enough to cause of alveologenic edema with higher expression of AQP-1 and -4 than that with 
repeated-dose oral gavage, which caused both profound perivascular edema and hydrostatic pressure edema, while AQP-5 was simi-
larly expressed. The alteration of AQPs expression was probably related to alveolar fluid clearance across the alveolar and bronchiolar 
epithelium in different stages of lung injury. The results clarified the type of lung edema in acute and sub-chronic toxicity studies 
without treatment related effect of tested material. The pathogenesis of pulmonary edema due to oral gavage toxicological study is as-
sociated with the cellular immune response to the reflux materials. Mast cell and leukocyte accumulation may contribute to increase 
vascular permeability leading to permeability edema. The increase in alveolar septum epithelium, perivascular and peribronchial cuff-
ing, accumulation alveolar lipid containing macrophage and medial hyperplasia of the pulmonary artery might have been caused to in-
crease airway resistance, which resulted in hydrostatic pressure edema. (DOI: 10.1293/tox.26.283; J Toxicol Pathol 2013; 26: 283–291)
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Introduction

In the assessment and evaluation of the toxic charac-
teristics of a substance, oral gavage is a necessary technique 
in acute, sub-chronic and chronic oral toxicity studies1–3. 
Unexpected respiratory symptoms in individual animals 
are recurrently observed during dosing for several weeks 
or at the end point of studies, which may be regarded as 
gavage-related complications, especially reflux and techni-
cal gavage errors4. Some studies have reported the promi-
nent histopathological findings in these complication, such 
as respiratory tract erosion or ulceration, pulmonary edema, 
bronchiolar or alveolar hypertrophy and lesion of esophago-
gastric tract4–8.

One of the most important life-threatening gavage 
complication is lung edema, which is categorized as an 
acute lung injury. In general, lung edema is composed of 

hydrostatic pressure edema and permeability edema, which 
cause disturbance of pulmonary pressure and permeabil-
ity of the blood-gas barrier, respectively9. The Aquaporins 
(AQPs) are membrane water-transporting proteins and ex-
amples of edema-related molecules that have been identi-
fied in the lung, including AQP-1, -3, -4 and -510. AQP-1 
was identified in microvascular endothelia and the pleura, 
AQP-3 identified in large airways, AQP-4 was identified in 
large- and small-airway epithelia, and AQP-5 was identified 
in type I alveolar epithelial cells. A number of reports have 
indicated that the expression of AQP-1, -4 and -5 changes 
in associated with lung edema, lung injury and pulmonary 
hypertension10–22.

To increase the understanding of pathological process-
es of lung edema due to gavage-related complications and 
emphasize its effect on interpretation of treatment-related 
effects in toxicologic studies, in the present study, we cat-
egorized the type of lung edema and lung water clearance 
in associated with AQP-1, -4 and -5 expression between 2 
groups of acute single-dose and sub-chronic repeated-dose 
toxicity studies (90-day). To demonstrate hydrostatic pres-
sure edema, the occurrence of micro airway obstruction or 
endobronchial obstruction which exhibited by macrophages 
containing lipid vacuoles23,24 and the occurrence of chronic 
pulmonary hypertension exhibited by tunica medial hy-
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perplasia of the pulmonary artery and peribronchial cuff-
ing25 were evaluated. To demonstrate permeability edema, 
the occurrence of perivascular edema, alveologenic edema 
and inflammatory response, especially mast cells, was mea-
sured23. To demonstrate AQP-1, -4 and -5 expression in the 
lung, immunohistochemistry was performed. Moreover, to 
demonstrate cardiac histopathology associated with gavage-
related reflux, the occurrence of early stages of cardiomy-
opathy26 was also evaluated.

Materials and Methods

Oral acute and sub-chronic toxicity tests
All of the animal studies were performed in accor-

dance with the Mahidol University policy for the care and 
use of animals for scientific purposes and approved by the 
institutional ethics committee. Forty samples of each lung 
and heart were randomly collected from a total of 170 sam-
ples from 4 oral toxicological studies of the extracts from a 
Thai herb (Pikhud Navakot) and fruit (Mangoesteen) at the 
National Laboratory Animal Center, Mahidol University, 
during 2011; ten samples were from acute test groups and 30 
samples were from sub-chronic test groups. Healthy young 
adult Sprague Dawley rats (8 weeks old) were used at the be-
ginning of those studies. The animal housing environment 
was controlled with a heating, ventilating and air condition-
ing (HVAC) system to achieve a temperature of 23 ± 2°C, 55 
± 15% relative humidity and, 10 to 15 air changes per hour 
ventilation and had a 12:12-h dark-light cycle; a pasteurized 
standard diet and 7 to 10 ppm chlorinated water were pro-
vided ad libitum. All rats were allowed an acclimatization 
period prior to being used for a test. The toxicity studies 
followed OECD guidelines 420 and 408 for acute and sub-
chronic test, respectively1,2. Briefly, in the acute test, the rats 
were administered an oral dose of 4,000 mg/kg and then ob-
served individually at 0.5, 4, 8, 12 and 24 h post dosing and 
at least once daily for 14 days. In the sub-chronic test, the 
rats were administered daily oral doses of 10, 100 and 1,000 
mg/kg for 90 days and carefully observed individually each 
day for clinical signs.

Test substance
The extracts of Pikhud Navakot were kindly provided 

by Associate Professor Dr. Uthai Sotanaphun, Department 
of Pharmacognosy, Faculty of Pharmacy, Silpakorn Uni-
versity, Nakhon Pathom, Thailand. The extracts of Man-
goesteen were kindly provided by Assistance Professor Dr. 
Aikkarach Kettawan, Institute of Nutrition, Mahidol Uni-
versity, Nakhon Pathom, Thailand. The extracts were pre-
pared as follow. Briefly, the raw materials of the herbs were 
ground into powder. The powder was immersed in ten times 
its volume of 80% ethanol overnight, boiled for 3 h and then 
filtered to remove the residue. Next, the aqueous extracts 
were repeatedly boiled for 3 h and filtered two times. The 
aqueous extracts were spray dried to remove trace solvent. 
The percentage yield of the crude extract was roughly 20 to 
25% of the raw material.

Oral gavage
Oral gavage was performed by well-trained and expe-

rienced staff. A stainless steel feeding needle (1.5 in., 20 
gauge, 2.25-mm ball) was used. Each gavage treatment was 
given in a 1.0–3.0 mL bolus (10 mL/kg) of tested material. 
Fasting was conducted prior to oral dosing in all studies.

Histopathology
At the end of the test, which lasted 14 days for the acute 

test and 90 days for the sub-chronic test, surviving rats were 
euthanized by overdose inhalation of carbon dioxide. All 
tested rats were subjected to gross necropsy. The lungs and 
hearts were removed and fixed in 10% neutral buffer for-
malin for 48 h. Fixed specimens were embedded in paraf-
fin, cut into 4-µm sectioned and then therefore stained with 
hematoxylin and eosin (H&E).

The lungs were examined histopathological as follows: 
alveolar septum thickness was measured as the ratio of the 
septal area to the alveolar sac, while peribronchial and peri-
vascular cuffing, perivascular edema, alveologenic edema, 
tunica media hyperplasia of the pulmonary artery, mast cell 
accumulation and accumulation of alveolar lipid containing 
macrophage were evaluated by severity scoring. The sever-
ity scores were classified as follows: absent, 0; focal, 1; mod-
erate, 2; and severe, 3. Moreover the hearts were examined 
histopathologically for the early stage of cardiomyopathy 
based on aggregation of mononuclear inflammatory cells 
with fibrosis, which was also graded by method above. Area 
measurements were performed using an image analysis pro-
gram (ImageJ®, NIH, version 1.36, by Wayne Rassband) 
with 10 fields of the area of interested/sample.

Immunohistochemical staining
Ten lungs of each group (acute and sub-chronic tests) 

were randomized for immunohistochemical study. The im-
munohistochemical staining method was modified from of 
Papadopoulos and Verkman27 and Ampawong et al.28 Brief-
ly, described (1) sample were deparaffinized with xylene 
and then rehydrated a graded of ethanol, (2) heat-induced 
antigen retrieval was performed in citrate buffer (pH 6), 
(3) endogenous peroxidase was blocked with 1% hydrogen 
peroxide in methanol, (4) non specific binding was blocked 
with 10% fetal calf serum, (5) incubation was performed 
with 1:100 polyclonal rabbit anti-rat AQP-1, 4 and -5 (Milli-
pore®) in PBS with 1% fetal calf serum at 4oC overnight, (6) 
incubation was performed with an EnVision Kit (DAKO®), 
(7) staining was visualized with diaminobenzidine (DAB; 
DAKO®), (8) the samples were counterstained with hema-
toxylin, (9) the samples were permanently mounted with 
DePX. The levels of AQP-1, -4 and -5 expressions were 
scored by the previously described method, particularly in 
the alveolar epithelium and bronchiolar epithelium.

Statistical analysis
Quantitative results were expressed as the mean ± stan-

dard error of mean. Data were statistically analyzed with 
IBM® SPSS® Statistics software version 20 using a one-way 
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analysis of variance (ANOVA) followed by Levene’s test. 
To differentiate differences between groups, multiple com-
parisons with the Bonferroni test and Dunnett’s test were 
performed for equal and non-equal variance assumptions, 
respectively. Bivariate correlation was examined by Spear-
man’s rho correlation test. Proportional statistics were ex-
amined by Chi-square test.

Results

Mortality
There were no treatment-related mortalities and clini-

cal signs of toxicology in both the acute and sub-chronic 
studies. The treated and concurrent control groups were 
similar in terms of clinical manifestations.

Lung histopathological description
There were no pathology-related effects from any of the 

kinds of gavage material in this study when compared with 
the sham (normal saline solution) group. The lung lesions 
in the of sub-chronic test group were composed of thicken-
ing of the alveolar septum, peribronchiolar/vascular cuff-
ing, perivascular edema, accumulation of alveolar lipid con-
taining macrophage, medial hyperplasia of the pulmonary 
artery and mast cell accumulation to perivascular edema, 
while the acute test group exhibited a low severity of those 
lesions except for alveologenic edema as shown in Table 1.

Alveolar septal thickness
The ratio of the septal area to the alveolar sac in the 

sub-chronic test group (1.90 ± 0.08) was significantly higher 
than in the acute test group (1.05 ± 0.05) (P=0.000), which 
reflected the increasing alveolar septum areas related to leu-
kocyte infiltration (Fig. 1A-B).

Peribronchial and perivascular cuffing
The occurrence of leukocyte infiltration into peribron-

chial (hyperplasia of bronchiolar associate lymphatic tissue, 
BALT) (Fig. 1C) and perivascular tissue (Fig. 1D) was sig-
nificantly higher in the sub-chronic test group (1.08 ± 0.05 
and 0.79 ± 0.08, respectively) than in the acute test group 
(0.70 ± 0.15 and 0.10 ± 0.05, respectively) (P=0.007 and 

0.000, respectively).

Perivascular/ Alveologenic edema
The sub-chronic test group (1.33 ± 0.13) predominately 

exhibited perivascular edema (Fig. 1F) when compared with 
the acute test group (0.30 ± 0.15) (P= 0.000). On the other 
hand, alveologenic edema (Fig. 1E) found much more fre-
quently in the acute test group (0.90 ± 0.17) than in the sub-
chronic test group (0.16 ± 0.07) (P=0.000).

Alveolar lipid containing macrophage/Medial hyper-
plasia

Alveolar lipid containing macrophage (Fig. 1G) was 
again predominately exhibited in the sub-chronic test group 
(0.75 ± 0.16), while the acute test group (0.10 ± 0.10) exhib-
ited a smaller amount (P=0.018). Medial hyperplasia (Fig. 
1H) was absent in the acute test group, while it was gener-
ally observed (P=0.000) in the test group (1.62 ± 0.17).

Mast cell to perivascular edema
There were no mast cells in the perivascular area (Fig. 

1I-J) of the acute test group but they were predominately 
found in the sub-chronic test group (1.08 ± 0.14). Moreover, 
the results demonstrated positive correlation between the 
number of mast cells and the severity of perivascular ede-
ma (P=0.017); Spearman’s Rho correlation coefficient was 
0.964 (Fig. 2).

Early stage of cardiomyopathy
The early stage of cardiomyopathy was not observed. 

However, the presence of focal mononuclear inflammatory 
cell aggregation with fibrosis, which is found in an early 
stage of cardiomyopathy (Fig. 1K) was similar in both acute 
(0.10 ± 0.10) and sub-chronic (0.37 ± 0.11) test group.

Aquaporin-1, -4 and -5 expression
AQP-1 is expressed on the pleura and vascular endo-

thelium, and semiquantitative results demonstrated that the 
expression in the acute test group (2.08 ± 0.02) (Fig. 1M) 
was higher than in the sub-chronic test group (0.75 ± 0.04) 
(Fig. 1N) (P=0.001). Interestingly, expression of AQP-1 was 
decreased in edematous vessels (1.78 ± 0.25) (Fig. 1P) and 

Table 1. Differentiation of Pulmonary Lesions in Acute and Sub-chronic Toxicity Studies

Pulmonary lesions
% Present

P-value
Acute (n=10) Sub-chronic (n=30)

Alveolar septal thickness 25.0 100.0 0.000
Peribronchial cuffing 70.0 100.0 0.017
Perivascular cuffing 10.0 62.5 0.005
Perivascular edema 16.7 95.8 0.000
Alveologenic edema 80.0 4.2 0.000
Alveolar lipid containing macrophage 10.0 54.2 0.002
Medial hyperplasia 0.0 95.8 0.000
Mast cell to perivascular edema 0.0 75.0 0.000
Early stage of cardiomyopathy 10.0 21.8 0.694

P-value: Pearson’s Chi-square.
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Fig. 1. Alveolar thickness (A) acute study, (B) chronic study, (C) peribronchial cuffing, (D) perivascular cuffing, (E) alveologenic edema (* 
eosinophilic material), (F) perivascular edema (* eosinophilic material), (G) aggregation of alveolar macrophage (*), (H) medial hyper-
trophy of pulmonary artery, (I) mast cell (arrow head) aggregation in an extensive perivascular edema area, (J) fewer mast cells (arrow 
head) in a smaller perivascular edema area, (K) focal lymphocyte aggregation with fibrosis in the myocardium, (L) phagocytized gavage 
material (arrow head) in multinucleated giant cells, hematoxylin & eosin staining, ×400, (M–W) localization and expression of AQP-1, 
-4 and -5 in the lung, (M–N) AQP-1 in microvascular endothelia (arrow) and the pleura (arrow head), higher expression in the acute 
test (M) than in the sub-chronic test group (N), (O) AQP-1 in normal vessels (arrow head), (P) AQP-1 in edema vessel (arrow head), (Q) 
AQP-1 in medial hyperplasia of the pulmonary artery (arrow head), (R–U) AQP-4 in small-airway epithelia (arrow head) and alveolar 
epithelia (arrow), higher expression in the acute tested group (R & T) than in the sub-chronic test group (S & U), (V–W) equal expres-
sion of AQP-5 in alveolar epithelial cells of the acute test group (V) and sub-chronic tested group (W), immunohistochemistry staining, 
×1,000.
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medial hyperplasia vessels (0.54 ± 0.03) (Fig. 1Q) when 
compared with intact veins (3.54 ± 0.12) and arteries (2.48 

± 0.04), respectively (P=0.029, P=0.009) (Fig. 1O). AQP-4 
was expressed on the bronchial and alveolar epithelium, and 
similar to the AQP-1 expression (1.54 ± 0.17 and 0.95 ± 0.04, 
respectively) (Fig. 1R & T), the acute test group exhibited 
than the sub-chronic test group (0.72 ± 0.24 and 0.15 ± 0.14, 
respectively) (Fig. 1S & U) (P=0.000 and 0.000, respective-
ly). AQP-5 was expressed on the bronchiolar epithelium, and 
the results indicated that there was no difference in of ex-
pression between the acute (0.34 ± 0.14) (Fig. 1V) and sub-
chronic (0.40 ± 0.25) test group (Fig. 1W).

The correlation between AQPs immunohistochemistry 
and individual pulmonary alteration in the acute and sub-
chronic toxicity studies is presented in Table 2. Negative 
correlation was found between AQP-1 and -4 and alveolar 
septal thickness, peribronchial/vascular cuffing, perivas-
cular edema, alveolar lipid containing macrophage, medial 
hyperplasia, and mast cell to perivascular edema. There was 
no correlation between AQP-5 and individual pulmonary 
alteration. Positive correlation was found between alveolo-
genic edema and AQP-4.

Fig. 2. Mast cells are increased proportional to the severity of 
perivascular edema.

Fig. 1. Continued.
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Discussion

Pulmonary edema is a component of many lung condi-
tions, such as inflammation, congestive heart failure, pul-
monary neoplasm, agonal changes, or drug-induced condi-
tions; however, most importantly, it may be a manifestation 
of acute lung injury23. The term edema is reserved for a poor 
cellular exudate characterized by the presence of pale, ho-
mogenous eosinophilic material in the alveoli, lung septate, 
and perivascular connective tissue. Noncardiogenic pulmo-
nary edema, one of the most important complications of 
this procedure, consists of hydrostatic pressure edema and 
permeability edema which occur as a result of altered he-
modynamics and increased permeability or rupture of the 
blood-gas barrier respectively, then create a protein-rich 
transexudate9.

Irritant foreign bodies may induce severe pulmonary 
edema and a variable granulomatous inflammatory re-
sponse, in which foreign material may be visible within 
well-developed granulomas29 as shown in the sub-chronic 
toxicological study exhibiting phagocytized gavage reflux 
material (Fig. 1L). Oral administration of hexachloroben-
zene in Brown-Norway rats results in development of a high 
background incidence of spontaneous granulomatous pul-
monary lesions and is often used for the study of allergic 
airway disease30 while no treatment-related effect of lung 
pathology was found in the present study.

In this study, it was surprising that only a single dose 
of oral gavage could cause permeability edema that ex-
hibited alveologenic edema and an increase in of alveolar 
septal thickness with leukocyte infiltration (Fig. 1A-B) and 
bronchial/vascular cuffing (Fig. 1C-D) when compared with 
a normal lung. Apart from alveologenic edema (Fig. 1E), 
repeated-dose oral gavage caused extreme versions of both 
types of edema, the permeability type indicated by predomi-
nately perivascular edema (Fig. 1F) and the hydrostatic type 
indicated by micro-airway obstructive lesions particularly 
pulmonary arterial hyperplasia (Fig. 1H), and peribronchi-
al/vascular cuffing (Fig. 1C-D) together with an increase in 
alveolar thickness and alveolar lipid containing macrophage 
(Fig. 1G). These results could be clarified to differentiate the 

type of edema correlated with acute and chronic oral gavage 
toxicity studies with correspondence to the lung histopatho-
logical finding in several reports23–25,31. The accumulation of 
mononuclear cells in perivascular cuffing and peribronchio-
lar cuffing is also related to the increasing alveolar thickness 
and contributed to the change in the blood gas barrier lead-
ing to edematous formation25. All of these histopathological 
changes might be coordinated affected to increase airway 
resistance, particularly at the level of peripheral airways, 
which causes hydrostatic pressure edema.

Permeability edema related to the evidence of perivas-
cular edema (Fig. 1F) may be associated with perivascular 
mast cells (Fig. 1I). The present study showed that the num-
ber of mast cell was proportionally correlated with the se-
verity of perivascular edema (Fig. 2). Histamine, an amine 
stored in mast cells, is a well-known activator of vascular 
permeability leading to permeability edema by changing 
the formation of interendothelial junction gaps and the tight 
junctional proteins32,33. Moreover, microvascular endotheli-
al cells have the ability to contract when stimulated, partic-
ularly when stimulated by aspirated/reflux material. These 
cause the formation of endothelial pores that are account-
able for the leakage and extravasation of plasma proteins, 
contributing to edematous formation34.

Alveolar fluid clearance across the alveolar epithe-
lium is a mechanism of fluid removal from the lung35. The 
bronchial circulation plays a significant role in the forma-
tion and reabsorption of both hydrostatic and permeability 
edema36. AQP-1 is expressed in microvascular endothelia 
throughout the lung and airways, AQP-4 is expressed in 
epithelia throughout the airways, and AQP-5 is expressed 
in type I alveolar epithelial cells. Many reports have demon-
strated that AQP-1, AQP-4 and AQP-5 are not required for 
the physiological clearance of lung water in the lung or for 
the accumulation of extravascular lung water in the injured 
lung10,11,15.

However, some reports have demonstrated that up-
regulation and downregulation of AQPs are closely related 
to pulmonary edema in different kinds of lung injury. AQP 
channels may have a protective effect in ventilator-induced 
lung injury14. This study demonstrated that pulmonary ede-

Table 2. Correlation of AQPs Immunohistochemistry and Individual Pulmonary Alterations in Both Acute and Sub-chronic Toxicity 
Studies

Pulmonary lesions
AQP-1 Bronchiolar 

AQP-4 Alveolar AQP-4 AQP-5

P-value Coefficient P-value Coefficient P-value Coefficient P-value

Alveolar septal thickness 0.000 –.521 0.657 –.089 0.000 –.545 0.987
Peribronchial cuffing 0.022 –.392 0.304 –.182 0.019 –.401 0.828
Perivascular cuffing 0.228 –.188 0.025 –.385 0.007 –.454 0.936
Perivascular edema 0.000 –.583 0.069 –.281 0.001 –.549 0.460
Alveologenic edema 0.000 –.668 0.065 0.321 0.001 0.554 0.588
Alveolar lipid containing macrophage 0.090 –.295 0.169 –.242 0.023 –.389 0.844
Medial hyperplasia 0.000 –.661 0.002 –.509 0.000 –.695 0.614
Mast cell to perivascular edema 0.096 –.290 0.309 –.180 0.001 –.543 0.925

P-value: Spearman’s rho (nonparametric correlation).
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ma associated with oral gavage in the acute toxicity test was 
categorized as alveologenic edema exhibiting higher AQP-1 
and -4 expression (Fig. 1M-W) than in the sub-chronic test 
(Table 2). Lung AQP-1 is markedly upregulated in animals 
exposed to hypoxia, suggesting that AQP-1 has O2 perme-
ability and thus could facilitate O2 diffusion across the cell 
membrane37. AQP-4 mRNA expression is upregulated on 
the alveolar type II cell membrane to regulate the exchange 
of fluid between the alveolar space and alveolar epithelium 
barrier and play an important compensational role in pul-
monary liquid clearance in the event of sodium transport 
damages in acute lung injury19,45. While the chronic tox-
icity study was categorized as exhibiting both hydrostatic 
pressure edema and perivascular edema, which lowered 
of the expression of AQP-1 and -4 (Fig. 1M-W) compared 
with the acute test (Table 2), downregulation of AQP-1 and 
-4 in the alveolar microvessels may act as a compensatory 
mechanism to protect against formation of excessive pul-
monary edema21. Hypertonicity aspiration could induce the 
expression of AQP-1 and AQP-538,39. They may facilitate 
removal of water from airspaces after accidental aspiration 
of materials40. The hyperisotonic pressure might be an im-
portant activator of AQP-1 and AQP-5 in the rat airway epi-
thelium19,20. In addition, AQP-5 plays a protective role in the 
maintenance of pulmonary barrier function against Pseu-
domonas aeruginosa infection22,44. In some stages of pul-
monary edema, the decreased expression of AQP-5 mRNA 
may be related to the severity of airflow obstruction18. This 
is similar to the finding of Dong et al., who showed that 
AQP-1 and AQP-5 were significantly reduced after 24 h of 
foreign material-induced asthma and that anti-asthmatic 
agents could alleviate pulmonary edema through upregula-
tion of the expression of AQP-1 and AQP-5 in mouse lungs.

The myocardium can be damaged by a variety of in-
sults such as anoxia, ischemia, infectious agents and physi-
cal and chemical agents, and its pattern of response is lim-
ited23. In the rat, small foci of necrosis, focal inflammation 
and fibrosis are occasionally observed in young untreated 
rats of most strains and become more common with increas-
ing age41. This study demonstrated that the oral gavage tox-
icity study did not caused the early stage cardiomyopathy 
(Fig. 1K).

Regarding to gavage-related reflux and technical ga-
vage errors, even very small amounts of the treated ma-
terial, 20 µL, were able to induce serious irritation in the 
respiratory tract and mortality5. The pathogenesis of a 
gavage-related reflux pathway of respiratory effects is de-
scribed as mechanical and spontaneous refluxes by Damsch 
et al. Mechanically induced reflux is the most likely cause 
of reflux, occurring directly after gavage when withdraw-
ing the tube from the animal. This is also called retrograde 
aspiration. On the other hand, spontaneous reflux may be re-
lated to gavage administration of a large volume resulting in 
gastric overflow. To reduce or protect against complications 
from oral gavage in chronic studies such as in pharmaco-
logical and toxicological studies, gavage modification meth-
ods have been used. Moreover, the use of brief inhalational 

anesthesia reduces gavage-associated death and euthana-
sia due to esophageal trauma and minimizes stress-related 
weight loss42. The animal stress and mortality related to oral 
gavage can be minimized when the procedure is carried out 
by an experienced technician43.
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