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Simple Summary: Colorectal cancer (CRC) is an emerging public health problem and the second
leading cause of death worldwide, with a significant socioeconomic impact in several countries.
The 5-year survival rate is only 12% due to the lack of early diagnosis and resistance to available
treatments, and the canonical Wnt signaling pathway is involved in this process. This review
underlines the importance of understanding the fundamental roles of this pathway in physiological
and pathological contexts and analyzes the use of naturally occurring small molecules that inhibits the
Wnt/β-catenin pathway in experimental models of CRC. We also discuss the progress and challenges
of moving these small molecules off the laboratory bench into the clinical platform.

Abstract: Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly
due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient
survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radio-
therapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these
treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor
may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence
of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently
available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic
agents such as small molecules from natural sources is a promising strategy, as these substances have
several antitumor properties. Many of those interfere with the regulation of signaling pathways at
the central core of CRC development, such as the Wnt/β-catenin, which plays a crucial role in the cell
proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small
molecules inhibiting the Wnt/β-catenin pathway in experimental CRC models over the past decade,
highlighting the molecular targets in the Wnt/β-catenin pathway and the mechanisms through which
these molecules perform their antitumor activities.

Keywords: small molecules; anticancer drugs; target therapy; natural compounds

1. Introduction

According to the World Health Organization (WHO) definition, cancer is a general
term for a group of diseases characterized by changes in cell proliferation that can affect
any part of the body, invade other tissues, and cause death [1]. More than 19 million new
cancer cases are diagnosed each year, making it the second leading cause of death globally,
with approximately 10 million deaths each year [2]. The most common cancer subtypes
are breast cancer (11.7%), lung cancer (11.4%), and colon cancer (10%), with more than
2 million new cases diagnosed in 2020 [2,3].

Colorectal cancer (CRC) has a high incidence and mortality rate and is the second
leading cause of cancer deaths worldwide [3,4]. Environmental and hereditary risks play
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a crucial role in the development of the disease [4,5]. In this case, lifestyle includes an
important group of changeable risk factors, particularly weight gain, sedentary lifestyle,
smoking, excessive drinking, unhealthy diet, and excessive consumption of red meat [6–8].
In addition, patients with a history of inflammatory bowel disease or polyps are more likely
to develop this disease [5,9].

Early diagnosis allows family follow-up and the adoption of appropriate medical
conduct for better chances of cure [10]. However, access to screenings is insufficient in
most countries, which impairs early detection [11–13]. Stages I and II CRC are potentially
curable when diagnosed and treated early, with 5-year survival between 70% and 90%.
Nevertheless, this rate decreases in stage III and stage IV, especially in metastatic cases,
which have only 12% 5-year survival [10,14–16]. Poor prognosis in advanced/metastatic
CRC cases is mainly linked to its high heterogeneity in addition to the presence of cancer
stem cells (CSCs) [16,17]. CSCs are capable of self-renewal and symmetrically divide into
two CSCs or one CSC and one daughter cell, which increases excessively the cell growth
and supports tumor development [16,17].

CSCs share some regulatory mechanisms of normal intestinal stem cells (ISC), which
generate one of the main therapeutic challenges because CSC-targeted therapies may
inadvertently harm ISC homeostasis or stem cells in bystander organs [17,18]. The Wnt/β-
catenin signaling pathway is a prime regulator of stemness in intestinal crypts [19–22].
Interestingly, several studies have shown that this pathway is closely associated with
chemoresistance in CRC patients [23–26]. Thus, the comprehension of molecular mecha-
nisms that regulate tumor maintenance is a golden chance to improve current treatments
and increase overall survival and reduce tumor recurrence in CRC patients [17]. In this
review, we discuss the latest research using naturally occurring small molecules-based
inhibition of Wnt/β-catenin signaling pathway components in CRC models, as well as the
advances and challenges to make the Wnt/β-catenin signaling pathway a druggable target
for CRC.

2. The Wnt/β-Catenin Signaling Pathway

The cell signaling by the Wnt family of secreted glycoproteins is one of the funda-
mental mechanisms that regulate cell proliferation, polarity, and cell fate [27–29]. The
signaling promoted by the 19 Wnt glycoproteins can be subdivided into the Wnt/β-catenin
pathway, also known as the Wnt canonical pathway, and the non-canonical Wnt path-
way, which does not depend on β-catenin, that encompasses the Wnt/planar cell polarity
(Wnt/PCP), Wnt/Ca2+ pathway, and the Wnt-dependent stabilization of proteins pathway
(Wnt/STOP) [30].

The canonical Wnt signaling pathway relies on the fine balance of β-catenin protein
level [29,31]. In the absence of Wnt ligands, the ubiquitin-dependent proteasomal degra-
dation keeps the β-catenin protein at basal levels [32]. This process is promoted by a
protein complex known as the β-catenin destruction complex, in which the Axin protein
acts as a scaffold for the tumor suppressor Adenomatous polyposis coli (APC), Casein
kinase 1 (CK1), and Glycogen synthase kinase-3 α/β (GSK-3α/β) [33–37]. Thus, Axin
interacts with β-catenin bringing it closer to CK1, which phosphorylates it at serine 45,
whereas GSK-3β phosphorylates threonine 41 and serine 37 and 33 [38,39], addressing it for
ubiquitination by the protein β-Transducin repeat-containing protein E3-ubiquitin ligase
(β-TrCP), and further degradation via the proteasome [40]. This process allows the Groucho
protein to bind to T-Cell specific transcription Factor/Lymphoid Enhancer-binding Factor
(TCF/LEF), thus blocking the transcriptional promoters and enhancers of the canonical
Wnt pathway. Thus, the TCF/Groucho complex suppresses the transcription of target
genes of the canonical Wnt signaling pathway [41,42] (Figure 1A).

Wnt proteins are crucial in the canonical signaling pathway as well as in polarized
epithelial cells [43]. Excluding WntD (dorsal Wnt inhibitor in Drosophila), all Wnt proteins
are palmitoylated in the endoplasmic reticulum (ER) [44–46] by ER-membrane-bound-O-
acyl transferase Porcupine [47], leading to its recognition by Wntless (WLS) that transports
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the Wnt protein to the cell membrane, where it will be finally secreted [48,49]. Once released,
Wnt ligands travel into the extracellular space to activate their signal transduction [45,46].
The binding of the Wnt proteins to the Frizzled-LRP5/6 complex in the membrane leads
to the recruitment of the Disheveled protein (Dvl) through direct interaction with the
Frizzled receptor [50,51]. This process culminates in the recruitment of the Axin-GSK3
complex to phosphorylate the PPPSPxS motifs of the intracellular domain of LRP5/6,
preparing them for further phosphorylation by CK1γ [38,52–54]. Phosphorylation of
LRP5/6 PPPSPxS motifs inhibits GSK-3β allowing the dephosphorylation of Axin by PP1
phosphatase, thereby assuming a closed conformation, incapable of interacting with β-
catenin [55]. However, Tankyrases (TNKs) regulate Axin homeostasis through PARsylation
and subsequent degradation by the proteasome [31,32,56]. Thus, β-catenin accumulates in
the cytoplasm and translocate to the nucleus, interacting with the TCF/LEF and acting as a
coactivator of the transcription of Wnt signaling target genes [57], which comprises cell
cycle progression, stemness, and positive and negative feedback genes (Figure 1B).

Additionally, negative feedback mediated by the E3 ubiquitin-protein ligases ZNRF3
and Ring Finger Protein 43 (RNF43) promote the regulation of β-catenin through the
degradation of LRP5/6 and Frizzled receptors, reducing the availability of binding sites
for the Wnt protein, resulting in subsequent downstream β-catenin degradation [58,59].
However, the R-spondin (RSPO) proteins induce the indirect association between ZNRF3
and Leucine-rich repeat-containing G-protein coupled receptors (LGR) 4/5/6, promoting
membrane clearance of ZNRF3 and RNF43, thereby enhancing the availability of the Wnt
receptor in the cell membrane, which potentiates Wnt ligand-mediated activation of the
Wnt/β-catenin pathway [58,59] (Figure 1B).
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Figure 1. Schematic representation of the regulatory model of the Wnt/β-catenin signaling pathway.
(A) in the absence of Wnt; (B) after binding of Wnt ligand. WIF, Wnt Inhibitor Factor; sFRP, Secreted
Frizzled-related Protein; DKK, Dickkopf; LRP, LDL Receptor-related Protein; APC, Adenomatous
Polyposis Coli; CK1, Casein Kinase 1; GSK3, Glycogen Synthase Kinase-3; Dvl, Disheveled; Tnks,
Tankyrases; β-TrCP, Beta-Transducin repeat-Containing Protein; β-cat, β-catenin; TCF, T-Cell Fac-
tor; LEF, Lymphoid Enhancer-binding Factor; HDAC, Histone Deacetylase; TLE, Transducin-Like
Enhancer Proteins; PAR, Poly-(ADP-ribose); RSPO, R-spondin; ZNRF3, E3 ubiquitin-protein lig-
ases; RNF43, Ring Finger Protein 43; LGR4/5/6, Leucine-rich repeat-containing G-protein coupled
Receptors 4/5/6; P, phosphorylation; Ub, ubiquitination.
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Wnt/β-Catenin Pathway in Colorectal Cancer

The intestine is one of the most dynamic organs in the human body [18,19]. The strong
renewal ability of intestinal epithelium allows the replacement of all the cell lining over
its more than 7 m length every week, most likely in response to chemical, microbiological,
and mechanical stresses caused by digestion and evacuation [19]. This replacement initi-
ates at the bottom of the intestinal crypts, by asymmetric division, in a niche containing
ISCs [18]. Several embryonic-conserved signaling pathways are involved in self-renewal,
proliferation, and differentiation of the ISC niche, with the Wnt/β-catenin pathway acting
as a prime regulator for the maintenance of the stem cell pool [19,20].

As the Wnt pathway is crucial for promoting homeostasis in the ISC niche, it is not
surprising that changes in its components trigger pathological events [19,20,60]. Although
the pathophysiological mechanisms that drive colorectal carcinogenesis are heterogeneous,
the tumoral transformation of normal intestinal epithelial cells (IEC) depends on an event
that triggers chromosomal instability (CIN) and the accumulation of somatic mutations
and epigenetic alterations [20,61,62]. In this context, the deregulation of the Wnt/β-catenin
signaling components is the most frequent event and leads to hyperproliferation in the
intestinal crypt [63,64].

According to The Cancer Genome Atlas (TCGA), changes in Wnt/β-catenin signaling
members such as APC are frequently the classic driver event in more than 90% of CRC
cases [65]. The APC gene encodes a 310 kDa multidomain protein that is one of the
prime regulators of β-catenin levels. Its exon 15 corresponds to approximately 75% of the
APC coding sequence and is also a common region for its mutations [66,67]. Germ-line
mutations in the APC gene are associated with familial adenomatous polyposis (FAP) and
hereditary predisposition to develop CRC [68,69]. In addition, somatic mutations are found
in more than 80% of sporadic CRC, and loss of heterozygosity (LOH) of chromosome 5q
is reported in 30% to 40% of patients with CRC [70–72]. In both cases, the loss of APC
promotes constitutive activation of the Wnt/β-catenin signaling pathway and the clonal
expansion of the “initiated” cells leading to the appearance of a benign polyp with aberrant
crypts [63,66,73].

The increase of genomic instability and the successive mutations in genes such as
KRAS and SMADs trigger the formation of dysplastic tubular adenomas [61,74,75]. As a
result, alterations in the Transforming growth factor-β (TGF-β) pathway and the inactiva-
tion of the TP53 gene culminate in the formation of invasive adenocarcinomas [61,75–77].
Once epithelial tumor tissue is in constant interaction with cells in tumor microenviron-
ment (TME) through the action of cytokines, chemokines, and growth factors, additional
mutations, and changes in TME components give advantage to tumor clones and allow the
tumors to later metastasize to distant organs [78–82] (Figure 2).
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Figure 2. Schematic representation of the multistep process of carcinogenesis in the colonic epithelium
with the corresponding genetic alteration in each step. The loss of APC leads to the development
of tubular adenomas, which can progress to adenocarcinomas. APC, adenomatous polyposis coli;
KRAS, Kirsten rat sarcoma viral oncogene homolog; BRAF, B-Raf Proto-Oncogene, Serine/Threonine
Kinase; SMAD4, Mothers against decapentaplegic homolog 4; TGFBR2, Transforming Growth Factor
Beta Receptor 2; TP53, tumor protein p53.

The constitutive activation of Wnt signaling triggered by the loss of APC confers
mutant ISCs a clonal advantage, thereby enhancing the critical role of the Wnt signaling
pathway in the development and progression of CRC [79–81]. In addition, APC-deficient
ISC clones further increase their fitness through the modulation of the tumor microenviron-
ment by secreting Wnt antagonists such as Notum. Secreted Notum inhibits the Wnt ligands
necessary for the stemness of the neighboring wild-type ISC, therefore inducing their dif-
ferentiation, which favors intra- and inter-crypt competition between APC-truncated and
normal clones, conferring the cell growth advantage to CRC cells [79–81]. Intriguingly,
colon cancer cells recover their normal function when wild-type APC levels are restored,
triggering the differentiation, and restoring crypt homeostasis, even with severe oncogenic
insults such as KRAS and p53 mutations [76].

These discoveries reinforce the importance of understanding the molecular mecha-
nisms that implicate the Wnt pathway in the promotion and progression of CRC by the
scientific community and draw attention to its potential for targeted therapies.

3. Systemic CRC Therapy and Wnt/β-Catenin Signaling Pathway

Treatment of CRC depends on the staging and may include laparoscopic removal
of polyps or surgical removal of damaged areas of the intestine [83–86]. 5-Fluorouracil
(5-FU)-based monotherapy is generally the first-line systemic approach used to treat frail
or elderly patients [87–89]. On the other hand, in reasonably healthy patients, first-line
therapy consists of combined regimens of 5-FU and oxaliplatin (FOLFOX or CAPOX) or
regimens based on irinotecan (FOLFIRI or CAPIRI). In advanced and metastatic CRC, the
treatment may include the FOLFOXIRI regimen, which is composed of 5-FU, leucovorin,
oxaliplatin, and irinotecan simultaneously combined. However, studies have shown that
this regimen is rarely used due to its potential for increased toxicity.
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Although combination drugs for cancer treatment have improved overall survival
compared to monotherapy, CRC recurrence remains the reality for approximately 40% of
the patients after primary treated tumors [89]. The stemness in tumor cells is an important
underlying mechanism that contributes to standard treatment resistance and tumor recur-
rence [17,90]. CSCs are a small population of undifferentiated tumorigenic cells within
tumors that are capable of self-renewal and produce different cell clones responsible for
the initiation and sustaining of tumor growth [90]. CSCs are APC-deficient [79,81]. The
loss of APC leads to constitutive activation of the Wnt/β-catenin signaling pathway that
sustains CSC survival and promotes the clonal exclusion of WT-ISC through the secre-
tion of Wnt antagonists in the tumor microenvironment (TME) [79–81]. Because APC
and other Wnt signaling members are critical to the development, progression, and re-
currence of CRC, components of the Wnt/β-catenin signaling pathway may correspond
to a promising source therapeutic targets for CRC treatment. In this review, we discuss
the Wnt/β-catenin signaling components as a target for CRC therapies using naturally
occurring small molecules, highlighting the mechanisms by which these molecules exert
their antitumor effects.

4. Wnt/β-Catenin Components as a Target for Natural-Derived Small Molecules-Based
Therapy in CRC

Several FDA-approved anticancer drugs are based on natural sources such as natural
compounds. The alkaloids vincristine and vinblastine are used as first-line therapy for
leukemia and lymphomas [91,92], while paclitaxel is the first-line therapy for breast can-
cer [93]. Irinotecan, a second-line treatment for CRC, is a drug developed based on the
alkaloid camptothecin [94]. Polyphenols are derived from natural sources and are widely
used therapeutic alternatives for cancer treatment. These small molecules are synthesized
by plants and are found in multiple sources such as seeds, leaves, and roots [95–98]. These
molecules have many biological effects with significant therapeutic impact, including
chemoprotective and antitumor properties related to their ability to interact with multiple
signaling pathways components such as the Wnt/β-catenin pathway [96,99,100]. In this
review, we highlighted dozen naturally occurring small molecules targeting the Wnt/β-
catenin signaling pathway, such as extracellular proteins (Figure 3), components of the
destruction complex (Figure 4), the β-catenin protein (Figure 5) as well as its transcriptional
activity (Figure 6). In the following sessions, we present the molecular target, mechanisms
of action (Table 1), and the anticancer effects of each molecule on different CRC models.

4.1. Targeting Extracellular Components

Genistein is one of the isoflavones present in soybean, and it inhibits the Wnt/β-
catenin pathway through epigenetic modifications that positively regulate the expression
of several Wnt antagonists. It has been demonstrated that treatment with genistein re-
duced methylation in CpG islands of the Wnt5a and sFRP2 genes, attenuating the nuclear
translocation of β-catenin [101,102]. Additionally, the treatment with genistein increased
acetylation in the promoter region of the DKK1 gene by histone H3, inhibiting the activity
of the Wnt pathway in response to increased expression of the antagonist DKK1 [103].
Finally, mice submitted to the Azoxymethane/Dextran sodium sulfate (AOM/DSS) proto-
col were used to demonstrate that the functional mechanisms of genistein involve DNA
methylation and histone modifications [104]. Genistein also promotes the demethylation of
WIF1, another Wnt antagonist, altering the expression of matrix metalloproteases MMP2
and MMP9, molecules essential to invasion and metastasis [105]. Together, these results
characterize genistein as an inhibitor of the Wnt/β-catenin signaling with antitumor effect,
by inhibiting viability, proliferation and inducing apoptosis and cell cycle arrest in G2.
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Murrayafoline A [145]

Tetrandrine [146]

Transcriptional
Machinery

Magnolol
Resveratrol
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Esculetin

2-Hydroxycinnamaldehyde

β-catenin/TCF Disrupts β-catenin/TCF
interaction

[147]
[148–152]

[153]
[154]
[155]
[156]

Carnosic acid β-catenin/BCL9 Disrupts β-catenin/BCL9
interaction [157]
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4.2. Targeting the Destruction Complex

The natural compound tussilagone (TSL) isolated from the flower buds of Tussilago
farfara is an inhibitor of the Wnt/β-catenin signaling pathway in a range between 10
to 30 µM, downregulating both cytoplasmic and nuclear β-catenin levels in HEK293T
reporter cells stimulated by Wnt3a or a GSK3-β inhibitor. TSL promotes proteasome-
mediated degradation of the β-catenin since the proteasome inhibitor MG132 recovers the
TSL-mediated reduction of the cytosolic level of β-catenin. Additionally, TSL suppressed
the proliferation of colon cancer cells via the downregulation of Wnt target genes, such as
CCND1 (cyclin D1) and MYC (c-myc) and decreased the cell viability in the MTT assay [119].

The flavonolignan hydnocarpin isolated from Lonicera japonica inhibits the Wnt/β-
catenin signaling pathway in a dose-dependent manner at concentrations between 5
and 40 µM. Hydnocarpin promotes the upregulation of Axin1/2 and enhances the β-
catenin phosphorylation at Ser33/37/Thr41 residues, leading to its subsequent ubiquitin-
dependent proteasomal degradation. In addition, it inhibits the proliferation of human
colon cancer cells SW480 in the sulforhodamine B (SRB) assay [115]. Raddeanin A is an
oleanane-type triterpenoid saponin extracted from the root of Anemone raddeana that inhibits
the Wnt/β-catenin signaling pathway by the activation of GSK3-β in a concentration less
than 5 µM, thereby initiating β-catenin phosphorylation at Ser33/37/Thr41 residues and
subsequently, its ubiquitin-dependent proteasomal degradation. Furthermore, raddeanin
A reduces cell viability, inhibits cell proliferation, and induces apoptosis in SW480 and
LoVo cells in a concentration-dependent manner at concentrations between 0.6 and 1.2 µM.
Moreover, raddeanin A efficiently inhibited tumor growth in a xenograft mouse model by
reducing the expression of the β-catenin protein and the Wnt-target genes CCND1 (Cyclin
D1) and MYC (c-myc) with 2.5 and 5 mg/kg [114].

Myricetin is a flavonoid found in citrus fruits, wild fruits, and grapes [158]. Myricetin
inhibits the Wnt/β-catenin pathway by modulating GSK3 activity and reduces cytoplasmic
and nuclear β-catenin levels in vivo with 100 mg/kg. In addition, myricetin inhibits the pro-
liferation of intestinal polyps in APCMin/+ mice by modulating the localization of β-catenin
in intestinal adenomatous cells and negatively regulates the expression of PCNA and the
Wnt-target gene cyclin D1, reducing the number of intestinal polyps, besides promoting
apoptosis by regulating pro-apoptotic proteins and inflammatory cytokines [108].

The flavone Oroxylin A is present in the tree Oroxylum indicum and medicinal plants
of the genus Scutellaria [109]. Oroxylin A inhibits the activity of the canonical Wnt pathway
by downregulating the expression of the Wnt3a protein and promotes the proteasomal
degradation of β-catenin in a range between 50 to 150 µM. In addition, this molecule
alters the intracellular distribution of β-catenin through the positive regulation of GSK3-
β and Axin mediated by intracellular fatty acids. Oroxylin A induces G2/M cell cycle
arrest in HCT116 cells, prevents xenographic tumor growth, and reduces the progression
of AOM/DSS-induced tumors with 200 mg/kg by modulating fatty acid metabolism.
However, the molecular mechanism and the functional effect of this molecule on the Wnt
pathway in vivo were not accessed [109].

Luteolin inhibits the canonical Wnt pathway through GKS3 activity, promotes phos-
phorylation and the subsequent proteasomal degradation of β-catenin dose-dependently in
a range between 25 to 100 µM [110,111]. Treatment with different concentrations of luteolin
prevents the stabilization of β-catenin, reduces cell viability and proliferation, and induces
Caspase-dependent apoptosis in HCT15 cells [110]. Furthermore, luteolin reduces PCNA
expression and the Wnt-target gene Cyclin D1 protein level, reducing the proliferation of
tumors caused by the AOM/DSS protocol by modulating the localization of β-catenin in
mice treated with a single dose with 1.2 mg/kg body weight [111].

Vicenin-2 is the 6,8-di-C-glucoside of apigenin that is widespread in the medicinal
plant Ocimum sanctum. Yang et al. [112] showed that vicenin-2 dose-dependently inhibits
the activity of the reporter gene of the Wnt signaling pathway and represses the inactive
form of GSK3, thereby preventing the stabilization of β-catenin in the cytoplasm at 50 µM.
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Vicenin-2 can also reduce cell viability and proliferation in addition to G2/M arrest and
induce Caspase3-mediated cell death in HT-29 cells [112].

Berberine is an isoquinoline alkaloid of medicinal plants of the genus Coptis and
Berberis [118]. Berberine inhibits the activity of the Wnt/β-catenin pathway in a concentration-
dependent manner in a range between 5 to 100 µM in cell lines transfected with the TOPFlash
reporter plasmid. Berberine does not inhibit the activation promoted by the dnLEFVP16 plas-
mid. Its likely mechanism of action is by increasing levels of APC, which promotes β-catenin
degradation and reduces transcription of target genes such as CCND1 (cyclin D1) and MYC
(c-myc) [117,118]. Berberine reduces the viability of cell lines HCT116, KM12L4A, KM12SM,
and KM12 and attenuates the formation of intestinal polyps in ApcMin/+ mice treated with
330 mg/kg three times per day. Berberine reduced the expression of Wnt-target genes Cyclin
D1 and c-Myc in mice, in addition to decreasing the recurrence of polyps in seven patients
with familial adenomatous polyposis by reducing Cyclin D1 expression [117,118].

Jatrorrhizine is a protoberberine alkaloid that is one of the main components of Rhizoma
copidis and has a similar chemical structure to berberine [113,159]. Jatrorrhizine positively
regulates GSK3-β expression and promotes a concentration-dependent β-catenin degrada-
tion in HCT116 and HT-29 cells in a range between 5 to 15 µM. Jatrorrhizine reduces the
viability, proliferation, cell migration and invasion, in addition to inducing S-phase cell
cycle arrest and Caspase-dependent apoptosis. Jatrorrhizine also prevents tumor growth
and lung metastasis in xenotransplanted mice treated with 2.5 or 5 mg/kg by reducing the
β-catenin protein levels [113].
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4.3. Targeting β-Catenin

1,4,6-Tri-O-galloyl-β-d-glucopyranose (TGG) is a polyphenol isolated from Sanguisorba
officinalis, a popular Chinese herb called DiYu. TGG significantly inhibits the Wnt/β-
catenin signaling pathway by downregulating β-catenin protein levels in a concentration
range between 20 to 70 µg/mL. Moreover, TGG induces apoptosis by increasing the
protein levels of Caspase-3, PARP and the Bax/Bcl-2 ratio in HT-29 cells [120]. Another
natural compound that targets the β-catenin is 3,3′-diindolylmethane (DIM), isolated
from cruciferous vegetables. DIM inhibits the Wnt/β-catenin signaling pathway by the
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downregulation of mRNA and protein levels of c-Myc, β-catenin, and Cyclin D1 in DLD-1
and HCT116 cells in range between 50 to 100 µM. Moreover, DIM inhibits cell growth and
clonogenicity, in addition to inducing apoptosis by cleaved-PARP and pro-Caspase-3 of
DLD-1 and HCT116 cells [121].

Curcumin, a curcuminoid produced by Curcuma longa, inhibits the Wnt/β-catenin
signaling pathway in tumor cell lines and mouse models in a dose-dependent manner.
Curcumin treatment reduces β-catenin nuclear translocation and decreases transcription
of target genes such as CCND1 (cyclin D1), MYC (c-myc), and AXIN2 (Axin2) in a range
between 4 to 32 µM [122,125]. Curcumin also prevents the epithelial-mesenchymal tran-
sition, positively regulating NKD2 expression [123]. Furthermore, curcumin induces
apoptosis and inhibits tumor cell proliferation and tumor number induced by AOM/DSS
protocol by downregulation of the β-catenin protein levels in mice treated orally with
500 mg/kg [122,124,160]. AXIN2 (Axin2), a known Wnt target gene, was also downregu-
lated in the same mice.

4Hydroxywithanolide E (4βHWE) is a naturally occurring small molecule from
Physalis peruviana that inhibits the Wnt/β-catenin signaling pathway by promoting the
phosphorylation and degradation of β-catenin in a concentration less than 5 µM, which
impairs its subsequent nuclear translocation and attenuates expression of the endogenous
Wnt target genes in colon cancer cells. 4βHWE reduces cell viability and proliferation,
induces G0/G1 cell cycle arrest, and promotes Caspase-dependent apoptosis of colon
cancer cells. Moreover, 4βHWE dramatically inhibited tumor growth in HCT116 xenografts
by promoting β-catenin degradation and downregulating protein levels of Axin2, c-Myc,
and Cyclin D1 in mice treated with 5 mg/kg and 10 mg/kg/day for 14 days, suggesting its
potential use as an antitumor agent that targets the Wnt/β-catenin signaling pathway [126].

The flavonoid epigallocatechin-3-gallate (EGCG) is the main component of green
tea and reduces the activity of the Wnt/β-catenin pathway induced by the Wnt3a con-
ditioned medium in a range between 20 to 80 µM and promotes phosphorylation of
the Ser33/37 sites of β-catenin by a GSK3-independent mechanism [128]. In addition,
epigallocatechin-3-gallate can inhibit cell proliferation and the formation of oncospheres
enriched with tumor stem cells at 40 µM by downregulating the levels of Axin2, c-Myc,
and Cyclin D1 and PCNA [127,128].

Atractylochromene is a polyphenol isolated from rhizomes of Atractylodes macrocephala
that suppresses the Wnt/β-catenin transcriptional activity stimulated by Wnt3a or GSK3-β
inhibitors in HEK293T reporter cells treated with concentrations between 5 to 20 µg/mL.
Thus, atractylochromene targets the β-catenin, impairing its galectin-3-mediated nuclear
accumulation and inhibiting the proliferation of SW480 colon cancer cells [129].

Silibinin is the active compound present in silymarin extracted from the medicinal
plant Silybum marianum. Silibinin supplementation at 50 mg/kg/day for 32 weeks reduces
β-catenin levels and prevents the colorectal carcinogenesis induced in Wistar rats chal-
lenged with the xenobiotic 1,2-Dimethylhydrazine (DMH). Furthermore, silibinin inhibits
adenocarcinoma proliferation by downregulating protein levels of β-catenin protein, Cyclin
D1 and PCNA [130,131].

Broussochalcone A (BCA) is a prenylated chalcone isolated from Broussonetia papyrifera
that accelerates the intracellular turnover of β-catenin, leading to its N-terminal phospho-
rylation at Ser33/37/Thr41 residues and subsequent ubiquitin-dependent proteasomal
degradation in a range between 5 to 20 µM. BCA decreased the intracellular β-catenin
levels in colorectal cancer cells HCT116 (β-catenin mutant) and SW480 (APC mutant), and
the pharmacological inhibition of GSK3-β could not abrogate the BCA-mediated degra-
dation of β-catenin, which suggests that its mechanism of action is downstream of the
destruction complex. Moreover, BCA inhibits cell viability and induces apoptosis by a
Caspase-dependent mechanism [132].

Apigenin is an abundant flavone in fruits and vegetables that inhibits the reporter
activity of the Wnt/β-catenin pathway downstream of the destruction complex in con-
centrations between 10 to 80 µM [161]. Apigenin changes the distribution of β-catenin
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and promotes its degradation by the lysosome-dependent autophagy system in a dose-
dependent manner [133,134]. In addition, apigenin negatively regulates the expression of
several oncogenes and suppresses the proliferation, migration, and invasion of the tumor
cell lines SW480 and HCT15 and tumor spheroids at 40 µM [134].

Xanthohumol (XHA) is a natural polyphenol isolated from Humulus lupulus that
promotes the β-catenin degradation and inhibits cellular proliferation by inhibiting the
Wnt/β-catenin signaling pathway activity in mice orally treated with 5 mg/kg of XHA
for 8 weeks. Moreover, the administration of XHA suppresses tumor proliferation by
downregulating the levels c-Myc, and Cyclin D1 and Ki-67 besides inducing Caspase-3-
mediated apoptosis in AOM-induced Sprague-Dawley rats [136].

Rabdoternin B and maoecrystal I, are two natural compounds from a natural ent-
kauranoid library identified by a dual-luciferase reporter gene assay. Both compounds
inhibit the Wnt/β-catenin signaling pathway in a concentration-dependent manner in
HEK293T cells with an IC50 of 13.95± 0.66 and 10.58± 0.82 µM, respectively. Nevertheless,
maoecrystal I did not affect β-catenin levels in SW480 cells, indicating that it inhibits Wnt
signaling downstream of β -catenin degradation events. Rabdoternin B and maoecrystal I
reduced the viability and inhibited the growth of SW480, HCT116, and HT-29 tumor cells
treated with 20 or 40 µM, with only weak cytotoxicity towards the normal colonic epithelial
cell line CCD-841-CoN, and arrested SW480 cells at the G2/M phase [137].

Wogonin is a flavone present in medicinal plants of the Scutellaria genus that inhibits
the Wnt/β-catenin pathway in a dose-dependent manner in HCT116 cells treated with
concentrations between 10 to 40 µM. Wogonin promotes the reduction of cytoplasmic and
nuclear β-catenin levels and downregulates the expression of transcription factors of the
TCF/LEF1 family, thereby limiting the transcriptional capacity of the TCF/LEF complex.
Wogonin reduces cell viability and proliferation, induces cell cycle arrest in G1, and reduces
the growth of xenographic tumors by promoting β-catenin degradation and downregulat-
ing protein levels of c-Myc and Cyclin D1 in mice treated 30 and 60 mg/kg [138].

Isoquercitrin, a flavonol derived from quercetin, inhibits the activity of the reporter
gene for the Wnt/β-catenin pathway in a concentration-dependent manner, promoting
β-catenin degradation, and preventing its translocation to the nucleus in a range between
75 to 150 µM. As a result, isoquercitrin inhibits the formation of the ectopic axis induced
by xWnt8 (Xenopus Wnt8 mRNA) and the dorsalization phenotype induced by lithium
chloride (LiCl) in Xenopus laevis embryos. In addition, isoquercitrin reduces the viability,
proliferation, and migration of tumor cell lines HCT116, SW480, and DLD-1 without
affecting the non-tumor cell line IEC-18 [139].

Taxifolin is a flavonoid abundant in olive oil, onions, grapes, and various citrus fruits.
Taxifolin interacts with β-catenin and reduces its total levels, thereby modulating the
canonical Wnt signaling in a concentration-dependent manner in concentrations between
20 to 60 µM [140,141]. In addition to stimulating G2 arrest and inducing apoptosis through
the Caspase pathway, taxifolin can also reduce cell viability and proliferation in HCT116
and HT-29 cell lines and xenographic tumors by the downregulation of the β-catenin and
Cyclin D1 in mice treated with 0.4 µg/kg [140,141].

The chalcones derricin and derricidin inhibit the Wnt/β-catenin signaling pathway
with different mechanisms [142]. Both inhibit the activation of the Wnt reporter in a
dose-dependent manner. However, derricin inhibits the mutant S33A of β-catenin and
probably prevents its nuclear translocation. On the other hand, derricidin does not inhibit
this mutant, suggesting that its mechanism of action is upstream of β-catenin. Functional
assays showed that derricin and derricidin disrupt the axial pattern and reverse the ectopic
axes induced by xWnt8 DNA in embryos of X. laevis, reinforcing their inhibitor properties
in a well-established canonical Wnt pathway model [162]. Furthermore, both chalcones
have antitumor effects and inhibit viability, proliferation, migration, and induce cell cycle
arrest in colorectal tumor cell lines [142].

Antofine is an alkaloid phenanthroindolizidine present in several plants of the Ascle-
piadaceae family [143]. Antofine reduces the levels of β-catenin and Cyclin D1 in SW480
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cells and inhibits the activity of the Wnt/β-catenin pathway in a concentration-dependent
manner in HCT116 cells transfected with the TOPFlash plasmid in 2.5 to 10 nanomolar
range of concentration. Furthermore, treatment with antofine prevented cell cycle progres-
sion in the G0/G1 phases by disrupting the Cyclin/CDK complex. Antofine also induces
apoptosis and prevents the growth of xenotransplanted tumors in nude mice. However,
neither the mechanism nor the functional effect of antofine on the Wnt/β-catenin pathway
in vivo was accessed [143].

Bisleuconothine A is an alkaloid bisindole that promotes β-catenin degradation, pre-
venting its nuclear translocation and reducing the activity of the Wnt/β-catenin signaling
pathway. Bisleuconothine A reduces the transcriptional activity of the Wnt canonical
pathway in a concentration-dependent manner in HCT116 and SW480 cells and induces
β-catenin phosphorylation impairing its nuclear levels after treatments with concentrations
between 1 to 10 µM. Furthermore, Bisleuconothine A inhibits cell proliferation by arresting
the cell cycle in G0/G1 and inducing Caspase-dependent apoptosis and suppresses the
growth of xenotransplanted tumors in mice, promoting the β-catenin degradation and
downregulating protein levels of c-Myc and Cyclin D1 in mice treated with 2 mg/kg for
2 weeks [144].

Murrayafoline A is a carbazole alkaloid isolated from Glycosmis stenocarpa that inhibits
Wnt/β-catenin signaling pathway according to its concentration. Murrayafoline A inhibits
the pathway activated by Wnt3a conditioned medium or LiCl treatment in HEK293T cells
treated with concentrations between 5 to 40 µM and promotes β-catenin degradation by
a proteasome-dependent mechanism. Furthermore, murrayafoline A down-regulates the
expression of c-Myc and Cyclin D1 and reduces the viability and proliferation of human
colon tumor lines [145].

Tetrandrine, a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra roots,
inhibits the Wnt/β-catenin pathway reporter gene activity in LoVo and HCT116 cells treated
with concentrations between 2.5 and 10 µM [163,164]. Tetrandrine reduces the expression
of MYC (c-myc), a target gene of the Wnt canonical pathway, inhibits cell proliferation and
migration, in addition to inducing Caspase-dependent apoptosis. Tetrandrine also prevents
tumor growth of xenotransplanted tumors in rats treated intraperitoneally with 60 mg/kg
once every 2 days [163] and DMH-DSS induced tumors in mice orally treated with 40 or
80 mg/kg [164].



Cancers 2022, 14, 403 13 of 23Cancers 2022, 13, x FOR PEER REVIEW 13 of 24 
 

 

 

Figure 5. Chemical structures from the naturally occurring small molecules that target the β-catenin 

protein in the Wnt/β-catenin signaling pathway. 

4.4. Targeting the β-Catenin Transcriptional Activity 

Magnolol is a neolignan from the cortex of Magnolia obovata that suppresses the 

Wnt/β-catenin transcriptional activity stimulated by Wnt3a in HEK293T reporter cells. 

Mechanistically, magnolol inhibits the nuclear translocation of β-catenin and significantly 

suppresses the binding of β-catenin/TCF complexes onto their specific DNA-binding sites 

in the nucleus. Magnolol also effectively inhibits the proliferation of both SW480 and 

HCT116 cells in a concentration-dependent manner and suppresses the growth and inva-

sion of HCT116 xenografts in a nude mouse model [147]. 

Resveratrol is a flavonoid with several biological properties. It is present in peanuts 

and wild fruits and is abundant in grapes and their derivatives, such as red wine. Resvera-

trol inhibits the Wnt/β-catenin pathway in a dose-dependent manner, preventing the in-

teraction between β-catenin/TCF4 and promoting proteasomal degradation of TCF4 in a 

range between 10 to 100 µM [148,151]. Resveratrol also inhibits the proliferation, migra-

tion, and invasion of tumor cell lines and xenotransplanted tumors in response to down-

Figure 5. Chemical structures from the naturally occurring small molecules that target the β-catenin
protein in the Wnt/β-catenin signaling pathway.

4.4. Targeting the β-Catenin Transcriptional Activity

Magnolol is a neolignan from the cortex of Magnolia obovata that suppresses the
Wnt/β-catenin transcriptional activity stimulated by Wnt3a in HEK293T reporter cells.
Mechanistically, magnolol inhibits the nuclear translocation of β-catenin and significantly
suppresses the binding of β-catenin/TCF complexes onto their specific DNA-binding
sites in the nucleus. Magnolol also effectively inhibits the proliferation of both SW480
and HCT116 cells in a concentration-dependent manner and suppresses the growth and
invasion of HCT116 xenografts in a nude mouse model [147].

Resveratrol is a flavonoid with several biological properties. It is present in peanuts
and wild fruits and is abundant in grapes and their derivatives, such as red wine. Resver-
atrol inhibits the Wnt/β-catenin pathway in a dose-dependent manner, preventing the
interaction between β-catenin/TCF4 and promoting proteasomal degradation of TCF4
in a range between 10 to 100 µM [148,151]. Resveratrol also inhibits the proliferation,
migration, and invasion of tumor cell lines and xenotransplanted tumors in response to
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down-regulation of MALAT1 [150], HMGA2 [149], and the PTEN/PI3K/Akt axis in mouse
treated with 2.5 and 25mg/kg of resveratrol [152].

Lonchocarpin is a chalcone that inhibits the Wnt/β-catenin pathway with an IC50
of 4 µM. Lonchocarpin reduces the nuclear level of β-catenin and inhibits dnTCF4 VP16-
induced activation in HEK293T cells, suggesting that its mechanism of action involves
disturbing the interaction between β-catenin and TCF/LEF transcription factors. In func-
tional assays, lonchocarpin disturbed the axial patterning and reversed the Wnt8-induced
ectopic axes in X. laevis embryos. Furthermore, lonchocarpin inhibits viability, proliferation,
and migration in human colorectal tumor lines, in addition to reducing tumor proliferation
in mice submitted to the AOM/DSS protocol [153].

Piperine is an alkaloid responsible for the spicy taste of black pepper (Piper nigrum)
and long pepper (Piper longum) that inhibits the transcriptional machinery of the Wnt/β-
catenin pathway at 34 µM in SW480 β-catenin reporter gene cells and reduces the nuclear
localization of β-catenin in HCT116 cells. Piperine impairs colorectal cancer progression
by decreasing cell viability, proliferation, and migration in human tumor lines HCT116,
SW480, and DLD-1. Still, its effects are attenuated both in RKO cells, a colorectal carcinoma
lineage that lacks an overactive Wnt pathway, and HEK293T CTNNB1 (gene that encodes
β-catenin) knockout cells, reinforcing its role as a selective inhibitor of the canonical Wnt
pathway [154].

Esculetin (6,7-dihydroxycoumarin) is a natural small-molecule derivative of coumarin
identified as a potential inhibitor of the Wnt/β-catenin signaling pathway in concentrations
between 20 to 80 µM. The interaction between esculetin and β-catenin inhibits the formation
of the β-catenin-TCF complex, suppressing the Wnt/β-catenin transcriptional activity.
Moreover, esculetin effectively decreased the cell viability and inhibited tumor growth of
HCT115, HCT116, and DLD-1 cells, and impaired tumor growth in a colon cancer xenograft
mouse model by reducing protein levels of Cyclin D1, c-Myc and Ki-67 [155].

The carnosic acid from rosemary attenuates the transcriptional activity of the Wnt/β-
catenin pathway in colorectal cancer cells with concentrations between 2.5 to 25 µM.
Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation show that the
carnosic acid response requires an amino-terminal intrinsically labile α-helix (H1) next to
the BCL9-binding site in β-catenin. Carnosic acid targets predominantly the oncogenic
form of β-catenin for proteasomal degradation in an H1-dependent manner, providing a
new strategy for developing target inhibitors of oncogenic β-catenin [157].

The phenylpropanoid compound 2-Hydroxycinnamaldehyde (phenylpropanoid 1)
isolated from the bark of Cinnamomum cassia, significantly inhibited the Wnt/β-catenin
signaling pathway in HEK293T cells and HCT116 colorectal cancer cells. Mechanistically,
phenylpropanoid 1 suppresses the β-catenin/TCF binding complex into the nucleus and
down-regulates Wnt target genes such as MYC (c-myc) and CCND1 (cyclin D1). Fur-
thermore, the compound inhibits tumor cells proliferation in the athymic xenograft mice
model, without any apparent toxicity yet suppressing the expression of Wnt target genes
associated with tumor growth, including MYC (c-myc), CCND1 (cyclin D1), and BIRC5
(survivin) [156].
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5. Concluding Remarks and Future Perspectives

The Wnt canonical signaling pathway plays a prime role in regulating the levels of the
β-catenin protein and is vital for the embryonic axes patterning and maintaining stem cells
from different tissues [29,31]. It is therefore foreseeable that changes in its components lead
to a pathological process such as CRC. According to the TCGA, more than 90% of CRC
cases present dysregulation in regulatory proteins, such as the loss of the tumor suppressor
APC [65]. As a result, there is constitutive activation of the pathway, which leads to an
abnormal proliferative event and to the progression of CRC [63,73,79].

CRC ranks second in the number of cancer deaths worldwide, mainly due to late
diagnoses, restricting treatment in the potentially curable stages, and decreasing patient
survival [2,4,11–13]. The treatment of CRC involves surgery to remove the tumor tissue,
in addition to radiotherapy and systemic chemotherapy sessions based on the use of 5-
FU [83–86]. However, almost half of patients are resistant to these treatments, especially in
metastatic cases [89], where the 5-year survival rate is only 12% [14,15]. This factor may
be related to the intratumoral heterogeneity, TME, and the presence of CSCs, which is
impossible to resolve with the standard approaches currently available in clinical practice.

Myofibroblasts, cancer-associated fibroblasts (CAFs), and CSCs secrete a range of
growth factors and signaling proteins such as the agonist Wnt3a and the antagonist Notum
in the TME [24,165], both essential for canonical Wnt signaling transduction. Recently, a
new mechanism for tumor resistance was proposed, suggesting that APC-deficient cell
clones become “supercompetitive” through TME modulation, secreting Wnt antagonists
such as Notum, which inhibit the survival of normal ISC neighboring cells, inducing
their differentiation [79–81]. Thus, the use of selective Notum inhibitors, such as the
small molecule LP922056 [166], becomes a hypothetical route to prevent the fixation and
expansion of APC-mutant clones in patients predisposed to the development of CRC.

The proliferative-related genes MYC (c-myc), AXIN2 (Axin2), and CCND1 (cyclin D1)
are commonly linked to CRC development and are considered targets of the canonical
Wnt pathway, in which APC is a prime regulator [167]. Most APC mutations in CRC are
nonsense mutations, which result in frameshift or the introduction of a premature stop
codon [68,70]. Therefore, the use of APC-directed strategies could represent a promising
route for CRC therapies. According to Zilberberg and colleagues, restoration of even 1%
APC function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-
through of premature termination codons may result in near-normal or a clinically less
severe CRC phenotype [168]. Moreover, Dow and colleagues showed that colon cancer
cells recovered their normal function after restoring APC levels of APC-truncated cancer
cells harboring KRAS and p53 mutations [169].

Despite promising advances in the use of Wnt/β-catenin signaling modulators in
experimental therapies against CRC, no molecules of natural or synthetic origin are clini-
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cally available [170]. The principal obstacle is the difficulty of inhibiting only the aberrant
activation, as the Wnt signaling pathway is essential for cellular homeostasis throughout
the body [19,20,60,171]. Currently, the only Wnt inhibitor in clinical testing is the LGK974
molecule (NCT01351103), a Porcupine inhibitor that prevents the secretion of the Wnt3a
ligand [172]. Although promising, this molecule may have limitations in clinical use for
CRC as most cases bear APC mutations, and the downstream signaling responsiveness
of the Wnt ligand in CRCs harboring the loss of function of the tumor suppressor APC
remains unknown [25].

Combination therapy is a good strategy to overcome tumor resistance, and Wnt/β-
catenin inhibitors have been shown to improve tumor sensitivity to 5-FU and oxaliplatin,
which are standard drugs in regimens such as FOLFOX, used by CRC patients in stages III
and IV [23,25,173]. Low curcumin doses enhance 5-FU effects against colorectal cancer cells
and dramatically reduce the number and volume of tumors in mice subjected to the colitis-
associated CRC protocol [174–177]. Combined 5-FU with thymoquinone in sublethal doses
was effective against CD133 + tumor stem cells and showed no toxic effects on healthy
organoids [178]. Additionally, many other naturally occurring small molecules used as Wnt
inhibitors have had promising effects when combined with chemotherapeutic agents, the
most observed effects being inhibition of proliferation and induction of apoptosis [179–186].
Therefore, combining Wnt inhibitor drugs with current chemotherapeutic treatment might
be an interesting approach to overcome CRC carcinogenesis.

In this review, we evaluated the use of small molecules of natural origin to inhibit
the Wnt/β-catenin signaling pathway in experimental models of CRC and identified sev-
eral molecules with high inhibitory potential. However, some papers had inconclusive
information from the mechanistic perspective, which might be related to the incompat-
ible or improper experimental design to address mechanistic questions. It is, therefore,
necessary to overcome these issues with more suitable experimental models that enable a
reliable characterization of their mechanisms of action and potential application in further
preclinic studies.

So far, we have reviewed dozens of promising naturally occurring small molecules that
differently inhibit the canonical Wnt signaling pathway. Considering the mechanisms of
action of each compound and the dysregulation of Wnt signaling in the different colorectal
cancer types, novel pre-clinical experiments should be performed to validate and perhaps
allow these small molecules to move off the laboratory bench onto the clinical platform.
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